Abstract
The parametric interaction of light beams in nonlinear materials is usually thought to be too weak to be observed when the fields involved are at the singlephoton level. However, such singlephoton level nonlinearity is not only fundamentally fascinating but holds great potential for emerging technologies and applications involving heralding entanglement at a distance. Here we use a highefficiency waveguide to demonstrate the sumfrequency generation between a single photon and a singlephoton level coherent state. The use of an integrated, solid state, room temperature device and telecom wavelengths makes this type of system directly applicable to future quantum communication technologies such as deviceindependent quantum key distribution.
Introduction
Photons are ideal carriers of quantum information, as they can be easily created and can travel long distances without being affected by decoherence. For this reason, they are well suited for quantum communication^{1}. However, the interaction between single photons is negligible under most circumstances. Realizing such an interaction is not only fundamentally fascinating but holds great potential for emerging technologies. It has recently been shown that even weak optical nonlinearities between single photons can be used to perform important quantum communication tasks more efficiently than methods based on linear optics^{2}, which have fundamental limitations^{3}. Nonlinear optical effects at singlephoton levels in atomic media have been studied^{4,5} and demonstrated^{6,7,8,9}, but these are neither flexible nor compatible with quantum communication, as they impose restrictions on photons’ wavelengths and bandwidths. Here we use a highefficiency nonlinear waveguide (WG)^{10,11} to observe the sumfrequency generation (SFG) between a single photon and a singlephoton level coherent state from two independent sources.
The potential of parametric interactions used for quantum information processing has been demonstrated in a variety of interesting experiments^{12,13,14}. Although these interactions have been shown to preserve coherence^{15,16,17}, they are generally performed using strong fields^{18,19,20}. It is only recently that parametric effects such as crossphase modulation^{21,22} and spontaneous downconversion^{23,24} have been observed with a singlephoton level pump. We take the next step and realize a photon–photon interaction, which can enable some fascinating experiments. For example, Fig. 1 shows how the SFG of two photons γ_{2} and γ_{3} from independent spontaneous parametric down conversion (SPDC) sources can herald the presence of two distant photons γ_{1} and γ_{4}, as proposed in ref. 2. If the photon pairs are initially entangled using timebin encoding, the detection of the photon γ_{5} on a basis that erases the ‘which path’ information about its creation time projects the pair γ_{1}γ_{4} in an entangled state. If we compare this approach for the heralded creation of entangled pairs with the linear optics scheme presented in ref. 25 (which is shown to be optimal with respect to the number of photon pairs needed), to obtain a generated state with fidelity F≥0.9, and assuming an overall detection and coupling efficiency of η=0.6, our nonlinear optical proposal represents a competitive alternative as soon as the efficiency^{2} of the SFG is 10^{−8}. Such efficiencies of 10^{−8} are, however, extremely challenging to achieve in common nonlinear crystals.
In our experiment, we increase the interaction crosssection by strongly confining the photons, both spatially and temporally, over a long interaction length. The spatial confinement is achieved with a stateoftheart nonlinear WG^{10,11}, whereas the temporal confinement is obtained by using pulsed sources^{26}. The efficiency of the process is proportional to the square of the WG length L^{2} and inversely proportional to the duration of the input photons. L is limited by the group velocity dispersion between the input photons and the unconverted photon^{2}. We maximize the SFG efficiency by matching the spectrotemporal characteristics of the single photons with the phasematching constraints of the WG. A 4cm WG and 10ps photon satisfy these conditions. The use of an integrated, room temperature device and telecom wavelengths makes this approach to photon–photon interaction well adapted to longdistance quantum communication, moving quantum nonlinear optics one step further towards complex quantum networks and future applications such as deviceindependent quantum key distribution.
Results
Sources
A schematic of the experimental setup is shown in Fig. 2. A 532nm modelocked laser produces pulses that pump two distinct sources. The first source produces pairs of photons by spontaneous parametric downconversion at 807 and 1,560 nm (SPDC source). Further details can be found in ref. 26. The second source produces weak coherent state pulses at 1,551 nm by difference frequency generation (DFG) source. The process is stimulated by a 810nm continuous wave seed laser. The average number of photons in the coherent state pulse can be adjusted by changing the seed and pump powers. All photons are coupled into singlemode fibres.
The telecom photons generated by the SPDC source are combined with the coherent state pulses from the DFG source using a dense wavelength division multiplexer (DWDM). We verified the singlephoton nature of the SPDC source by measuring the conditional secondorder correlation function of the telecom photon after the DWDM to be g^{(2)}(0)=0.03.
SFG device
The photons are then sent to a fibre pigtailed reverse proton exchange type 0 periodically poled lithium niobate WG, 4.5 cm long^{10}. This WG produces SFG of the input fields according to the phasematching conditions shown in Fig. 3.
