
ARTICLE

Received 19 May 2013 | Accepted 1 Aug 2013 | Published 23 Aug 2013

A strained organic field-effect transistor with
a gate-tunable superconducting channel
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In state-of-the-art silicon devices, mobility of the carrier is enhanced by the lattice strain from

the back substrate. Such an extra control of device performance is significant in realizing

high-performance computing and should be valid for electric-field-induced superconducting

(SC) devices, too. However, so far, the carrier density is the sole parameter for field-induced

SC interfaces. Here we show an active organic SC field-effect transistor whose lattice is

modulated by the strain from the substrate. The soft organic lattice allows tuning of the strain

by a choice of the back substrate to make an induced SC state accessible at low temperature

with a paraelectric solid gate. An active three-terminal Josephson junction device thus

realized is useful both in advanced computing and in elucidating a direct connection between

filling-controlled and bandwidth-controlled SC phases in correlated materials.
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S
trained silicon shows enhanced mobility because of the
band-structure tuning and is widely used in modern high-
spec circuits1. This technique should be also applicable to

the innovation of wider range of electronic devices including a
field-induced superconducting (SC) interface2–6. If a strained SC
field-effect transistor (FET) is realized, it will contribute in finding
new materials for, in figuring out unknown phase diagrams of
and in utilizing quantum devices based on, superconductivities.
In general, organic materials enjoy soft lattice and therefore the
strain effect on its properties should be significant because of the
alteration in the non-covalent intermolecular interaction. Indeed,
the organic superconductivity is known to be sensitive to the
physical and chemical pressure effects, providing a well-
investigated platform to check the influence of strain on the SC
transition. An organic superconductor that neighbours Mott-
insulating (MI) phase has several advantages in realizing SC-FET
with a strained interface with following reasons. First, the
relationship between the strain and the electron correlation
U/W, where U is the effective Coulomb interaction and W is
the bandwidth, is well established7,8, leading to precise analysis
of the obtained result. Second, the relationship between U/W
and SC state in the phase diagram with half-filled (non-doped)
band is already well investigated both experimentally and
theoretically9–12. Third, the carrier number required for the
induction of SC state is expected to be relatively low because of
the large molecular size along with the dimerized crystal
structure. For example, the half-filled carrier density for the
k-type BEDT-TTF (bis(ethyelenedithio)tetrathiafulvalene)
material (ca. 2� 1014cm� 2)13 is less than one-third of that for
high-Tc cuprates (ca. 7� 1014 cm� 2), which will make a field-
induced superconductivity within the reach of carrier density
modulation with solid paraelectric gate insulator, and thus an
active control of the device in a real-time low-temperature
experiment is possible. Finally, there should be no dangling bond
and associated carrier trap on the surface because molecular
crystal is constructed only by weak intermolecular interactions,
which is good for transistor operation.

The above four reasons justify a strained organic SC-FET as an
ideal test ground for the strain effect in gate-controlled SC
devices. At the same time, SC-FET with organic material merits,
when it is realized, also in understanding the phase diagram of
correlated materials’ superconductivity in simultaneous control of
bandwidth and bandfilling, which has been impossible to be
studied by other methods. For example, bandwidth-controlled SC
phase with half-filled condition has not yet been realized in
cuprates because of its hard lattice, although it is important in
verifying the superconductivity mechanism to know whether
filling-controlled and bandwidth-controlled SC phases are
connected to one another or not.

Here we demonstrate an active field-effect control of super-
conductivity in a strained FET with an organic Mott insulator,
k-(BEDT-TTF)2Cu[N(CN)2]Br (k-Br), whose ground state is
tuned in the vicinity of a strain-induced Mott transition. This
device provides a novel three-terminal Josephson junction (JJ)
whose transport characteristics reveals a phase diagram of an
organic Mott insulator, where a direct connection between filling-
controlled and bandwidth-controlled SC phases is suggested.

