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Meta-analysis of IDH-mutant cancers identifies
EBF1 as an interaction partner for TET2
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Isocitrate dehydrogenase (IDH) genes 1 and 2 are frequently mutated in acute myeloid

leukaemia (AML), low-grade glioma, cholangiocarcinoma (CC) and chondrosarcoma (CS).

For AML, low-grade glioma and CC, mutant IDH status is associated with a DNA hyper-

methylation phenotype, implicating altered epigenome dynamics in the aetiology of these

cancers. Here we show that the IDH variants in CS are also associated with a hyper-

methylation phenotype and display increased production of the oncometabolite 2-hydro-

xyglutarate, supporting the role of mutant IDH-produced 2-hydroxyglutarate as an inhibitor of

TET-mediated DNA demethylation. Meta-analysis of the acute myeloid leukaemia, low-grade

glioma, cholangiocarcinoma and CS methylation data identifies cancer-specific effectors

within the retinoic acid receptor activation pathway among the hypermethylated targets. By

analysing sequence motifs surrounding hypermethylated sites across the four cancer types,

and using chromatin immunoprecipitation and western blotting, we identify the transcription

factor EBF1 (early B-cell factor 1) as an interaction partner for TET2, suggesting a sequence-

specific mechanism for regulating DNA methylation.
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C
hondrosarcoma (CS) is the second most common primary
malignant bone tumour1. When such tumours arise as
solitary lesions in the medullary cavity (central CS)

or more rarely in the periosteum, B50% harbour either a
somatic IDH1 (isocitrate dehydrogenase 1) or IDH2 heterozygous
mutation2. In a minority of individuals, these tumours are
multiple, and affected individuals are at risk of developing
other neoplasms, including spindle cell haemangiomas, and high-
grade gliomas/secondary glioblastomas, among others3. In this
setting, the mosaic distribution of tumours is caused by somatic
early post-zygotic mutations of IDH1 and IDH2 (ref. 3). The same
mutations have been previously identified in B70% of sporadic
high-grade gliomas and secondary glioblastomas4,B10% of acute
myeloid leukemias (AMLs)4 and cholangiocarcinomas (CCs)5,
and much less commonly in other neoplasms. The mutant (mt)
IDH enzyme catalyses the reduction of a-ketoglutarate (a-KG) to
D-2-hydroxyglutarate (2-HG), an oncometabolite affecting the
activity of a-KG–dependent dioxygenases6: these events affect a
number of cellular responses, and have been shown to induce
CpG island DNA hypermethylation in low-grade gliomas
(LGGs)7, CCs5 and AMLs8 harbouring IDH1 and IDH2
mutations. The TET dioxygenases are responsible for the
conversion of 5-methylcytosine to 5-hydroxymethylcytosine
(5hmC)9, an intermediate metabolite in the recently discovered
active demethylation pathway10,11, and it is possible that mt
IDH1 enzyme mediates the observed hypermethylation
phenotype through inhibition of TET by 2-HG8.

The evidence supporting the concept that the IDH1 and IDH2
mutations occur early in the genesis of these IDH-mt tumours3

suggests that the different neoplasms share a major regulatory
effector. In this study, we aimed to identify the shared and
tissue-specific processes by profiling the methylome of central
CS with and without IDH mutations, and performing a
meta-analysis of the publically available data sets from LGG,
AML, CC and our CS data.

Results
DNA methylation analysis. To investigate the effects of IDH1
and IDH2 mutations on the CS methylome, we conducted gen-
ome-wide DNA methylation (DNAm) profiling of 44 central CS
tumour samples using the Illumina Infinium 450K BeadChips12.

