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Hace1 controls ROS generation of vertebrate
Rac1-dependent NADPH oxidase complexes
Mads Daugaard1,2, Roberto Nitsch3, Babak Razaghi4, Lindsay McDonald4, Ameer Jarrar4, Stéphanie Torrino5,

Sonia Castillo-Lluva6, Barak Rotblat1, Liheng Li1, Angeliki Malliri6, Emmanuel Lemichez5, Amel Mettouchi5,

Jason N. Berman4, Josef M. Penninger3 & Poul H. Sorensen1,2

The Hace1-HECT E3 ligase is a tumor suppressor that ubiquitylates the activated GTP-bound

form of the Rho family GTPase Rac1, leading to Rac1 proteasomal degradation. Here we show

that, in vertebrates, Hace1 targets Rac1 for degradation when Rac1 is localized to the nico-

tinamide adenine dinucleotide phosphate (NADPH) oxidase holoenzyme. This event blocks

de novo reactive oxygen species generation by Rac1-dependent NADPH oxidases, and thereby

confers cellular protection from reactive oxygen species-induced DNA damage and cyclin

D1-driven hyper-proliferation. Genetic inactivation of Hace1 in mice or zebrafish, as well as

Hace1 loss in human tumor cell lines or primary murine or human tumors, leads to chronic

NADPH oxidase-dependent reactive oxygen species elevation, DNA damage responses and

enhanced cyclin D1 expression. Our data reveal a conserved ubiquitin-dependent molecular

mechanism that controls the activity of Rac1-dependent NADPH oxidase complexes, and thus

constitutes the first known example of a tumor suppressor protein that directly regulates

reactive oxygen species production in vertebrates.
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H
ACE1 (HECT domain and Ankyrin repeat Containing E3
ubiquitin-protein ligase 1), a tumor suppressor gene
originally cloned from inactivating chromosome 6q21

breakpoints in human Wilms’ tumor, is found exclusively in
vertebrates and is widely expressed in human tissues1. It is
epigenetically inactivated in human Wilms’ tumors and several
other tumor types1–6. In a recent study, loss of Hace1 expression
is associated with neuroblastoma progression and predicts poor
overall patient survival2. These observations are consistent with
HACE1 functioning as a chromosome 6q21 tumor suppressor
gene. Indeed, Hace1� /� mice develop late-onset (18–24
months) spontaneous tumors across all three germ layers6.
Tumor development is dramatically accelerated by DNA damage
inducing agents such as low-dose ionizing radiation (IR) or the
DNA alkylating agent, urethane6, but the basis for this
hypersensitivity is not understood. Hace1 reduces in vitro and
in vivo cell cycle progression of diverse tumor cell lines such as
KRAS-transformed NIH3T3 fibroblasts or human Ewing sarcoma
SKNEP1 cells6. Re-expression of Hace1 in these cells blocks
in vitro and in vivo proliferation, particularly after cell stress such
as IR, nutrient deprivation or contact inhibition. This correlates
with marked repression of cyclin D1 protein levels6, a key G1-S
progression factor7. After serum deprivation or IR, Hace1 blocks
cell cycle re-entry in an E3 ligase-dependent manner through
failure of cells to re-express cyclin D1, while other cyclins are
unaffected. This occurs in a ligase-dependent manner, although
Hace1 does not itself target cyclin D1 for ubiquitylation6. D-type
cyclins have well-established roles in oncogenesis, and
overexpression of cyclin D1 is reported in diverse human
malignancies8. Knockdown of endogenous Hace1 in HEK293
cells (which express high endogenous Hace1 levels) by RNA
interference stabilizes cyclin D1 protein levels, and ectopic
expression of Hace1 blocks cyclin D1 expression, as well as
in vitro and in vivo cell cycle progression of Hace1-deficient
human tumor cell lines6.

Currently, the only known Hace1 E3 ligase substrate is the
GTP-bound form of the Rho GTPase, Rac1. The latter is bound
and ubiquitylated by Hace1 at lysine-147 (Lys-147), leading to
Rac1 proteasomal degradation and reduced cell motility in
response to cytotoxic necrotizing factor-1 (CNF1) or hepatocyte
growth factor9,10. Rac1 localizes to various cellular compartments
and regulates multiple processes including cell motility11, protein
translation12, stress signaling13, proliferation14 and reactive
oxygen species (ROS) generation15,16. How Rac1 activity
orchestrates such diverse functions is poorly understood, but
evidence suggests that subcellular localization of activated Rac1 is
a critical factor15,17,18. Hace1 co-localizes with a small fraction of
total Rac1 in cells, corresponding to the active (GTP-bound) form
of the protein, at any given time9. Moreover, a second class of E3
ligases, X-linked and cellular inhibitors of apoptosis IAP1 (XIAP
and c-IAP1, respectively) directly bind Rac1 in a nucleotide-
independent manner and promote Lys-147 polyubiquitylation
and proteasomal degradation19. This suggests that different E3
ligases might target Rac1 at distinct subcellular sites.

In the current study, we sought to uncover why Hace1
deficiency confers in vivo hypersensitivity to IR and urethane, and
whether this is linked to Rac1 targeting by Hace1. Besides the
mitochondria, the main sources of cellular ROS are plasma
membrane and endosomal nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase complexes20. These are the only
known mammalian enzymes exclusively dedicated to the
production of superoxide, which is rapidly converted to H2O2

in the cell21. The NADPH oxidase holoenzyme consists of
transmembrane catalytic cell type specific Nox subunits 1–5
(predominantly Nox1 and Nox2 in epithelial and mesenchymal
cells), the transmembrane p22phox protein, and the cofactors

p47phox, p67phox, NOXA1 and NOXO1 (ref. 21). Rac1 GTPase
binds NOXA1 within the complex and this is required for
activation of Nox1, 2 and 3-containing NADPH oxidase
enzymes16,21. Accordingly, we hypothesized that increased ROS
in Hace1-deficient cells might derive from hyperactivation of
NADPH oxidase due to Rac1 stabilization.