Results
Strain effect from the substrate. We fabricated FETs by lami-
nating thin single crystals of k-Br on top of metallic Nb-doped
SrTiO3 (STO) substrates covered with 30 nm of Al2O3 dielectric
layer grown by atomic layer deposition (Fig. 1a). k-Br is a highly
correlated organic superconductor (Tc¼ 11.6 K)14 whose
bandwidth-controlled SC phase neighbours an antiferromagnetic

MI phase11 (Fig. 1b). The ground state of k-Br can be finely tuned
by physical and/or chemical pressure. In our previous studies15,
by laminating it onto SiO2/Si substrates, we applied tensile strain
to thin crystals of k-Br and guided them into a MI state at
low temperature. As thermal expansion coefficients are different
between a Si substrate and a k-Br crystal (ca. 2 and 60 p.p.m. K� 1

at room temperature, respectively), the k-Br crystal is ‘expanded’
at low temperature as shown in Fig. 1b, blue arrow. In the present
study, STO was chosen as a substrate because of its relatively large
thermal expansion coefficient (ca. 10 p.p.m. K� 1 at room tem-
perature) to adjust the ground state of k-Br very close to a partially
SC region by a weaker tensile strain. In Fig. 1c, we show nor-
malized temperature dependence of the resistance (R–T plot) for
two devices (1 (orange) and 2 (red)) as well as those for k-Br
bulk (black) and k-Br on a SiO2/Si substrate (blue). Because of the
weak tensile strain effect from STO substrate, the resistances for
these two samples remain in between a complete SC state and a
highly resistive MI state, as indicated in Fig. 1b by orange and red
arrows. Device 1 showed insulating behaviour at low temperature,
whereas device 2 showed a small resistance drop at 12K, followed
by a re-entrant percolation transition around 9K. This behaviour
of device 2 indicates that the system is in the partially SC phase
where separation between SC and MI phases occurs and the
SC fraction is maximized around 9K. Such a situation has
already been investigated in detail for a bulk material by infrared
spectroscopy mapping16, nuclear magnetic resonance17, noise
measurement18 and so on. In our devices, magnetization measure-
ment for another sample (device 3) also showed partial
superconductivity and maximization of SC fraction at medium
temperature range, which will be described later. The above
sample dependence between devices 1 and 2 indicates that the
conductivity of k-Br is very sensitive to the small difference in the
strain that is produced in the lamination and cooling processes.

n-type field-effect and superconductivity in device 1. By
applying gate voltage (VG), the resistance of the device 1 drasti-
cally changed with ‘n-type’ polarity as shown in Fig. 2a. With
negative VG, the resistance increases rapidly, whereas the appli-
cation of positive VG squeezed out the insulating phase into low-
temperature region and the device became weakly metallic at
VG¼ 2V. By further increasing VG, it showed superconductivity
at VG48V. The current-voltage characteristic in the SC region
(Fig. 2a, inset) showed typical bistable switching of a resistance-
shunted JJ with a McCumber parameter much larger than
unity19, which implied an inhomogeneous SC transition at the
interface. The contour map of the resistance in logarithmic scale
is shown in Fig. 2b, suggesting a SC dome very similar to that for
cuprate superconductors (white-dashed line). This provides evi-
dences that the cuprates and the k-type organic system share the
common phase diagram in the filling-controlled regime.

p-type field-effect and superconductivity in device 2. In Fig. 3a,
we show an R–T plot below 13K for device 2. The device entered
partially SC state at 12K even at VG¼ 0V, followed by a reen-
trant percolation transition around 9K (OFF-ON transition at
9.2 K and ON-OFF transition at 8.1 K). This re-entrant transi-
tion is already known in a k-type bulk crystal in the vicinity of
bandwidth-controlled Mott transition20, and can be explained by
the recurrent decrease of SC volume fraction at low temperature.
A schematic image of a percolation transition of a JJ network
(JJN) in our device is shown in Fig. 3b. The ‘ON’ switching of JJN
designates the minimum of the free energy for the SC state with
respect to that for the MI state because the fraction ratio of these
two competing phases reflects the relative difference in their free
energies. The JJN in device 2 was switchable in situ by changing
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either magnetic or electric fields too. When the magnetic field was
swept, the device exhibited switching with large hysteresis (ON-
OFF at 1.2 T, OFF-ON at 0.8 T; Fig. 3a, inset). As for the gate-
electric field, the device exhibited re-entrant JJN switching with
‘p-type’ polarity upon VG sweeping below 8K (Fig. 3c). The VG

required for the switching was shifted to larger negative value as
the temperature decreased. The whole resistance mapping as a
function of T and VG is shown in Fig. 3d. In a mid-gap VG area
(� 4VoVGo11V), where essentially no mobile carriers were
introduced because of mid-gap traps (that is, the essential
bandfilling is just 0.5), the JJN was switched to the ON state
around 8–9K (blue area). At VGo� 4V, on the other hand, the
switching temperature started shifting downwards as the hole
injection proceeded. The blue area continued to reach to a fully
hole-doped SC state around (T, VG)¼ (3 K, � 13V). As these JJN
switchings at around (T, VG)¼ (8.5 K, 0V) and (T, VG)¼ (3 K,
� 13V) reflect the free-energy minima for the bandwidth-con-
trolled and the filling-controlled SC states, respectively, Fig. 3d

clearly shows a seamless connection between these two different
SC states.

