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Asymmetric selection and the evolution
of extraordinary defences
Mark C. Urban1, Reinhard Bürger2 & Daniel I. Bolnick3

Evolutionary biologists typically predict future evolutionary responses to natural selection by

analysing evolution on an adaptive landscape. Much theory assumes symmetric fitness

surfaces even though many stabilizing selection gradients deviate from symmetry. Here we

revisit Lande’s adaptive landscape and introduce novel analytical theory that includes

asymmetric selection. Asymmetric selection and the resulting skewed trait distributions bias

equilibrium mean phenotypes away from fitness peaks, usually toward the flatter shoulder of

the individual fitness surface. We apply this theory to explain a longstanding paradox in

biology and medicine: the evolution of excessive defences against enemies. These so-called

extraordinary defences can evolve in response to asymmetrical selection when marginal risks

of insufficient defence exceed marginal costs of excessive defence. Eco-evolutionary feed-

backs between population abundances and asymmetric selection further exaggerate these

defences. Recognizing the effect of asymmetrical selection on evolutionary trajectories

will improve the accuracy of predictions and suggest novel explanations for apparent

sub-optimality.
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A
fundamental goal in biology is to predict the evolution
and optimization of traits in populations undergoing
natural selection. Quantitative genetics has emerged as the

dominant paradigm for predicting the evolutionary optima for
continuous traits1. Quantitative genetics has been used to predict
the evolution of domesticated crops and animals, natural
populations and humans, and thus represents one of the most
important tools in modern biology.

Lande’s2,3 analytical approach is commonly used to describe
the evolution of the mean phenotype on an adaptive landscape4.
Lande showed that an evolving population climbs the adaptive
landscape to a local fitness peak through evolution. In particular,
he demonstrated that his equation for the evolution of the mean
phenotype can be interpreted as the breeder’s equation used in
quantitative genetics. An often-overlooked point (but see refs
5–7) is that the adaptive landscape, which assigns the mean
fitness of the population to the mean phenotype, can differ from
the individual fitness surface, which relates individual fitness to
individual trait values. In general, the peaks of the individual
fitness surface coincide with the peaks of the adaptive landscape if
the population is monomorphic or if both the fitness surface and
phenotypic distribution are symmetric and unimodal. Although
Gaussian fitness surfaces are often assumed for mathematical
convenience, evolutionary biologists have long noted that
asymmetric selection is ubiquitous in nature8. Here we evaluate
the consequences of asymmetrical selection for trait evolution and
optimization.

A trait determined by many loci should follow a Gaussian
distribution owing to the central limit theorem, and indeed
normally or log-normally distributed traits are common9. In
contrast, natural selection need not conform to a Gaussian
distribution because it arises from a combination of selection
functions rather than the sum of random variables as for
quantitative traits. Individual fitness surfaces so frequently
diverge from the Gaussian distribution10 that more flexible
statistical fitting methods such as the cubic spline are usually
employed to characterize fitness surfaces8. If natural selection is
frequently asymmetric, then how does this affect the evolution of
quantitative traits?

Parker and Smith11 presented a verbal argument that an
asymmetric fitness surface would bias the equilibrium mean
phenotype away from the individual fitness optimum. This
possibility has been used to explain apparently suboptimal mean
clutch sizes in birds and body sizes in Drosophila12,13. However,
no general theory has been derived to predict the direction or
extent of this bias for an asymmetric fitness surface.

Here we develop analytical theory and genetic simulations that
incorporate skewed phenotypic distributions to predict the effects
of asymmetric fitness surfaces on evolutionary equilibria. We
then apply this theory to explain an apparent paradox in biology:
why do excessive and costly defensive traits sometimes evolve
contrary to what is expected based on individual fitness? We
show that asymmetric selection can strongly bias evolutionary
responses and that this asymmetric selection can produce
extraordinary defences and thereby explain autoimmune
responses and other excessive investments in defence.

Results
Evidence for asymmetric selection. Although examples of sym-
metric stabilizing selection exist (for example, Bumpus’ sparrows,
Fig. 1a), many individual fitness distributions are skewed
(Fig. 1b–d). Examples of asymmetric selection include human
birth weight14 (Fig. 1b), parasitic gall size15 (Fig. 1c), and bill
depth in Darwin’s finches (Geospiza spp.)16. In this last example,
stabilizing selection on bill depth is strongly left-skewed, having a

flatter shoulder for smaller-than-optimal bill depths (Fig. 1d)16.
Other traits subject to asymmetric selection but not displayed
include bird clutch size12 and insect body size13.