Here we show that Hace1 binds and ubiquitylates Rac1 when
the latter is associated with NOXA1 at the NADPH oxidase
complex, thus blocking ROS generation by the complex. More-
over, loss of Hace1 in human tumors and cell lines, mice and
zebrafish results in ROS-induced DNA damage and cyclin D1
induction, each of which depends on Rac1 and NADPH oxidase
activity. Taken together, our results reveal Hace1 as the first
known negative regulator of NADPH oxidase, and highlight the
role of deregulated NADPH oxidase activity in ROS-induced
DNA damage and cell cycle progression.

Results
Hace1 deficiency leads to chronic oxidative stress. IR and
urethane, which both dramatically accelerate tumor formation
in Hace1� /� mice6, are each known to induce high levels
of ROS, particularly H2O2 (refs 22,23). We therefore speculated
that Hace1 might itself regulate cellular ROS levels. Indeed,
measurement of ROS levels in control and Hace1� /� MEFs
with 20,70 dichlorodihydrofluorescein diacetate (DCFDA)24

showed a marked baseline elevation of ROS in Hace1� /�

MEFs, which could be almost completely reversed by re-
expression of wild-type (wt) Hace1 (Fig. 1a). Increased ROS
was also detected in Hace1� /� MEFs with a second sensor,
dihydroethidium (DHE), which is converted to the red
fluorescent compound oxyethidium in vitro and in vivo in the
presence of ROS25 (Fig. 1b and Supplementary Fig. S1a). Staining
with MitoSoxRed, which specifically measures mitochondrial
ROS, was largely unchanged between Hace1þ /þ and Hace1� /�

cells. We then used nitrotetrazolium blue (NTB) to visualize ROS
in Hace1� /� and þ /þ MEFs, which clearly demonstrated
formazan dots along the cell membranes and also in punctate
dots within the cytoplasm in Hace1� /� cells (Supplementary
Fig. S1b). These data are consistent with Hace1 deficiency
resulting in massive accumulation of ROS from membrane-
associated NADPH oxidase complexes, but it is possible that
under chronic ROS accumulation additional ROS sources are
activated, such as mitochondria. To confirm a role for Hace1 in
regulating ROS levels, we knocked down Hace1 expression in
human embryonic kidney (HEK) 293 cells using two non-
overlapping short interfering RNAs (siRNAs) (Supplementary
Fig. S1c). Total ROS levels increased by 4- to 6-fold in Hace1
knockdown (kd) cells compared with controls (Fig. 1d).
Moreover, all organs isolated from Hace1� /� mice showed
dramatic increases in ROS compared with those of littermate
controls (Fig. 1e). Therefore, Hace1 deficiency in mammalian
cells leads to chronic high ROS levels in vitro and in vivo. To
determine whether Hace1 regulation of cellular ROS is conserved,
we identified the hace1 homologue in zebrafish, which displays
74.7% DNA sequence homology and 88.9% protein identity with
human HACE1 (Supplementary Fig. S2a,b). A hace1 morpholino
was designed to knock down hace1 expression (Supplementary
Fig. S2c,d), and zebrafish embryos were incubated over 1–7 days
with the H2O2-specific probe, pentafluorobenzenesulphonyl
fluorescein, which is converted to a fluorescent form by H2O2

(ref. 26). A significant increase in ROS levels was observed in
hace1 morpholinos compared with control morpholinos or
uninjected embryos (Fig. 1f). This could be completely rescued
by addition of the broad flavoenzyme inhibitor diphenylene
iodonium (DPI)27 (Fig. 1f) or the panoxidase inhibitor, apocynin
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(APO)28 (Supplementary Fig. S2e), both of which have well-
documented antioxidant activities. Together, these data demon-
strate that Hace1 deficiency results in massive accumulation of
ROS in vertebrates.

Rac1 is required for ROS induction in Hace1-deficient cells. As
increased ROS in Hace1-deficient cells is not mitochondrially
derived, we speculated that Hace1 might regulate NADPH

oxidase complexes, another major source of cellular ROS. First,
we analyzed ROS levels in Hace1� /� MEFs after treatment with
2-Acethylphenothiazine (ML171), which specifically inhibits
Nox1-containing NADPH oxidases29, and two agents that block
cellular ROS accumulation, DPI27 and APO28. All three inhibitors
reduced ROS levels as effectively as wt Hace1 re-expression
(Fig. 2a and Supplementary Fig. S3a). We then analyzed whether
genetic loss of NADPH oxidase components influences ROS
levels in Hace1-deficient cells. Indeed, siRNA knockdown of
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Figure 1 | Hace1 deficiency leads to elevated levels of ROS. (a) MEFs derived from wild-type (þ /þ ) or Hace1 knockout (� /� ) mice were transfected

with the HA-vector (V) or HA-Hace1 (H) 48 h and analyzed for ROS content by the DCFDA assay. (b) MEFs analogous to a were incubated with 10mM
DHE for 30min, analyzed for oxyethidium staining by a 595-nm enabled fluorescence microscope and quantified using ImageJ algorithm. (c) MEFs

as in a were analyzed for mitochondrial derived ROS by the MitoSoxRed probe (Invitrogen). (d) HEK293 cells were transfected with control siRNA (C) or

two siRNAs targeting Hace1 (H1 and H2) for 72 h and analyzed as in b. (e) Snap-frozen samples of the indicated tissues specimens from Hace1 wild-type