Following strict quality control (Methods), a final data set of
472,655 b values from 12 IDH wild-type (wt) and 15 IDH-mt
samples was analysed. As defined previously13, probes or CpG
sites are referred to as methylation variable positions (MVPs) and
as hyper- or hypo-MVPs when directionality towards differential
hyper- or hypomethylation has been ascertained. To determine
the nature of the largest sources of variation in the data, we
performed a principal component analysis (Fig. 1a). The top
component was highly correlated with IDH mt status and 2-HG
levels (Kruskal–Wallis P-value¼ 2� 10� 6 and 6.8� 10� 4,
respectively). We note that the association of both IDH mt
status and 2-HG levels with the same principal component is not
surprising given that IDH mt status and 2-HG levels were
strongly correlated (Spearman rank correlation coefficient
r¼ 0.84; P-value¼ 3.62� 10� 8). Tumour grade also appeared
to have an impact on the first component, but this may be
accounted for by the uneven distribution of the tumour grades in
the two groups, with grade I and III tumours only being
represented in the wt or mt groups, respectively (Fig. 2a). This
appears to have occurred by chance, as our previous studies with
larger numbers of cases found that there was no association of
grade with mutation status2,3. No association was found with age
of presentation and sex, and technical factors were also not
(Sentrix Position) or only weakly (Sentrix ID) associated with
principal components. Unsupervised consensus clustering
(Fig. 1b) of the top 150 MVPs across all samples, as
determined by the median absolute deviation estimator,
supported IDH mt status as the main driver of changes in the
DNA methylation: our sample cohort clustered into four groups,
the first two of which were 92% IDH wt (12 wt and 1 mt), while
the other two exclusively contained mt samples.

We then performed a supervised analysis using a Wilcoxon
rank-sum test to determine the directionality of the MVPs
between CS with and without IDH mutation. MVPs were selected
on the basis of statistical significance (Wilcoxon P-valuer0.001),
and an additional filter of |D�|Z0.35 was applied to compensate
for the Wilcoxon rank-sum test not taking into account the
absolute difference in methylation between the groups, and to
narrow down our search to differences with higher potential
for functional effect. A total of 3,057 MVPs met these
requirements, and hierarchical clustering of the samples yielded
three distinct groups (Fig. 2a): a mt cluster defined by high
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Figure 1 | Principal component and unsupervised analysis of IDH mt-associated MVPs. (a) Singular value decomposition: PC-k refers to the kth

principal component; the first two components associate most significantly with IDH status (Kruskal–Wallis P-value¼ 2� 10� 6) and 2-HG levels

(P-value¼ 6.8� 10�4), while other significant components associate mainly with tumour grade. Technical component Sentrix ID is not correlated with

variation in the data until PC-5. Other biological factors, such as patient age and sex are not correlated with any significant component. (b) Unsupervised

consensus clustering of the top 150 MVPs across all samples as determined by median absolute deviation. Clusters one and two (left) are mainly populated

by IDH wt samples (light green) with one mt included, while clusters three and four (right) are exclusively mt (red).
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hyper-MVPs (median b¼ 0.75), a second mt cluster defined by
intermediate to high hyper-MVPs (median b¼ 0.55), and a
wt cluster corresponding to hypo-MVPs (median b¼ 0.16).
Moreover, of the 3,057 MVPs between mt and wt CS, 99.5%
(3,042/3,057) were hyper-MVPs in the mt group relative to the wt
group, thereby revealing a strong hypermethylation phenotype
associated with mutation(s) in the IDH genes in central CS
(Fig. 2b).

Mapping of the hyper-MVPs to gene features revealed
significant (random resampling P-valuer0.001) enrichment for

regulatory regions (Fig. 3a,b) such as promoter-associated
transcription start sites (9% for TSS1500) and CpG islands and
shores, which were enriched by 19.1 and 11.3%, respectively.
These regions are known to be of particular relevance to
transcriptional regulation14.