The overall system efficiency for second harmonic generation (SHG) is measured to be 41% W^{−1} cm^{−2} at 1,556 nm, and is used to estimate the SFG efficiency as described in the Methods. In addition to high efficiency, the WG exhibits almost ideal phase matching, as can be seen from Fig. 3b, as well as a high coupling of the fibre to the WG of 70%.
Measurement results
To verify the signature of our photon–photon interaction, we record threefold coincidences between detectors D1 and D2 (both Si detectors) and the laser clock signal. When an upconverted photon is detected at D1 (3.5 Hz dark counts, 62% detection efficiency at 780 nm), an electric signal is sent to D2 (probability of dark count per gate 10^{−3}, detection efficiency 40% at 810 nm)^{27} opening a 10nsdetection window. Conditioning the upconversion events on the laser clock signal helps to reduce the noise. We ensure that the photons arrive at the same time inside the WG by moving a motorized delay. Figure 4a shows the upconverted signal as a function of the delay between the photons. When performing this temporal alignment, the mean number of photons in the coherent state was increased to 25 per pulse. Each point of Fig. 4a corresponds to the number of threefold coincidences between D1, D2 and the laser clock that occur over 10 min. The full width at half maximum (FWHM) of the graph seen in Fig. 4 is 14.8 ps, which corresponds to the convolution of two 10 ps pulses from the pump laser. From the spectra of the photons that are 1.2 nm for the SPDC and 0.8 nm for the DFG, we can deduce their coherence times, respectively, 6.76 and 10.03 ps. This is a good indication that our photons are close to being pure.
Once the SPDC and DFG sources have been characterized, we set the temporal delay to zero and measure the performance of the nonlinear interaction. For this measurement, the coherent state had a mean number of 1.7 photons per pulse inside the WG. A histogram of arrival time differences is shown in Fig. 4b (each bin corresponds to 0.32 ns). The main peak is the signature of photon–photon conversion. It is also possible to see side peaks, which correspond to a dark count at D1 owing to intrinsic noise of the detector followed by a detection of a photon at D2 (see Methods). The periodicity of these side peaks corresponds to the period of the pump laser.
To more clearly see the signaltonoise characteristics of the experiment, we integrate over the events in the two central bins for each peak. This is shown in Fig. 4c, where a peak with a signaltonoise of 2 can be seen.
The coincidence rate between D1 and D2 was 25±5 counts per hour. To determine the efficiency of the SFG, we can use this rate along with other independently measured parameters from our setup. We estimate the overall efficiency of the process at the singlephoton level to be η_{SFG}=(1.5±0.3) × 10^{−8}. Alternatively, using the measurement of SHG efficiency, the calculation of the SFG efficiency shown in Fig. 3 and accounting for the bandwidth of the interacting beams, we estimated the efficiency to be 1.56 × 10^{−8}, which agrees well with the value estimated from the measured data. We highlight that this is the overall conversion efficiency, which includes the effects of coupling into the WG, internal losses and losses through the setup up to D1. Correcting for all of these losses, we obtain the intrinsic device efficiency of (2.6±0.5) × 10^{−8}.
Discussion
We have demonstrated the nonlinear interaction between a single photon and a singlephoton level coherent state. Such singlephoton level parametric interactions open new perspectives for emerging quantum technologies. At the level of efficiency (1.5 × 10^{−8}) demonstrated here, the technique is already competitive with linear optics protocols^{25,28,29}, and offers new possibilities such as heralding entanglement at a distance^{2}. This approach also opens the way towards deviceindependent quantum key distribution^{30}. Unlike previously proposed linear optics schemes, there is significant scope for improvements as higher nonlinearities are realised. Work in this field is advancing rapidly, using materials with higher nonlinear coefficients^{31} as well as methods for tighter field confinement^{32}. The use of an integrated, solid state, room temperature device and a flexible choice of wavelengths will further aid the applicability of this type of system in future quantum communication technologies and beyond.
Methods
Evaluation of the number of photons in the coherent state
To evaluate the number of photons per pulse in the coherent state, we measure the average power P_{α} at the output of the DWDM. The average number of photons per pulse at this point is
where f is the laser repetition rate of 430 MHz. To have the number of photons inside the WG, we multiply by the overall transmission of the setup from the DWDM to the interior of the WG, including the coupling of the pigtail inside the WG of 70%. The overall transmission is 64%.
Noise characterization
Understanding the origin of the side peaks present in the graph of Fig. 5 is crucial. To do this, we blocked the telecom photon coming from the SPDC source but not the coherent state from the DFG source, and recorded threefold coincidences between D1, D2 and the laser clock. The scaling of such noise in detector D2 as a function of the average power in the coherent state can be seen in Fig. 5. Each point in the graph corresponds to a coincidence histogram integrated over 20 min. The quadratic behaviour of this noise suggests a possible contribution of SHG from 1,551nm pulses to these side peaks.