(þ /þ ) and knockout (� /� ) mice were cut in 20mm sections using a cryostat at � 20 �C, incubated with 10mM DHE for 30min and analyzed

as in b. The p values were generated using student’s two-tailed t-test for equal variance. Scale bars, 20mm. Horizontal lines in the graphs represent median

values of quantification by ImageJ algorithm. (f) Representative images of 48 h post fertilization (hpf) casper zebrafish control (mC) and hace1 (mH)

morphants stained for ROS using pentafluorobenzenesulphonyl fluorescein. Both control and Hace1 morphants were left untreated or incubated with DPI as

indicated, before being analyzed for ROS-induced fluorescence by FACS. For all panels when indicated, **Po0.01 (Student’s two-tailed t-test for equal

variance); Error bars represent s.e.m. of at least three independent experiments. Scale bar, 0.5mm.
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Nox1, NOXO1 or Rac1, all components of Nox1-containing
NADPH oxidase21, in Hace1� /� MEFs, reversed the increase in
ROS to the levels of Hace1þ /þ cells (Fig. 2b and Supplementary
Fig. S3b). Consistent with this, ROS elevation by independent
Hace1 siRNAs in human HEK293 cells (as in Fig. 1d) was
reversed by transient siRNA-mediated co-knockdown of Nox1,
NOXA1, NOXO1 or Rac1 (Fig. 2c and Supplementary Fig. S3c).
Thus, Hace1 inhibits the production of cellular ROS generated by
Nox1-containing NADPH oxidase. Next, we analyzed protein
levels of known NADPH oxidase subunits in Hace1� /� versus

Hace1þ /þ MEFs. Both cell types displayed equivalent levels of
each protein except Rac1, which was markedly elevated in
Hace1� /� MEFs (Fig. 2d). Indeed, Rac1 knockdown using
independent siRNAs significantly reduced ROS in Hace1� /�

MEFs (Fig. 2e), and in human U2OS osteosarcoma cells (Fig. 2f).
This suggests that elevated ROS in Hace1-deficient cells originates
from Rac1-dependent NADPH oxidases. GTP-loaded Rac1, the
only known target of the Hace1 E3 ligase, is essential for
activation of Nox1, Nox2 and Nox3 containing NADPH
oxidases30. We therefore investigated whether the mechanism
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transfected with HA-vector (Vector) or HA-Hace1 (Hace1) cDNA were left untreated (dimethylsulphoxide) or treated with 5 mM ML171, 5 mM DPI or

400mM APO before incubated with DHE, analyzed for oxyethidium staining by a 595-nm enabled fluorescence microscope and quantified using ImageJ

algorithm. (b) MEFs analogous to a transfected with control (siC), Nox1 (siN), NOXO1 (siNO1) or Rac1 (siR) siRNAs were treated and analyzed
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Rac1 (R1-4) were analyzed for ROS content as in a (graph column) and for expression of the indicated proteins by immunoblotting. (f) U2OS cells were
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by which Hace1 regulates NADPH oxidase and cellular ROS
levels relies on Rac1. GTP-bound Rac1 is ubiquitylated by Hace1
at lysine (K)-147 (ref. 10). We therefore analyzed ROS levels in
U2OS cells after overexpression of wt Rac1, a constitutively active
Rac1-v12, or a Hace1-resistant Rac1-K147R mutant10. Both wt
Rac1 and the Rac1-v12 mutant significantly increased ROS levels,
which could be reversed by either the ML171 NADPH oxidase
inhibitor or Hace1 overexpression (Fig. 2g). In contrast, ROS
levels in cells expressing Hace1-resistant Rac1-K147R were not
affected by Hace1 overexpression, indicating that Hace1 must
directly target Rac1 to reduce ROS levels. We then tested Hace1
effects in SKOV3 ovarian carcinoma cells, which predominantly
express Nox2 rather than Nox1 or Nox3 (Supplementary Fig. S3d
and ref. 31). As shown in Fig. 2h, Hace1 also strongly inhibited
ROS generation in SKOV3 cells, and siRNAs to Nox2 but not to

Nox1 decreases ROS in SKOV3 cells to the same extent as
observed with Hace1 overexpression or Rac1 knockdown (Fig. 2h
and Supplementary Fig. S3e,f). Therefore, Hace1 regulates a
second Rac1-dependent complex, namely Nox2-containing
NADPH oxidase. Together, these data indicate that Hace1
regulates multiple Rac1-dependent NADPH oxidases by
targeting Rac1 for degradation.

Hace1 targets Rac1 bound to the NADPH oxidase complex. As
Rac1 is an essential component of Nox1, 2 and 3-containing
NADPH oxidase32, we hypothesized that Hace1 specifically
targets for degradation the fraction of Rac1 that is localized and
bound to the holoenzyme. We first confirmed that Rac1 is
ubiquitylated by Hace1 in our system by re-expressing Hace1 in
Hace1� /� MEFs (Fig. 3a), consistent with previous findings9,10.
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and Nox4-deficient (Nox4� /� ) mice, were transfected with control (siC) or Hace1 (siH) siRNAs 72 hrs before being analyzed for ROS content as in c.

For all panels when indicated, **Po0.01 (Student’s two-tailed t-test for equal variance); Error bars represent s.e.m. of at least three independent

experiments.
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As GTP-loaded Rac1 binds NOXA1 at the complex to activate
Nox1-containing NADPH oxidase30, we tested whether Hace1
also physically associates with NOXA1. Using a green fluorescent
protein (GFP)-TRAP pull-down assay, NOXA1 and Rac1 were
readily coimmunoprecipitated with GFP-Hace1. Knockdown of
Rac1 using siRNAs dramatically inhibited the interaction between
NOXA1 and Hace1 (Fig. 3b). This indicates that Hace1 binds and
targets Rac1 once the latter has been recruited to the complex. To
validate this we analyzed whether NOXA1 is required for Rac1
ubiquitylation by Hace1. Indeed, siRNA-mediated NOXA1
knockdown completely blocked Hace1 ubiquitylation of Rac1
(Fig. 3c), indicating that Hace1 preferentially targets NOXA1-
associated Rac1. Accordingly, the ability of Hace1 to control ROS
levels depend on its ligase activity, as expression of a ligase-dead
C876S (CS) Hace1 mutant failed to reduce ROS (Fig. 3d). To
obtain further genetic support for our model, we utilized MEFs
derived from mice with targeted deletions of Nox1 (Nox1� /� ) or
Nox4 (Nox4� /� ), as Nox1-containing NADPH oxidase
complexes are Rac1-dependent while Nox4-containing
complexes are Rac1-independent32. While Hace1 knockdown
failed to increase ROS in Nox1� /� MEFs, it markedly did so in
wt and Nox4� /� MEFs (Fig. 3e). These findings demonstrate
that direct Hace1 targeting of NOXA1-bound Rac1 controls basal
ROS levels generated by Rac1-dependent NADPH oxidase
complexes.