Magnetic measurement for n-type device 3. We also confirmed
by magnetic susceptibility measurement (for device 3, Fig. 4) that
the devices exhibited diamagnetic shielding effect whose volume
fraction could be modulated by applying VG. Although there was
strong sample dependence, device 3 exhibited the largest Meiss-
ner and shielding effect among several samples we have mea-
sured, with the magnetic field applied parallel to the BEDT-TTF
layers. At VG¼ 0V, the OFF-state shielding effect was observed
below 7K, whereas the shielding effect was enhanced by applying
a positive VG, implying the device switching to the ON state with
the n-type characteristics. This enhancement was reproducible at
VG sweep. With an assumption that the shielding effect is pro-
portional to the volume fraction of the superconductivity and that
the volume fraction of the (unstrained) bulk crystal is 100%, one
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can estimate the SC fraction of both OFF and ON states of the
device by comparing the diamagnetic values of device 3 with that
of bulk k-Br. As a result, the temperature dependency of the

volume fraction of superconductivity in device 3 at various VG is
estimated as shown in Fig. 4b. Taking into account that the
thickness of the charge accumulation layer is one or two layers15
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and the thickness of k-Br crystal on the device 3 (550nm)
corresponds that of about 350 BEDT-TTF layers, the SC transition
seems not only to take place in the charge-injected layers but also
to propagate into the neighbouring layers in the thickness direction
because ca. 5% of the change of the volume fraction between OFF
(VG¼ 0V) and ON (VG¼ 10V) states well exceeds the expected
value for monolayer transition (ca. 0.3%). Such a bulk phase
transition seems to originate from an interlayer dielectric screening
of the Coulomb interaction U21. The maximization of the SC
fraction (or recurrent decrease of SC fraction) around 5K of device
3 also designates a characteristic feature of k-Br system in this
percolative region, which is commonly seen in the re-entrant
percolation transition of device 2.

Discussion
So far, the hole- or electron-doped cuprates’ superconductivity
and k-type organic superconductivity have been separately
discussed as in Fig. 5a, although scientists have pointed out
many common physical properties22. These similarities are a
consequence of a Mott transition, where doping controls the
bandfilling of cuprates while a pressure/strain controls bandwidth
of organic Mott insulators. However, the simultaneous control of
the strain (bandwidth) and the carrier density (bandfilling) in a
single Mott device is necessary for a deeper discussion of SC–MI
phase competition in the unified diagram. For example, the order
parameter symmetry is pointed out to be dx2� y

2 for cuprate
and dxy for k-BEDT-TTF23,24. To discuss the origin of this
discrepancy, it is important to realize both filling-controlled and
bandwidth-controlled superconductivity in the same material and
map out the connection between these two phases, which has
been impossible to be checked with cuprates that exhibits a hard
lattice. In the present experiments, it turned out that these SC
phases are directly connected to one another as drawn in Fig. 5b.
Inside the yellow SC arc, the U/W is too high to evoke
superconductivity, whereas it is too weak outside the arc. The
present organic FET devices having controllable bandwidth and
bandfilling therefore provide an indispensable opportunity for
exploring a phase diagram of a channel material in a wide
parameter space.

Judging from the R–T plots for devices 1 and 2, the difference
in the strain for these devices corresponds to ca. 10MPa

difference in hydrostatic pressure for bulk material20. From
crystallographic experiment, the lattice of k-type BEDT-TTF
material is known to shrink at a rate of about 0.025% per 10MPa,
and the transfer integrals between molecules increases at a rate of
about 0.2% per 10MPa (ref. 25). This means that the difference in
U/W for devices 1 and 2 (in Fig. 5b) is only 0.2% with respect to
the absolute value of U/W (an order of unity), when one takes into
account the fact that W is proportional to the transfer integral
(W¼ 4|t| where t is the inter-dimer transfer integral), whereas
effective U is not sensitive to the change in the transfer integral7

(because UE2|tdimer|� 4tdimer
2/Ubare, where tdimer is intra-dimer

transfer integral whose value is about 0.25 eV and Ubare is on-site
Coulomb repulsion for a single BEDT-TTF molecule whose value
is about 1.0 eV, small changes in tdimer cancels out.). As such a
small strain of 0.025% in the lattice evokes a drastic change in the
conductivity behaviour and associated FET characteristics, the
present results have proved that the control of the strain is a
significant tool for the quest for organic SC-FETs.