To evaluate this, we estimate the effective SHG efficiency from the second harmonic spectrum seen in Fig. 4b. The peak value of such spectrum corresponds to a measured efficiency of 41% W^{−1} cm^{−2}. From a fit of such a spectrum, we conclude that the effective SHG efficiency for 1,551 nm is η_{SHG}(1,551) =2.35 10^{−4} × 41% W^{−1} cm^{−2}.
Taking into account this effective efficiency, we can estimate the expected rates at detector D1 due to SHG of the coherent state pulses. These rates are simply
where μ is the coupling efficiency of the coherent state into the optical fibre, which was measured to be 76% and L is the length of the WG. The result of this estimation compared with the actual measured values can be seen in Table 1.
From such an analysis, we can conclude that the SHG contribution to the noise at the singlephoton level can be neglected. The side peaks are then dominated by coincidence between a dark count at D1 and a detection at D2. This confirms that a detection of an upconverted photon does not come from conversion of two photons from the same DFG pulse.
SFG efficiency measurement
Using the data shown in Fig. 5, we can extract the rate of coincidences between D1 and D2, R_{SFG}. By combining these with other numbers from the setup, independently characterised, we can then extract the overall SFG efficiency from a singlephoton measurement. The numbers used to obtain this efficiency can be seen in Table 2.
The SFG efficiency is then given by
where β is the product of all the quantities in Table 2 times the laser repetition rate of 430 MHz. From the experimental data, we obtained R_{SFG}=25±5 counts per hour, yielding an overall efficiency of η_{SFG} = (1.5 ± 0.3) × 10^{−8}.
SFG efficiency estimation
It is natural to ask whether the value found for the SFG efficiency agrees with the value for the efficiency of the SHG, measured classically, shown in Fig. 3. To do that, we modelled the phasematching conditions of the WG using the appropriate Sellmeier equations^{33}.
The peak value of the SHG efficiency, corresponding to a wavelength of 1,556 nm, is 41% W^{−1} cm^{−2}. Given an efficiency measured at the classical level η, we can obtain the corresponding value at the singlephoton level using the equation^{2}
where for our system, L=4.5 cm, ≥296 GHz cm and tbp= 0.66. To give an example, the peak level for the SHG efficiency then reads , which is of the same order of magnitude of the SFG efficiency obtained experimentally. This estimation, however, did not take into account the bandwidth of the interacting fields.
To take this into consideration, we use the matrix shown in Fig. 3 to obtain , the efficiency as a function of the wavelengths of the input fields. We then integrate over the spectra of the interacting beams, normalized to the area, denoted by p_{s}(λ_{s}) and p_{i}(λ_{i}). The total effective efficiency reads
which is in agreement with the value found from the measured data.
Additional information
Accession codes: The complete consensus mt genome sequences have been deposited to NCBI GenBank under Accession numbers KC553980–KC554018.
How to cite this article: Guerreiro, T. et al. Interaction of independent single photons based on integrated nonlinear optics. Nat. Commun. 4:2324 doi: 10.1038/ncomms3324 (2013).
References
 1.
Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165–171 (2007).
 2.
Sangouard, N. et al. Faithful entanglement swapping based on sumfrequency generation. Phys. Rev. Lett. 106, 120403 (2011).
 3.
Kok, P. & Braunstein, S. L. Limitations on the creation of maximal entanglement. Phys. Rev. A 62, 064301 (2000).
 4.
Schmidt, H. & Imamoglu, A. Giant kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).
 5.
Chuang, I. L. & Yamamoto, Y. Simple quantum computer. Phys. Rev. A 52, 3489–3496 (1995).
 6.
Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phaseshifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).
 7.
Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).
 8.
Pritchard, J. D. et al. Cooperative atomlight interaction in a blockaded rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010).
 9.
Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).
 10.
Parameswaran, K. R. et al. Highly efficient secondharmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate. Opt. Lett. 27, 179–181 (2002).
 11.
Tanzilli, S. et al. On the genesis and evolution of integrated quantum optics. Laser Photonics Rev. 6, 115–143 (2012).
 12.
Kim, Y. H., Kulik, S. P. & Shih, Y. Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).
 13.
Dayan, B., Pe'er, A., Friesem, A. A. & Silberberg, Y. Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Phys. Rev. Lett. 94, 043602 (2005).
 14.
Langford, N. K. et al. Efficient quantum computing using coherent photon conversion. Nature 478, 360–363 (2011).
 15.
Giorgi, G., Mataloni, P. & De Martini, F. Frequency hopping in quantum interferometry: efficient updown conversion for qubits and ebits. Phys. Rev. Lett. 90, 027902 (2003).
 16.
Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).
 17.