Hace1 deficiency leads to NADPH oxidase-dependent DNA
damage. We next wished to determine the physiological con-
sequences of NADPH oxidase regulation by Hace1. As Hace1� /�

mice are prone to tumorigenesis after IR or urethane treatment6,
both of which induce DNA damage through ROS generation, we
postulated that chronic elevated NADPH oxidase-mediated ROS
might lead to increased DNA damage in Hace1-deficient cells.
ROS-induced DNA damage response depends on ataxia-
telangiectasia mutated (ATM) and the tumor suppressor p53,
which are both phosphorylated in their active forms after DNA
damage33,34. Exposure of Hace1� /� MEFs to low concentrations
of exogenous H2O2 to simulate DNA damage markedly increased
ATM and p53 Ser-15 phosphorylation compared with Hace1þ /þ

cells, each of which was reduced by transient re-expression of wt
Hace1 (Fig. 4a; see GFP-Hace1 lanes). Low-dose IR also led to
markedly higher phosphorylation of histone H2AX on serine 139
(gH2AX), another well-established readout of DNA damage35, in
Hace1� /� versus Hace1þ /þ MEFs (Fig. 4b,c,d), which again was
reversed by transient wt Hace1 re-expression in the former
(Fig. 4d). The difference in gH2AX levels between Hace1� /�

versus Hace1þ /þ MEFs was already observed after 5min of
recovery from low-dose IR (Supplementary Fig. S3g), suggesting
that this response is due to acute ROS generated by IR36. However,
we cannot rule out whether DNA damage induced ROS
amplification through other mechanisms, such as by direct
H2AX activation of Nox137 may amplify the system. Similarly,
in U2OS cells, exogenous H2O2-mediated ATM and gH2AX
phosphorylation was blocked by transient Hace1 overexpression
(Fig. 4e), which reduces ROS in those cells (Fig. 2f). We
then tested whether increased susceptibility to ROS-induced
DNA damage in Hace1-deficient cells is dependent on
Nox1-containing NADPH oxidase. Indeed, in Hace1� /� MEFs,
ML171 blocked H2O2-induced ATM phosphorylation (Fig. 4f)
and Nox1 knockdown blocked exogenous H2O2-induced p53
Ser-15 phosphorylation (Fig. 4g). Moreover, while Hace1
knockdown sensitized wt MEFs to H2O2-induced
DNA damage, this was almost completely blocked in Nox1� /�

MEFs exposed to H2O2 (Fig. 4h). Therefore, augmented
DNA damage responses secondary to Hace1 deficiency require

Rac1-dependent NADPH oxidase activity. Finally, the human
breast carcinoma cell line HCC1395, which lacks Hace1
expression due to a homozygous deletion of HACE1, had
dramatically elevated gH2AX phosphorylation levels compared
with HEK293 cells, even under ambient conditions (Fig. 4i).
Finally, hace1 morpholino zebrafish showed a striking increase
in gH2AX phosphorylation under basal conditions compared
with wt fish (Fig. 4j). These data provide compelling evidence
that Hace1-deficient cells are hypersensitive to ROS-induced
DNA damage.

Hace1 controls cyclin D1 via regulation of ROS production.
We previously showed that Hace1 reduces in vitro and in vivo cell
cycle progression of diverse Hace1-deficient tumor cell lines by
repressing cyclin D1 protein expression, although Hace1 does not
directly target cyclin D1 for degradation6. We therefore wondered
if Hace1 might also control cyclin D1 expression through its
effects on Rac1-dependent NADPH oxidases, particularly as
induction of CCND1 (cyclin D1) messenger RNA (mRNA)
expression has been linked to NADPH oxidase activity38. We first
investigated Hace1 regulation of ROS after mitogenic stimulation.
Serum-starved Hace1� /� MEFs displayed increased ROS
compared with Hace1þ /þ MEFs, and Hace1� /� cells
maintained elevated ROS accumulation in a time-dependent
manner after serum re-stimulation (Supplementary Fig. S4a).
This suggests that Hace1� /� controls ROS generation even
under mitogenic stimulation and that reduced ROS in Hace1
proficient cells is not simply a direct effect of decreased cell
proliferation. Indeed, cyclin D1 levels were dramatically increased
in Hace1� /� compared with Hace1þ /þ MEFs and this was
inhibited by ML171 or APO (Fig. 5a). Moreover, ectopic Hace1
expression reduced cyclin D1 levels in Hace1� /� MEFs, which
was further reduced by ML171 (Fig. 5b). Similarly, both Hace1
overexpression (Fig. 5c) and Rac1 siRNA knockdown (Fig. 5d)
strongly reduced cyclin D1 expression in U2OS cells.
Overexpression of the Rac1-K147R mutant in these cells
upregulated cyclin D1, which was reversed by ML171 (Fig. 5e).
We then knocked down Hace1 in wt, Nox1� /� and Nox4� /�

MEFs; this increased cyclin D1 levels in wt and Nox4� /� MEFs,
but failed to do so in Nox1� /� MEFs (Fig. 5f). Therefore, Hace1-
deficient cells require Rac1-dependent NADPH oxidase activity
to induce cyclin D1 expression. We next analyzed ROS, Rac1 and
cyclin D1 levels in a panel of Hace1-deficient human epithelial
cancer cell lines (Fig. 5g). All cell lines displayed varying but
significant increases in ROS, and this correlated strongly with
elevated Rac1 and cyclin D1 levels compared with HEK293 cells
(which express high Hace1 levels6). Of note, Hace1 mRNA and
protein levels both increase in U2OS cells after acute ROS
challenge with H2O2, and this correlates with increased binding
and ubiquitylation of Rac1 by Hace1 (Supplementary Fig. S4b–e).
Hace1 appears to bind only a small fraction of the total Rac1 pool,
estimated to be o10% (Supplementary Fig. S4f). This suggests
that Hace1 expression and protein activity can be amplified by a
ROS-dependent activation step to mediate its effect on Rac1 at
membrane-associated NADPH oxidase complexes, and therefore
on cyclin D1 expression.