As the gate insulator in the present device is made of a
paraelectric solid, an active switching of JJ has become possible.
Such an electrostatically switchable three-terminal JJ device
may find applications in SC computation methods such as rapid
single-flux quantum26 and quantum computers27 because these
‘beyond Complementary Metal-Oxide Semiconductor’ methods
utilizes SC quantum interference device. In addition, an in situ
gate-sweep measurement at low temperature allows a detection
of first-order (hysteric) transitions in the bandfilling-controlled
regime. One example of such a transition is already visible in
Fig. 3c, where the resistance showed a bistable behaviour
depending on the sweep direction just inside the SC region.
This first-order phase transition is presumably relevant to the
discrepancy in one-particle excitation spectrum of a Mott
insulator that is dependent on the sweep direction of the
correlation strength as anticipated by theories28–30.

In summary, we have realized a strained organic FET with
gate-tunable SC channel. The phase diagram obtained by the
device operation shows a direct connection between bandwidth-
controlled and filling-controlled SC phases around a MI phase,
which has been impossible to realize in inorganic cuprates. The
gate-tunable JJ may be useful in ‘beyond Complementary Metal-
Oxide Semiconductor’ quantum devices and detecting a hidden
first-order phase transition in a filling-controlled regime.
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Methods
Substrate preparation. A 30-nm-thick amorphous Al2O3 gate insulator was
grown at 150 �C on a 0.05 wt% Nb-doped SrTiO3 (001) single-crystal substrate
(Shinkosha Co., Ltd.), which was used as a bottom gate. A thickness of Al2O3 was
evaluated by low-angle X-ray reflection measurement. A surface roughness was
o0.2 nm, which is comparable to that of a substrate. Typical electrical properties of
a Al2O3 dielectric layer were characterized by current-voltage and capacitance-
voltage characteristics of a capacitor made of Au/Ti/Al2O3/Nb:SrTiO3, showing
large breakdown field (B6–7MV cm� 1) and high dielectric constant (B9–10).

Crystal growth and lamination process. All the chemical compounds were
purchased from commercial sources and used without further purification unless
noted. 1,1,2-trichloroethane was purified by a basic aluminium column.
TTP[N(CN)2] (TTP, tetraphenylphosphonium) was precipitated from an equi-
molar mixture of Na[N(CN)2] and TTP-Br aqueous solutions and recrystallized
from ethanol-ethyl acetate. A thin (100–300 nm) single crystal of k-Br was
grown electrochemically by oxidizing BEDT-TTF (50mg) dissolved in 100ml of
1,1,2-trichloroethane (10% v/v ethanol) in the presence of TTP[N(CN)2] (200mg),
CuBr (50mg) and TTP-Br (20mg). After applying galvanostatic current of 5.0 mA
for 15 h, thin crystal was picked up under microscopic observation. Then, it was
transferred into an ethanol (10ml) by pipette. A 3-mm square-STO substrate was
immersed in the same ethanol and the crystal was guided on top of the substrate
using the tip of a strand of hair. The substrate was then removed from the alcohol
to be dried.

Transport measurements. The k-Br crystal was cut by laser (V-technology;
VL-C30-GB) to form terminals. Gold wires (15 mmf) were attached to these
terminals with silver and/or carbon paste. Standard four-probe measurement was
done under He atmosphere in an automatic cryochamber (Niki-glass) equipped
with a SC magnet.

Magnetic measurements. The magnetization of the device was measured using
SC quantum interference device (Quantum Design, MPMS) equipped with reci-
procating sample option. The weight of the thin k-Br crystal on device 3 was
calculated by using its thickness, area and specific gravity. Two phosphorous
bronze wires were attached on the k-Br and the gate substrate to modulate the VG

during the magnetic measurement. For field-cooled measurement, the device was
cooled down from 20 to 2K, during which time a magnetic field of 8 T was applied,
before the measurement. The magnetization was measured at a magnetic field of
100Oe that is parallel to the BEDT-TTF layers in all the measurements.
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