Validation and replication. For validation of results from
the original data set, we additionally analysed 16 of the CS
samples (5 wt and 11 mt) using two independent methods:
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Figure 2 | Supervised analysis reveals a hypermethylation phenotype associated with IDH mutation. (a) Hierarchical clustering of the top 3,057 hyper

and hypo-MVPs (Wilcoxon rank-sum test Pr0.001 and |D�|Z0.35) between IDH mt and wt. The samples cluster into three groups: low/unmethylated wt

cluster (1) intermediate/high methylation mt cluster (2) highly methylated mt cluster (3) 2-HG levels positively correlate with IDH mutation and

hypermethylation. (b) Frequency distribution of median �-value differences between mt and wt sample groups in selected (top 3,057) probes. 99.5%

(3,042 of 3,057) are hypermethylated in mt samples relative to wt.
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region is enriched for by 9%, while probes located within the gene body are depleted by 6.4%.
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pyrosequencing, and a novel high-throughput targeted technol-
ogy based on microdroplet PCR coupled with next-generation
sequencing (RainDrop-BSseq). For the latter, we targeted 855
CpG sites and validated their methylation status for 98.8% (426/
431) and 95.5% (429/449) in the wt and mt groups, respectively
(Supplementary Fig. S1a). For two of these sites, we also per-
formed pyrosequencing in two wt and two mt samples and
compared the results to the RainDrop-BSseq as well as the ori-
ginal 450K array data. Results from all the three platforms agreed
in every case, with a mean cross-platform difference of b¼ 0.09
(min¼ 0.01, max¼ 0.19) (Supplementary Fig. S1a). Using Rain-
Drop-BSseq, we further replicated the results for 373 sites in an
independent set of six mt CS samples, and found matching
methylation states in 94.3% (352/373) of cases (Supplementary
Fig. S1b). Finally, an additional independent panel of 24 central
CS (10 wt and 14 mt), analysed on the 450K arrays, was used for
further replication of the identified hypermethylation profile: the
top 500 MVPs from the initial test set correctly separated the
replication set into wt and mt clusters (22/24, 92%)
(Supplementary Fig. S2a), with a clear hypermethylation profile
in the mt group (Supplementary Fig. S2b).

Meta-analysis. DNA methylation profiles of tumours with IDH
mutations have also been studied in the context of three other
malignancies: AML8, LGG7 and CC5. In all the three tumour
types, a hypermethylation phenotype similar to that described for
central CS was identified, suggesting a common mechanism
linking gain of function in the IDH enzyme associated with
reduced demethylation, possibly through inhibition of the TET
family of oxygenases15. To determine whether this particular
mechanism affects shared pathways and/or tissue-specific
processes in each cancer type, we performed a meta-analysis
using publically available methylation profiles from AML, LGG
and CC (accession codes GSE24505, GSE30339 and GSE32286,
respectively) and our own CS data (GSE40853). The analysis was
conducted at gene level using IPA (Ingenuity Systems,
www.ingenuity.com) (Methods).

The AML data set (n¼ 398) was derived using the HELP16

(HpaII tiny fragment Enrichment by Ligation-mediated PCR)
assay, which targets CpG sites in gene promoters. Both the
publically available LGG (n¼ 81) and CC (n¼ 50) data sets, as
well as our CS data were obtained from Illumina BeadChip 450K
methylation arrays, covering not only promoter regions of known
genes but also gene bodies and certain intergenic sites. This
allowed us to apply the same filters to the LGG and CC data as we
employed for the supervised analysis of CS described above
(Wilcoxon P-valuer0.001, |D�|Z0.35). In order to facilitate
inclusion into our meta-analysis of the AML data, restricted to
gene promoters by the HELP assay, we then further refined the
450K data sets to sites annotated to CpG islands or shores within
promoter regions. Using this stratification, a total of 640, 1,028,
169 and 48 genes were available for comparison from CS, LGG,
CC and AML, respectively. The CS and LGG data sets had 188
genes in common (random resampling P-valuer10� 5),
while CS, LGG and CC overlapped by 16 (random resampling
P-valuer10� 6), but no gene was found to be present in all
four gene lists.