Lastly, to test whether Hace1 can block cell cycle progression in
primary human cells through ROS regulation, freshly isolated
human vein endothelial cells (HUVECs) were transfected with
control or Hace1 siRNAs and analyzed for ROS content. Hace1
knockdown markedly increased ROS levels in HUVECs as
measured by DCFDA staining (Fig. 5h). Moreover, while the
CNF1 Escherichia coli toxin, which activates Rac1 in HUVECs9,
could induce cyclin D1 expression in these cells, cyclin D1 was
constitutively induced in Hace1 knockdown HUVECs even in the
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absence of CNF1 (Fig. 5i). Importantly, Hace1 knockdown
correlated with increased S and G2M fractions and cell
proliferation of primary HUVECs (Fig. 5j), and co-knockdown

of Nox1 decreased the fraction of cells in S-phase to control
levels (Fig. 5k). Furthermore, the chemical Rac1 inhibitor
EHT1864 efficiently reduced ROS in HUVECs with Hace1
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knockdown (Fig. 5l) and abolished cyclin D1 induction by CNF1
or serum (Fig. 5m). Finally, EHT1864 blocked serum-stimulated
cyclin D1 induction in HUVECs with Hace1 knockdown
(Fig. 5n). Collectively, these data suggest that Hace1 controls
cyclin D1 expression and cell cycle progression through its ability
to block activity of Rac1-dependent NADPH oxidase complexes.

Increased ROS in Hace1-deficient murine and human tumors.
To demonstrate the in vivo significance of the above findings, we
examined tissues from Hace1� /� mice, which develop diverse

spontaneous late-onset tumors across all three germ layers6. Liver
tumors from these mice showed strikingly higher ROS levels than
matching normal liver tissue from the same mice, or from
Hace1þ /þ littermates (Fig. 6a). Hace1 loss strongly correlated
with elevated Rac1, cyclin D1 and phosphorylated Ser-15-p53
levels in tumor lysates (Fig. 6b). This was also observed in
Hace1� /� mouse colorectal carcinoma as compared to normal
tissue (Fig. 6c). This indicates that not only do normal tissues
of Hace1� /� mice have higher ROS levels compared with wt
mice (Fig. 1e), but there is further ROS accumulation in the
tumors, possibly due to clonal selection during transformation.
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As Hace1 was originally discovered as a tumor suppressor in
human Wilms’ tumor1,6, we next investigated a panel of patient-
matched Wilms’ tumor and normal kidney specimens, each
previously documented to have lost Hace1 protein expression1.
All tumors analyzed displayed markedly increased ROS
(Fig. 6d,e), which correlated with elevated Rac1 and cyclin D1

expression, as well as phosphorylated Ser-15-p53 levels (Fig. 6f).
This clearly demonstrates that Hace1-deficient mouse and human
tumors have chronic high ROS, elevated Rac1 and cyclin D1
expression, which is coupled with increased DNA damage
response signaling, confirming the in vivo significance of our
findings.
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Discussion
ROS are essential for cell homeostasis and has diverse roles in
health and disease. Along with the mitochondria, which
continuously generate ROS as byproducts of oxidative phosphor-
ylation39, a major source of cellular ROS are the NADPH
oxidases21. These enzymes utilize molecular oxygen and NADPH
to produce superoxide, which is then rapidly converted to cellular
H2O2 by superoxide dismutase enzymes21. NADPH oxidase
complexes are found in all multicellular organisms where they are
solely dedicated to the generation of ROS. In non-pathological
settings, ROS functions as a second messenger for processes such
as differentiation, proliferation and cell motility40. In pathologic
conditions, however, ROS can oxidize biomolecules such as DNA,
causing DNA damage and is likely the greatest intrinsic threat to
genome integrity. Accordingly, organisms have evolved a tightly
regulated cellular response to acute oxidative stress to detoxify
ROS and repair damaged DNA33. While cellular detoxification
systems are well-characterized41, little is known about the
regulation of ROS generation by NADPH oxidases. Here we
identify the tumor suppressor Hace1 as a highly conserved direct
negative regulator of Rac1-dependent NADPH oxidases through
degradation of complex-bound Rac1. Hace1 deficiency leads to a
deregulated and hyperactive ROS-generating holoenzyme that
maintains a state of chronic high ROS in vitro and in vivo. This is
associated with ROS-induced DNA damage and cyclin D1
expression, both of which are blocked by pharmacologic or
genetic inactivation of Nox1-containing NADPH oxidases. Based
on these observations, we propose a model whereby Hace1
recruitment to Rac1-containing NADPH oxidases leads to Rac1
degradation and inactivation of the complex (Fig. 7). Together
with Rac1 guanine nucleotide exchange-factors42, Hace1-
mediated ubiquitylation of Rac1 therefore adds another layer of
control to the regulation of the NADPH oxidase system. These
results highlight a novel regulatory pathway that protects cells
from ROS-induced DNA damage and cyclin D1-mediated
hyperproliferation. This is the first known example, to our
knowledge, of an E3 ligase that directly regulates NADPH oxidase
activity and of a tumor suppressor that directly regulates ROS
generation in vertebrate cells.