Curtz, N., Thew, R., Simon, C., Gisin, N. & Zbinden, H. Coherent frequencydownconversion interface for quantum repeaters. Opt. Express. 18, 22099–22104 (2010).
 18.
Roussev, R. V., Langrock, C., Kurz, J. R. & Fejer, M. M. Periodically poled lithium niobate waveguide sumfrequency generator for efficient singlephoton detection at communication wavelengths. Opt. Lett. 29, 1518–1520 (2004).
 19.
Vandevender, A. P. & Kwiat, P. G. High efficiency single photon detection via frequency upconversion. J. Mod. Optic 51, 1433–1445 (2004).
 20.
Thew, R. T., Zbinden, H. & Gisin, N. Tunable upconversion photon detector. Appl. Phys. Lett. 93, 071104 (2008).
 21.
Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H. & Edamatsu, K. Observation of opticalfibre kerr nonlinearity at the singlephoton level. Nat. Photonics 3, 95–98 (2009).
 22.
Lo, H. Y., Su, P. C. & Chen, Y. F. Lowlightlevel crossphase modulation by quantum interference. Phys. Rev. A 81, 053829 (2010).
 23.
Hubel, H. et al. Direct generation of photon triplets using cascaded photonpair sources. Nature 466, 601–603 (2010).
 24.
Shalm, L. K. et al. Threephoton energytime entanglement. Nat. Phys. 9, 19–22 (2013).
 25.
Sliwa, C. & Banaszek, K. Conditional preparation of maximal polarization entanglement. Phys. Rev. A 67, 030101 (2003).
 26.
Pomarico, E., Sanguinetti, B., Guerreiro, T., Thew, R. & Zbinden, H. Mhz rate and efficient synchronous heralding of single photons at telecom wavelengths. Opt. Express. 20, 23846–23855 (2012).
 27.
Lunghi, T. et al. Advantages of gated silicon singlephoton detectors. Appl. Optics 51, 8455–8459 (2012).
 28.
Barz, S., Cronenberg, G., Zeilinger, A. & Walther, P. Heralded generation of entangled photon pairs. Nat. Photonics 4, 553–556 (2010).
 29.
Wagenknecht, C. et al. Experimental demonstration of a heralded entanglement source. Nat. Photonics 4, 549–552 (2010).
 30.
Gisin, N., Pironio, S. & Sangouard, N. Proposal for implementing deviceindependent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010).
 31.
Kemlin, V. et al. Phasematching properties and refined sellmeier equations of the new nonlinear infrared crystal cdsip2. Opt. Lett. 36, 1800–1802 (2011).
 32.
Kurimura, S., Kato, Y., Maruyama, M., Usui, Y. & Nakajima, H. Quasiphasematched adhered ridge waveguide in linbo3. Appl. Phys. Lett. 89, 191123 (2006).
 33.
Jundt, D. H. Temperaturedependent sellmeier equation for the index of refraction, n(e), in congruent lithium niobate. Opt. Lett. 22, 1553–1555 (1997).
Acknowledgements
We are thankful to Anthony Martin for helpful discussions. This work was supported by the Swiss NCCRQSIT and by the European project QESSENCE. JSP, CL, and MMF acknowledge support from the U.S. Air Force Office of Scientific Research (AFOSR) under grants FA95500910233 and FA95500510180.
Author information
Author notes
 E. Pomarico
Present address: Laboratory of Ultrafast Spectroscopy, EPFL, Lausanne 1015, Switzerland
Affiliations
Group of Applied Physics, University of Geneva, Geneva 1211, Switzerland
 T. Guerreiro
 , E. Pomarico
 , B. Sanguinetti
 , N. Sangouard
 , H. Zbinden
 , R. T. Thew
 & N. Gisin
E.L. Ginzton Laboratory, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305, USA
 J. S. Pelc
 , C. Langrock
 & M. M. Fejer
Authors
Search for T. Guerreiro in:
Search for E. Pomarico in:
Search for B. Sanguinetti in:
Search for N. Sangouard in:
Search for J. S. Pelc in:
Search for C. Langrock in:
Search for M. M. Fejer in:
Search for H. Zbinden in:
Search for R. T. Thew in:
Search for N. Gisin in:
Contributions
T.G., E.P. and B.S. carried out the experiment; J.S.P., C.L. and M.M.F. fabricated and tested the PPLN Waveguide; B.S., N.S., R.T.T., H.Z. and N.G. conceived and supervised the project. All authors participated in writing the manuscript.
Competing interests
The authors declare no competing financial interests.
Corresponding author
Correspondence to T. Guerreiro.
Rights and permissions
To obtain permission to reuse content from this article visit RightsLink.
About this article
Further reading

Simultaneous entanglement swapping of multiple orbital angular momentum states of light
Nature Communications (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.