We then analysed all genes from the four data sets for
shared pathways, and although no canonical pathway as
annotated by IPA reached statistical significance, retinoic acid
receptor (RAR) activation was affected in all four cancer types,
involving five genes from CC, two from AML, 17 from LGG
and 14 genes from CS (Fig. 4). Retinol-binding protein 1, for
example, was differentially methylated in CS, LGG and CC,
and found in our cohort to display significant hypermethylation

in the promoter region and downregulation of gene expression
(Supplementary Fig. S3). However, in the four cancer types,
the other top pathways were more directly related to each
of the affected tissues: these included pathways involving
the function of osteoblasts, osteoclasts and chondrocytes
in CS, axonal guidance signalling in LGG, Myc signalling in
AML, and circadian rhythm signalling in CC. This suggests a
tissue-specific hypermethylation phenotype of each individual
tumour type.

To investigate the findings further, we specifically analysed
those genes that were uniquely differentially methylated in each
cancer type. In CS, the most significantly affected physiological
function category was tissue development (right-tailed Fisher
exact test P-value¼ 5.44� 10� 5� 4.76� 10� 2; number of genes
n¼ 46), with development of connective tissue and adhesion of
carcinoma cell lines and fibroblasts as the top functions. In LGG,
the most significant category was nervous system development
and function (P-value¼ 9.43� 10� 4� 4.38� 10� 2, n¼ 12)
with the extension of neurites and axons and the proliferation
of neuronal cells as top function; moreover, the most significant
diseases corresponding to the analysed gene set were hereditary
disorders, neurological disease and psychological disorders
(P-value¼ 2.04� 10� 5� 4.38� 10� 2). The top category in CC,
an epithelial cell malignancy, was hair and skin development (P-
value¼ 2.85� 10� 3� 2.63� 10� 2), with proliferation of epithe-
lial cells as top function. Finally, we identified haematological
disease (P-value¼ 2.34� 10� 3� 4.67� 10� 3) as the most sig-
nificant disease in the AML data set.

A potential mechanism by which TET regulates demethylation
in a tissue-specific manner could be through interaction with a
DNA-binding partner. To test this hypothesis, we searched for
common motifs in 100bp windows surrounding the identified
MVPs in CS, LGG and CC using the multiple expectation
maximization for motif elicitation (MEME)17 suite and identified
the 50-CDGGRA-30 motif as highly significant (MEME
P-value¼ 10� 3, discriminative DNA motif discovery (DREME)
P-value¼ 7� 10� 70). The presence of this motif was then
assessed over a 1 kb window around each MVP, as DNA
methylation is known to be tightly correlated over that
distance18,19, and the motif was found in 93% of sequences
tested (8,008/8,582); it is also present in 73% of the AML
sequences identified as differentially methylated. Using
the TOMTOM tool within the MEME suite to test for similarity
to known DNA-binding sites, we identified the early B-cell
factor 1 (EBF1) binding motif as a significant match (TOMTOM
P-value¼ 0.0025) (Fig. 5a). To assess this prediction, we analysed
publically available EBF1 chromatin immunoprecipitation
sequencing (ChIP-seq) data from the UCSC Genome Browser
and found the CDGGRA motif to be present in 40% of EBF1-
enriched sequences. Additionally, we assessed the expression levels
of EBF1 in a set of 32 CS samples (19 mt and 13 wt) and found the
gene to be expressed at similar levels (Wilcoxon P-value¼ 0.34) in
both sample groups (Supplementary Fig. S4).

To validate the predicted interaction between TET2 and EBF1,
we then conducted ChIP experiments in the SW1353 CS cell line
with antibodies against TET2 and EBF1, and measured enrich-
ment for these on three loci (CCND2, FABP3 and FBRSL1). The
targets were selected on the basis that they were significantly
hypermethylated in our IDH mt CS cohort as compared to the wt
samples, displayed high methylation (b value40.9) in the
SW1353 cell line, and contained at least one predicted binding
site for EBF1 in a 100 bp window (Supplementary Table S2).
A negative control region, to which the enrichments were
normalised, was selected for being highly methylated in all
samples, irrespective of the IDH mutation status, and having
no EBF1 binding sites in its vicinity. All three target sites
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were enriched for TET2 and EBF1 (Fig. 5b) with fold enrichments
ranging from 3.6 to 88. It is noteworthy that the TET2:EBF1
fold enrichment ratios were similar at the three sites (9.2, 5.8,
and 10.1) further supporting co-localisation of the two
proteins. Finally, in order to address the potential protein–