Activation of Rac1-dependent NADPH oxidase complexes
requires the binding of GTP-loaded Rac1 to the NADPH oxidase

subunit, Noxa1. Mechanistically, we show that Hace1 binds and
ubiquitinates Rac1 when the latter associates with the complex
through Noxa1. This then targets complex-bound Rac1 for
proteasomal degradation and inhibits NADPH oxidase activity.
Whether Hace1 requires an activation step before it can bind
Rac1 at the complex is currently unknown. HACE1 has recently
been implicated as a target gene of the Nrf2 transcription factor43.
Nrf2 regulates transcription of a wide spectrum of genes involved
in the oxidative stress response43. Indeed, Hace1 mRNA and
protein levels are increased in U2OS cells after acute ROS
challenge with H2O2. It is therefore tempting to speculate that
Hace1 becomes activated by oxidative stress to subsequently shut
down one of the main ROS-generating enzymes in cells as a part
of the general oxidative stress response.

While somewhat contentious, the current view is that Nox1,
Nox2 and Nox3 containing NADPH oxidase complexes are
clearly Rac1-dependent for activation, while Nox4, Nox5 and
DUOX containing complexes are Rac1-independent21,44. Nox1 is
thought to be the major Nox subunit of NADPH oxidases in
epithelial and mesenchymal cells, while Nox2 expression is more
restricted to hematopoietic cells21. However, Nox2 may have
broader expression in epithelial and mesenchymal cells, while
Nox3 is expressed only at low levels in these cell types (ref. 31).
Our studies point to a general role for Hace1 in regulating
Rac1-containing NADPH oxidase complexes as it blocks ROS
generated from both Nox1- and Nox2-containing complexes. As
Hace1 only binds a small fraction of the total Rac1 pool,
estimated as o10% and mainly associated with NADPH oxidase,
it is unknown whether Hace1 targets other subcellular pools of
GTP-Rac1 under context-specific conditions.

Ros can be pro-oncogenic as a consequence of increased
replication stress and incomplete repair of ROS-induced DNA
damage. Rac1 and Nox1 are required for cellular transformation
by numerous oncogenes including activated K-Ras, H-Ras, c-Met,
c-Myc and c-Src, and oncogene transformation is consistently
associated with elevated ROS levels45–49. While the role of ROS
in transformation is incompletely understood, elevated ROS
produced by oncogenic signaling may contribute to the
accumulation of additional mutations, further supporting tumor
progression. Disruption of the Hace1-Rac1-NADPH oxidase axis
described here may therefore impact a potentially broad spectrum
of human tumors.

As ROS scavenging by anti-oxidants inhibits the transformed
phenotype50, transformed cells may become addicted to chronic
high ROS levels to maintain specific aspects of pro-oncogenic
signaling. Interestingly, induction of CCND1 (cyclin D1) mRNA
expression by the AP-1 transcription factor is known to require
NADPH oxidase activity38. Indeed, we demonstrate that cyclin
D1 induction in Hace1-deficient cells also depends on intact Rac1
and NADPH oxidase activity. D-type cyclins (D1 and D3 in
particular) have recently been linked to the maintenance of tumor
growth in both epithelial and hematopoietic malignancies51,52.
Therefore, the NADPH oxidase and ROS-driven cyclin D1
expression observed in Hace1-deficient cells might contribute
broadly to progression of spontaneous tumors. We found that
the EHT1864 Rac1 inhibitor strongly blocks ROS-induced cyclin
D1 expression, a finding that may have clinical implications.
Also, as ROS has pathogenic roles in other human diseases
such as cardiac hypertrophy and ischemia-reperfusion injury,
immune system disorders, liver disease, diabetes, obesity,
atherosclerosis, Alzheimer’s disease, Parkinson’s disease,
Huntington disease, rheumatoid arthritis, aging and HIF1/
hypoxia-related diseases53–56, further studies of pathogenic
Hace1 deficiency may reveal additional disease links.

In summary, we find that Hace1 deficiency leads to chronic
elevated cellular ROS and ROS-induced DNA damage response
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signaling, which is blocked by pharmacologic or genetic
inactivation of Rac1-containing NADPH oxidases. These results
identify Hace1 as a de facto negative regulator of NADPH oxidase
activity in vertebrates and highlight a novel regulatory pathway
that protects cells from ROS-induced DNA damage. It will be
important to determine how this specific function of Hace1
contributes to its tumor suppressor activity, and whether Hace1
deficiency has roles in other pathologic conditions.

Methods
Cell culture and reagents. All cells were grown in DMEM (Dulbecco) supple-
mented with 10% fetal calf serum, non-essential amino acids and penicillin–
streptomycin. Wild-type (wt) and Hace1 knockout MEFs were derived from BL6
WT and Hace1� /� littermates and allowed to spontaneously immortalize. WT,
Nox1� /� and Nox4� /� MEFs were a kind gift from Dr Denis Martinvalet,
University of Geneva. HUVEC cells were derived as described in Torrino et al.9.
DNA transfections were performed with FugeneHD for human cell lines and with
electroporation using Neon Transfection System (Invitrogen) for mouse cell lines.
MSCV-HA, MSCV-HA-Hace1 and MSCV-HA-Hace1-C876S were cloned as
described in Zhang et al.6. GFP-Hace1 and GFP Hace1-C876S were generated by
cloning Hace1 and C876S into pEGFP-C1 (Clontech). GFP-Rac1wt, GFP-Rac-1v12
were generated as described in Castillo-Lluva et al.57 and GFP-Rac1-K147R was
made by PCR-based nucleotide mutagenesis in GFP-Rac1. Transfections of siRNAs
were performed with 25 nM siRNA using RNAiMax (Invitrogen). The following
siRNAs were used in the study: Control siRNA (C): (50–30) AUAUCGGCUAG
GUCUAACA; Hace1-1 (H1): Hs_Hace1_1 (FlexiTube, Qiagen); Hace1-2 (H2):
Hs_Hace1_4 (FlexiTube, Qiagen); Human Rac1 (R): Hs_Rac1_6 (FlexiTube,
Qiagen); Human Nox2 (N2): Hs_CYBB (FlexiTube, Qiagen); Murine Rac1-1 (R1):
Mm_Rac1_1 (FlexiTube, Qiagen); Murine Rac1-2 (R2): Mm_Rac1_2 (FlexiTube,
Qiagen); Murine Rac1-3 (R3): Mm_Rac1_3 (FlexiTube, Qiagen); Murine Rac1-4
(R4): Mm_Rac1_8 (FlexiTube, Qiagen). Human and mouse Nox1, human NoxA1,
human and mouse NOXO1 and mouse p22phox siRNA ON-TARGETplus
SMARTpools were obtained from Dharmacon. Camptothecin, hydrogen peroxide
(H2O2), DPI, 2-acetylphenothiazine (ML171), APO, DHE, EHT1864 and MG132
were purchased from Sigma. Piperlongumine (PL) was purchased from RD
Chemicals. IR was performed in an X-ray generator (Pantak HF160, 150 kV,
15mA, dose rate 2.18 Gy per minute).