Evolution under asymmetric selection. Here, we show how
asymmetric selection shifts the mode of the adaptive landscape,
that is, the mean fitness function �wð�xÞ, toward the flatter shoulder
of the individual fitness surface. We provide general conditions
for the direction of this shift and demonstrate this principle by
modelling trait evolution using two qualitatively different skewed
individual fitness surfaces. First, we approximate the slopes of the
fitness surface with a cubic polynomial function in equation (3)
and then find the condition when the optimum of mean fitness is
shifted to the right of the optimum of the individual fitness
surface (equation (4), and Supplementary Methods,
Supplementary equations (S1–S4)). Then we modify the classical
Gaussian fitness surface by multiplying it by a linear function and
renormalizing it in equation (5), which closely approximates the
skew-normal distribution (Fig. 2a)17. The shape parameter c
determines the degree and direction of skew. Negative c
generates left skew, positive c generates right skew and the
Gaussian distribution is recovered when c¼ 0. By applying our
polynomial method to the skew-normal distribution, we can show
that equation (4) is always satisfied and the optimum of mean
fitness is shifted to the right (equation (6)). In a later section, we
evaluate a skewed individual fitness function based on
assumptions about selection from enemies on victim traits.

In general, the adaptive landscape is calculated as the integral
of the individual fitness surface multiplied by the density of the
trait distribution. In Methods and Supplementary Methods, we
obtain explicit analytical results. We show that increasingly
asymmetrical selection shifts the optimum mean phenotype (the
mode of the adaptive landscape) toward the flatter shoulder of the
individual fitness surface which, for our skew-normal distribu-
tion, is also toward the longer tail: right for positive skew and left
for negative skew (Fig. 2b). The magnitude of this shift increases
with higher skew in the fitness surface and with higher
phenotypic variance (Fig. 2c). Intuitively, this bias arises because
when a population’s mean phenotype is at the peak of an
asymmetric fitness surface, individuals on the flatter shoulder of
the individual fitness surface will be more fit than individuals on
the steeper shoulder. Consequently, directional selection can still
change the trait mean even when it is at the peak.

Asymmetric selection also indirectly affects the equilibrium
mean phenotype, because it changes the shape of the trait
distribution which, in turn, modifies the response to selection.
Lande’s theory for the response of the mean of normally
distributed traits can be generalized18,19 to account for this
effect. For non-Gaussian distributions of breeding values, the
mean response can be written as

D�x¼s2L1 þC3L2 þC4L3 þ . . . þM ð1Þ
where s2 is the genetic variance, Ck denotes the kth cumulant of
the distribution of breeding values, Lk¼ @ ln �w=@Ck is the
selection gradient of order k, and M is the contribution from
asymmetric mutation20. If we ignore terms involving cumulants
of order higher than three, the following condition is met at
equilibrium (D�x¼ 0).

s2L1 � �C3L2 �M; ð2Þ
where L1 and L2 are the directional and stabilizing selection
gradients, respectively, of the distribution of breeding values. If M
is sufficiently small, the sign of directional selection (L1) will
match that of skewness (C3), because stabilizing selection always
induces negative L2 and genetic variance (s2) is always positive.
For positive skew, the mean phenotype will equilibrate where
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directional selection is positive, that is, to the left of the optimum
of the adaptive landscape (but not necessarily the individual
fitness surface) and to the right when skew is negative. Hence,
asymmetric natural selection has two opposing effects on
evolution: it directly biases the equilibrium mean trait toward
the flatter shoulder of the individual fitness surface and indirectly
biases it toward the steeper shoulder via effects from a skewed
phenotypic distribution.

The cumulative effect of these opposing forces depends both on
the kind of asymmetry of the individual fitness surface and the
population’s phenotypic variance (See Supplementary Fig. S1).
The selection differentials L1 and L2 can be calculated as functions
of c, s2 and �x for the skew-normal distribution (see
Supplementary Methods, Supplementary equations (S5–S10)).
Except for special cases reviewed in Bürger20, no theory is
available to calculate the equilibrium values of �x, s2 and C3,
because they depend on the specific genetic details18–21.
Nevertheless, they can be determined from genetic simulations
and entered into equation (2) to predict �x from s2 and C3.