protein interaction between TET2 and EBF1, we performed
co-immunoprecipitation experiments using an antibody against
TET2 (Fig. 5c). Significantly, EBF1 was detected by western
blotting in the TET2 precipitate, demonstrating that endogenous
TET2 and EBF1 interact in SW1353 cells.
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Discussion
The effects of gain-of-function mutations in the IDH1/2 enzymes
on the methylome have been extensively studied in the context
of AML and LGG, and more recently in CC5,7,8. Here, we report
methylation profiling data supporting a similar mechanism in
central CS, where specific IDH mutations are correlated with
increased levels of the 2-HG oncometabolite3 compared with
wt tumours, and a widespread hypermethylation phenotype.
While many epigenetic effector proteins, such as DNA
methyl-transferases or histone deacetylases, are known to be
mutated in human cancers, thus directly affecting tumour
development20, the indirect inhibition of demethylation via
IDH mutation suggests a new role for metabolism in the
regulation of the epigenome. The genomic and epigenomic
targets of the observed hypermethylation, focused mainly on CpG
islands and shores around promoter regions, infer functional
consequences for these metabolic perturbations. Although
inhibition of TET enzymes is likely to be the main mechanism
by which IDH mutations are linked to DNA hypermethylation in
the cancers studied here, it is noteworthy that 2-HG
accumulation also affects other dioxygenases, such as histone
demethylases and prolyl hydroxylases, which could contribute to
the observed phenotype. It is also important to note that although
mutations in TET genes are frequently found in AML without
IDH1/2 mutations, they are extremely rare in CS and therefore
such mutations are unlikely to account for a common pathogenic
alternative to IDH mutation in this cancer. A separate study21 has
revealed that of 90 CS analysed by either exome sequencing or a

more targeted approach, only one tumour was found to contain a
TET2 mutation. This mutation has never been reported as
functionally relevant in AML where these have been extensively
studied22. This is supported by the fact that in LGG, where IDH
mutations occur at the even higher frequency of 70–80%, no
functional TET2 mutations have been reported23.

The shared IDH mutation-correlated hypermethylation
phenotype in AML, LGG, CC and now also in CS suggests
that the same biological processes are likely to be affected in
all four cancer types. Indeed, we identified that the RAR
activation pathway is independently targeted in the above four
malignancies; RAR signalling is often affected early in carcino-
genesis24, suggesting an important role in tumour development.
Moreover, retinoids have been shown to inhibit growth in various
cancers, such as skin, bladder, kidney, prostate, and breast25, but
even closely related cancers display unique targets and
mechanisms of action for retinoids25, further supporting our
finding of tissue-specific effectors in this shared pathway. Finally,
Retinol-binding protein 1, a downstream target of RAR, has
recently been shown to become hypermethylated following
knock-in of a mt IDH1 gene into a cancer cell line26 and we
have confirmed hypermethylation of the Retinol-binding protein
1 promoter and associated downregulation of gene expression in
IDH mt CS.

As TET is a key enzyme in the active demethylation pathway, it
can be expected (at least in healthy cells) to be under
tissue-specific regulation, and disruption of its function in cancer
cells should therefore result in patterns of hypermethylation
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with the nucleotide frequencies in each motif to determine the significance of the match: TOMTOM P-value¼0.00249671. (c) Endogenous EBF1

interacts with TET2 in SW1353 cells. Western blotting of anti-TET2 and control IgG immuno-complexes with indicated antibodies. A longer exposure of