Reactive oxygen species measurements. Crude ROS levels were measured by
CM-H2-DCFDA (Invitrogen) according to the manufacturer’s guidelines. Primary
cells (HUVECs) were incubated with 5mM 2’,7’-dichlorodihydrofluorescein dia-
cetate (DCFDA, Santa-Cruz) for 20min at 37 �C. Cells were washed twice in PBS,
trypsinized and fluorescence was measured using flow cytometry. For each
experiment, fluorescence was determined on triplicate samples. Statistical analysis
of the results was performed with Prism 5.0b (GraphPad software) by one-way
ANOVA with Bonferroni post hoc. Superoxide levels were measured using the
DHE probe. In the presence of the superoxide anion O2

� , DHE is rapidly oxidized
to oxyethidium, which binds DNA and emits light in the 570–580 nm ranges when
excited at 488 nm. For cell culture, after appropriate treatments, cells were washed
in Hank’s Balanced Salt Solution (HBSS), incubated for 30–60min in HBSS con-
taining 10 mM DHE, washed in HBSS and directly analyzed for oxyethidium
fluorescence with an epi-fluorescence HAL100 microscope (Zeiss). For tissue
sections, snap-frozen tissue samples and tumors were cut in 20 mm sections using a
cryostat, washed and DHE-treated as described for cell lines, mounted on cover
slides and analyzed as for cell lines. When indicated, oxyethidium emission was
analyzed and quantified using ImageJ software. For all specimens, haematoxylin
and eosin staining were performed side-by-side to verify tissue integrity and
pathology, using standard methods. NTB was used to detect localized ROS in vitro.
When NTB becomes oxidized it creates an insoluble blue formazan dye detectable
using a high-resolution light microscope. Exponentially growing cells were incu-
bated with a saturated NTB solution (in H2O) for 30min in 37 �C before washed
2� in PBS, air-dried and analyzed in a 60� magnification light microscope.

Immunodetection. For immunoblotting, proteins separated by SDS–polyacrylamide
gel electrophoresis (PAGE) and transferred to a nitrocellulose membrane were
detected with indicated primary and appropriate secondary antibodies, enhanced
chemiluminescence (ECL) western blotting reagents (Thermo Scientific), and film
(Kodak). Primary antibodies used in the indicated dilutions were purchased from
Sigma (Hace1 (1:1,000), NOXA1 (1:500), Nox1 (1:300), Roche (GFP (1:2,000)),
Rockland (phospho-S1981-ATM (1:1,000)), Cell Signaling (ATM (1:1,000), p53
(1:1,000), phosphoS15-p53 (1:1,000), phosphoS139-H2AX (1:1,000), H2AX (1:1,000),
GAPDH (1:2,000), cyclin D1 (1:1,000)), BD Biosciences (Rac1 (1:500)), Santa-Cruz
(Rac1 (1:1,000), p22phox (1:250), p67phox (1:500), p47phox (1:500), GST (1:1,000),
Nox2 (1:500)), ENZO (poly-ubiquitin (1:1,000)), Assay Designs (Hsc70 (1:1,000))
and Covance (HA (1:1,000)). Secondary horseradish peroxidase-conjugated anti-
bodies (1:10.000) used for immunoblotting were purchased from DAKO. Full-length
scans of immunoblots with key data are shown in Supplementary Fig. S5.

GFP:TRAP and TUBE pull-down assays. For GFP:TRAP pull-downs, whole-cell
lysates were dissolved in TRAP-buffer (10mM Tris-HCL pH 7.5, 0.5% NP-40,
150mM NaCl, 0.5mM EDTA) supplemented with 1 nM PMSF (Active Motif)
protease and phosphatase inhibitors (Roche). Clarified extracts were incubated for
3 h in a rotator at 4�C with 30 ml GFP-Trap_A beads (Chromotech). Precipitated
immunocomplexes were washed 5� in TRAP-buffer without NP-40, boiled in
SDS sample buffer containing 50mM dithiothreitol, and analyzed by
immunoblotting.

TUBEs were used to purify endogenous ubiquitin conjugates from cell lysates
according to the manufacturer’s recommendations with minor modifications.
Briefly, lysis buffer (20mM Na2HPO4, 20mM NaH2PO4, 1% NP-40, 2mM EDTA)
was supplemented with 1mM dithiothreitol, 1� protease inhibitor mix (Sigma)
and 50 mgml� 1 of GST-TUBE2 (Lifesensors, Malvern, PA). One 70–80% confluent
10 cm dish per condition was treated as indicated, after which cells were scraped off
the dish in PBS and pelleted by centrifugation. Cells were lysed in 300 mL lysis
buffer and kept on ice for 20min and lysates were cleared by centrifugation.
Approximately 5% of the cleared lysates was used for input and the remaining
lysate was added to 20ml of washed Glutathione Sepharose 4 Fast flow beads
(GE Healthcare) for capture of GST-TUBE2 and bound material. Reactions
were kept at 4 �C with rotation for 1–2 h, followed by 4� washing in 500 ml of ice-
cold TBS containing 0.1% Tween20 (TBS-T). Bound material was separated from
beads by addition of 1� LSB and analyzed on SDS–PAGE for the indicated
proteins.