input lysates (5% of total) is indicated by an asterisk *.
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unique to its cell type of origin. Indeed, there is evidence for the
existence of cellular memory from stem cell research27 and our
meta-analysis of the differential methylation profiles in these four
cancers (originating from different cells types) suggests that genes
that are only affected in one cancer type are principally involved
in functions and pathways specific to that cell type. Although the
TET oxygenases (except TET2) are predicted to contain a CXXC
domain that has been described to bind to CpG sites9, there is
limited understanding of how they target specific genes, a
prerequisite to maintaining the specificity of their regulatory
function. In the absence of a targeting domain in TET itself, a
likely mechanism is that a DNA-binding protein serves as an
interaction partner for TET, such that the regulation of
demethylation would be under the tissue-specific control of the
interaction partner at the transcriptional or post-transcriptional
level. We identified EBF1 as a potential candidate for this
role at the transcriptional level through motif analysis of
hypermethylated regions in four cancer types where TET
function is impaired by increased levels of 2-HG; this
hypothesis is supported by proportional enrichment for
both EBF1 and TET2 at selected loci establishing co-localisation
of the two proteins, and by co-immunoprecipitation of endo-
genous EBF1 with TET2 which demonstrates their interaction,
either directly or indirectly, as part of a larger complex. This
finding is also supported by the previously reported role of
EBF1 in transcriptional regulation; for example, during B-cell
differentiation, it has been associated with induction of CD79a
promoter demethylation28, and EBF1 binding also correlates
with histone modifications associated with transcriptional
activation and poised chromatin29. In addition, depending on
spatial or temporal contexts for instance, EBF1 could potentially
be an interaction partner for other enzymes as well as TET2,
such as dioxygenases or other chromatin modifiers, and the
EBF1 interactome will need to be further studied to clarify the
range of partners EBF1 interacts with. Our findings identify
EBF1 as novel interaction partner of TET2, confirm IDH
mt-mediated hypermethylation to be a recurrent phenomenon
in unrelated types of cancer, and have identified tissue- and
cancer- specific effectors as key drivers, and potential therapeutic
targets.

Methods
Patient samples and mutation analysis. The material was obtained from the
Stanmore Musculoskeletal Biobank, the approval for which was provided by the
Cambridgeshire 1 Research Ethics Committee (Reference Number: 09/H0304/78).

IDH mutations were tested and validated by at least 2 of the following
techniques including Sequenom MassARRAY, capillary sequencing, exome
sequencing and a custom-made Taqman array2,3.

A total of 44 patient samples (21 IDHþ /þ and 23 IDHþ /� ) and 4 technical
controls were available for analysis; 8 were formalin-fixed paraffin-embedded
(FFPE) tissue samples (6 IDH wt and 2 IDH mt) while the other 36 were fresh
frozen (FF). An additional 6 IDH mt FF samples were used in the RainDrop-BSseq
replication set, and a further 24 patient samples (10 wt and 14 mt) for the 450 K
replication set.

DNA extraction. DNA was extracted from FF tissue using the QIAamp DNA
Mini Kit (QIAGEN) according to manufacturer’s instructions, and from FFPE with
the QIAamp DNA FFPE Tissue Kit (QIAGEN) and REPLI-g FFPE Kit
(QIAGEN)30.

Methylation analysis. Bisulphite conversion of the DNA for methylation profiling
was performed using the EZ DNA Methylation kit (Zymo Research) on 500 ng
from FF samples and 1 mg from FFPE. Conversion efficiency was quantitatively
assessed by quantitative PCR (qPCR).

The Illumina Infinium HumanMethylation450 BeadChips12 were processed as
per manufacturer’s recommendations. Pyrosequencing validation was conducted
using PyroMark Gold Q96 (QIAGEN) reagents and the PyroMark Q96 MD
pyrosequencer as per manufacturer’s instructions. For the validation and
replication using targeted microdroplet PCR bisulphite sequencing (RainDrop-
BSseq), sample preparation and bisulphite conversion were carried out as described

above. The parallel amplification of target loci was performed by RainDance
Technologies (Lexington, MA, USA) and the subsequent sequencing by
Illumina. The RainDance technology allows massively parallel amplification of
specific DNA fragments by conducting PCR reactions in pico litre droplets on
integrated microfluidic chips. The produced library (one for each sample) was then
separately subjected to a second round of PCR to incorporate the sequencing
indices. The libraries for all samples were pooled and sequenced on the
Illumina MiSeq. For a more efficient comparison between RainDrop-BSseq and
450K, we assigned each methylation score to bins of 20% increment in
methylation, and considered those between 80–100% to be methylated and those
between 0–20% to be unmethylated. These methylation states were then compared
across platforms. A summary table of the results is available as Supplementary
Table S1.