PCR assay. PCR was used to detect the expression of Nox gene expression in
SKOV3 cells. RNA was purified according to standard protocol (Qiagen) and
reverse transcribed into complementary DNA (cDNA; Qiagen). PCR was per-
formed in 50 ml of 10mmol l� 1 Tris-HCl (pH 8.3), 25mmol l� 1 MgCl2,
10mmol l� 1 dNTP, 100U of Taq DNA polymerase, with 0.1 mmol l� 1 each
primer and was terminated by heating at 70 �C for 15min. PCR products were
resolved on a 1% agarose gel and visualized with ultraviolet light after ethidium
bromide treatment. The following primers ware used (50–30): human Nox1 sense,
CTTCCTCACCGGATGGGACA; human Nox1 antisense, TGACAGCATTTGCG
CAGGCT; human Nox2 sense, CCTGTACCTGGCTGTGACCCTGTT; human
Nox2 antisense, ACCCCAATCCCTGCTCCCACTAA; human Nox3 sense,
GAGTGGCACCCCTTCACCCT; human Nox3 antisense, CTAGAAGCTCTCCTT
GTTGT; human Nox4 sense, AGTCAAACAGATGGGATA; human Nox4
antisense, TGTCCCATATGAGTTGTT; human Nox5 sense, AAGCATACTTG
CCCCAGCTG; human Nox5 antisense, CAGGCCAATGGCCTTCATGT.

Microscopy. All microscopy was performed on a HAL100 Zeiss microscope.
Image acquisition and analysis was carried out with LSM-ZEN software and
ImageJ.

Zebrafish Hace1 model. Zebrafish were maintained, bred and developmentally
staged as described58. The Dalhousie University Animal Care Committee approved
use of zebrafish in this study. The hace1-HECT morpholino (50-CCCTCGAAC
TGTTAGACAGAATAAA)-30 and standard control morpholino (50-CCTCTTA
CCTCAGTTACAATTTATA)-30 were purchased from Genetools LLC (Philomath,
OR). The hace1-HECT morpholino targets a splice site which resides within the
catalytically active HECT domain, and is positioned upstream of the critical
cysteine residue (C876S) required for hace1 ubiquitin ligase function. Morpholinos
were diluted to a working concentration of 1.6mM with 1% phenol red, and were
injected into live zebrafish embryos at the 1–4 cell stage. Digoxigenin- and
fluorescein isothiocyanate (FITC)-labeled antisense RNA probes were transcribed
from linearized cDNA constructs according to the manufacturer’s protocols (Roche
Molecular Biochemicals, Indianapolis, IN). Whole-mount in situ hybridization
assays for zebrafish embryos were conducted as described59. Staining was
performed using BCIP/NBT (Vector laboratories, Burlington, ON, Canada). The
Hace1 morpholino was verified by reverse transcription–PCR using the following
primers (50–30): Primer A: forward 50-TTGCTGGTCAAATCCTGGGTCTGG-30 ;
Reverse-50-AATGCAGTGCGACAAGCAAGCG-30 ; Primer B: Forward-50-AGCC
AGGAGGAACTACCATTCAGG-30 ; Reverse-50-ATAACTCCCACAATGCAG
TGCGAC-30 . Single Whole-mount in situ hybridization images were taken on a
Leica MZ16F with a DFC 490 camera. Double fluorescence in situ experiments
were performed with Fast Red (Vector laboratories) staining, and then imaged with
a Zeiss Observer Z.1 microscope with a Colibri fluorescence source. H2O2 imaging
using a live cell fluorescein dye was adapted from a previously described assay60. In
brief, 48 h post fertilization (hpf) casper embryos were loaded for 30min with
50 mM pentafluorobenzenesulphonyl fluorescein (Cayman Chemical) in 1%
dimethylsulphoxide in egg water, and imaged using a 550-nm bandpass filter.
Where indicated, the morpholinos were incubated for 1 h with 100 mM DPI or 24 h
with 200 mM APO. Zebrafish embryos were dissociated to a single-cell suspension,
and sorted on a FACSAria I (BD Biosciences, San Jose, CA, USA). Cells were
thresholded by forward scatter (FSC) and side scatter (SSC) and interrogated by
Coherent Sapphire solid state 488 nm laser with dual bandpass filter including
FITC (515–545 nm) emission. ROSþ cells were gated by the following parameters:
FSCLO and SSCLO, and FITCHI fluorescence.
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Statistical tests. When indicated, data were subjected a two-tailed Student’s t-test
to resolve statistical significance. Data compiled from several experiments are
presented with a ±s.e.m.

Human and murine tissue material. Snap-frozen matched tissue specimens of
human normal kidney and Wilms’ tumor from the same patients were obtained
from the Children’s Oncology Group Wilms’ tumor tissue bank, kindly contributed
by Dr Paul Grundy, Cross Cancer Centre, Edmonton, Alberta. Snap-frozen murine
tumors were obtained from wild-type and Hace1 knockout mice at the BC Cancer
Research Centre. The British Columbia Cancer Agency and UBC ethical com-
mittees have approved the use of human tissue specimens and mouse models in
this study. All specimens were cut in 20 mm sections at � 20 �C using a cryostat,
mounted on cover slides on dry ice, washed in ice-cold HBSS, and immediately
DHE-treated as described for cell lines and analyzed for oxyethidium light emission
by microscopy. In parallel, 5 mm sections were cut and haematoxylin and eosin
stained for verification of tissue integrity and pathology. All tumor sections con-
tained at least 80% viable tumor tissue. In cases with sufficient tissue available,
additional sections were cut for preparing protein lysates to be analyzed by SDS–
PAGE for the indicated proteins. Wilms’ tumors used in this study were chosen on
the basis of having been previously shown to have low or undetectable Hace1
mRNA and protein expression as measured by reverse transcription–PCR or
western blotting, respectively6.
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