ChIP-qPCR analysis. Automated ChIP was performed using the Auto-ChIP Kit
(Diagenode) and the SX-8G IP-Star (Diagenode) according to the manufacturer’s
instructions. 3 mg and 7 mg of TET2 (sc-136926; Santa Cruz) and EBF1 (clone 1G8,
Abnova) antibodies, respectively, were used in each reaction. The SW1353 CS cell
line used was obtained from ATCC (HTB-94). The target regions and negative
control region are referred to here by the nearest gene; qPCR primers for these sites
were designed using NCBI Primer Blast and manufactured by Sigma-Aldrich:
CCND2:F: 50-GTTTCTGCTCGAGGATCACA-30 , R:50-GGGAGAGGTGGGTA
TTAGGA-30 , FABP3:F: 50-CCTGGGGCTTCCTATTTCG-30 , R: 50-TGCCGCTT
TAAATAGCCCTC-30 , FBRSL1:F: 50-TACGCGCTGCATGAATCAAT-30 ,
R: 50-CTGGTGGGGTTTTCTGAGC-30, OOEP: F: 50-TATGGTCGATGATGCT
GGTG-30 , R: 50-GGGTCTCTCAGTTCCTGCAC-30 . The OOEP primer set was
used as negative control. Quantitative PCR was performed on the Applied
Biosystems 7300. Enrichments were assessed using the DDCt method, normalising
qPCR results to both the mock IgG IP and the negative control region site.

Co-Immunoprecipitation and western blot analysis. Immunoprecipitation of
the complex involving TET2 and EBF1 was performed with 3 mg of anti-TET2
antibody (sc-136926, Santa Cruz Biotechnology) and protein A sepharose in cell
lysates of SW1353 cells with 5% of the lysate taken as input control before IP (lysis
buffer: 30mM HEPES, 20mM b-glycerophosphate, 20mM KCl, 1mM ethylene
glycol tetraacetic acid (EGTA), 2mM NaF, 1mM Na3VO4, 1% TX100, 1mM
benzamidine, 4 mM leupeptin, 5mM PMSF, 1mM DTT at pH 7.4). Immune
complexes were washed three times with wash buffer (20mM Tris pH 8.0, 1M
NaCl, 10% glycerol, 1% NP-40, 5mN EDTA pH 8.0, 0.5mM EGTA pH 8.0, 50mM
NaF, 20mM b-glycerophosphate 1mM Na3VO4), before subsequent detection of
EBF1 and TET2 in the precipitate by western blotting using 1:500 and 1:1,000
dilutions of EBF1 (Abnova, H00001879-M02) and TET2 (Abcam, ab94580) anti-
bodies, respectively, with 5% milk as blocking agent in TBST (TBS with 0.1%
Tween 20). Secondary antibodies from GE Healthcare were used at 1:5,000 dilu-
tions. See Supplementary Fig. S5 for full western blots.

Statistical analysis. The raw output from the 450K BeadChips was processed
using GenomeStudio software (Illumina). Raw data is available from GEO
(accession number GSE40853). The non-normalised and non-background cor-
rected data and array annotation were exported as text files from GenomeStudio
and all subsequent analysis was performed using the R statistical software v2.15.0
(http://www.R-project.org) with R packages31–34 and custom scripts. Quality
control of the data resulted in removal of samples showing reduced coverage, and
any probes that did not pass a detection P-value threshold of 0.01 across all
samples; after removal of technical replicates and control samples, a data set of
27 samples (12 IDHþ /þ and 15 IDHþ /� ) and 472,655 probes were available for
analysis.

A principal component analysis35 of the data was performed to identify the
principal components of variation. Unsupervised consensus clustering was
conducted on the top probes selected using a median absolute deviation (MAD)
estimator, which provides a more robust measure of variance than standard
deviation. We selected the top 150 most variable positions (MVPs) corresponding
to a lower-end threshold of MAD¼ 0.5. Thus, these selected probes show
substantial variance with methylation differences across many samples in the order
of 50% methylation changes. We note that we also performed consensus clustering
on more MVPs by lowering the MAD threshold to include 300 and 500 probes,
with identical results, demonstrating robustness to the choice of threshold.

A Wilcoxon rank-sum test was used for supervised analysis; P-values obtained
from the latter were adjusted for multiple testing (Benjamini–Hochberg36) and
only probes with P-valuer0.001 were used in the clustering. A further filter of
absolute (D (medianb))Z0.35 was used to compensate for the Wilcoxon rank-sum
test not taking into account absolute difference in methylation between the groups,
and to narrow down our search to differences with higher potential for functional
effect.

The MVPs used to separate the validation sample sets (n¼ 24, 10 wt and 14 mt)
were selected based on the same method used for the filtering of MVPs in the initial
data set, specifically ordering them by: (1) increasing adjusted P-value and then (2)
decreasing absolute median difference between the mt and wt groups.
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The statistical significance of the observed percentage enrichments for genomic
and epigenomic features among the 3,057 MVPs was calculated on the basis of
1000 repetitions of a random selection of 3057 probes from the overall probe set
(472,655 probes) used in the analysis. The aforementioned features correspond to
the official annotation of the 450 K BeadChips, and were extracted using
GenomeStudio.

Raw sequencing reads from the microdroplet PCR were trimmed to 60 bp as
recommended by Krueger et al.37, and fastq_quality_trimmer from the fastx toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) was used to trim lower quality
bases from the ends of sequence reads (threshold set at 30); reads were trimmed
down to a minimum length of 20 bp.The alignment was conducted using
Bismark38, specifically designed for mapping bisulphite converted sequence reads.
Finally, methylation states were determined using the Bismark
methylation_extractor and custom perl scripts. CpG sites covered by 10 sequencing
reads or more and with methylation scores between 0–20% (unmethylated) or
80–100%(methylated) were selected.

Meta-analysis. For the meta-analysis, we used the published list of differentially
methylated genes for AML (n¼ 398, 347 wt and 51 mt), significantly differentially
methylated genes (Wilcoxon P-valuer0.001, |D�|Z0.35) for LGG (n¼ 81, 32 wt
and 49 mt) and CC (n¼ 50, 31 wt and 19 mt) and the data reported here for CS,
with a further restriction to sites found in gene promoters and CpG islands/shores.
The functional analysis identified the biological functions that were most
significant to the data set. Right-tailed Fisher’s exact test was used to calculate a
P-value determining the probability that each biological function assigned to that
data set is due to chance alone. This P-value was further adjusted (Benjamini–
Hochberg36) for multiple testing. Canonical pathway analysis identified the
pathways from the IPA library of canonical pathways that were most significant to
the data set. Molecules from the data set that were associated with a canonical
pathway in the Ingenuity Knowledge Base were considered for the analysis. Fisher’s
exact test was used to calculate a P-value determining the probability that the
association between the genes in the data set and the canonical pathway is
explained by chance alone. This P-value was further adjusted (Benjamini–
Hochberg36) for multiple testing. The motif analysis was conducted using the
online MEME suite of tools17: FASTA sequences were downloaded from the UCSC
Genome Browser, and used for input in the MEME-ChIP tool of the MEME suite;
parameters were set to default except for the number of repetitions (set to ‘Any
number of repetitions’), motif width (min¼ 4, max¼ 15), and maximum number
of motifs to find (20).
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