Equation (1) for the evolutionary response of the mean holds
quite generally for randomly mating sexual populations with
equivalent sexes or for asexually reproducing populations
provided the trait is determined additively by a finite number
of loci. It holds independently of the population size, of the
number and effects of loci, and of linkage relations. The response
of the variance and the higher cumulants is much more
complicated and depends on genetic details, even if linkage

disequilibria are weak or absent18–22. Although selection will
cause deviations from a normal distribution of breeding and
phenotypic values directly and indirectly via linkage disequilibria,
such deviations do not change the central relations in equations
(1) or (2); they do influence, however, the cumulants and
selection gradients. In addition, as shown in Supplementary
Methods (Supplementary equations (S11–S13)), the first-order
and second-order selection gradients (L1 and L2) are, to leading
order, independent of the skew or higher cumulants of the
distribution of breeding values. Therefore, our results agree with
Turelli and Barton21 that the assumption of a normal distribution
of breeding values in calculating the selection response gives
remarkably accurate predictions for the mean and variance.

In accordance with theoretical predictions, our genetic
simulations show that asymmetric selection usually biases the
mean phenotype at equilibrium toward the flatter shoulder of the
distribution, that is, to the right for positive skew and to the left
for negative skew (Fig. 3). Higher c-values increase skew in the
individual fitness surface, which in turn accentuates the bias in
the mean phenotype. It is theoretically possible for effects via the
skewed trait distribution to shift optima toward the steeper
shoulder (see Supplementary Fig. S1). However, in our simula-
tions, we could not find parameters that generate enough
phenotypic skew to overcome the direct effect of asymmetric
selection which displaces the mean to the right and thereby
displace the mean phenotype to the left (steeper shoulder) of the
adaptive landscape (equation (2)). Consequently, bias in the
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Figure 1 | Iconic examples of stabilizing selection. Examples are arranged in order of increasingly negative skewness, where the left tail is flatter, including

(a) survival of house sparrows based on body size32, (b) human baby survival based on birth weight14, (c) survival of the parasitic insect Eurosta solidaginis

from 1984–1985 based on gall diameter15 and (d) survival of Darwin’s finches (Geospiza spp.) on Daphne Island from 1976–1978 (including immigrant

birds) based on bill depth16. Lines indicate the best cubic spline fit (±1 s.e.m.) as per Schluter8. For presentation, we bin survival data in large datasets and

depict average survival. To calculate skewness, we first estimated predicted values for 200 equally spaced points across the range of trait values to

discretize the smoothed fitness surface to avoid giving undue weight to outliers. We then calculated 10,000 estimates of skewness using the original

number of samples with replacement and with probability equal to relative fitness. We calculated 95% confidence intervals around mean skewness and the

probability that skewness was zero or opposite in sign from estimated mean skewness.
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direction of the flatter shoulder of an asymmetric fitness surface
might be most common.

Increasing phenotypic variance in a population also
increases the displacement of equilibrium trait means. A greater
phenotypic variance allows for stronger sampling of the higher
relative fitness in the flatter shoulder (and long tail) and its
integration into population fitness. Comparison of theoretical
predictions and simulation results demonstrates that our
analytical theory accurately explains the observed deviation in
the optimal mean phenotype from the individual fitness optimum
(Fig. 3), even though our approximation ignores the influence of
deviations of the trait distribution from Gaussian on the adaptive
landscape, the influence of cumulants of higher order on selection
responses and random genetic drift in the simulated finite
populations.

Evolution of extraordinary defences. We next apply this theory
to an apparent paradox in evolutionary biology. A defensive trait
generally evolves as a compromise between its efficacy against
enemy attacks and the fitness costs associated with developing
and maintaining the defence23. However, despite costs of defence,
sometimes victims evolve defences that far exceed the level that is
sufficient to defend against an enemy, hereafter termed
‘extraordinary defences.’ As an example, many organisms,
including humans, develop autoimmune disorders, which
effectively defend against enemies but compromise fitness by
attacking healthy tissue24,25. As a consequence, some individuals
in a population might be vulnerable to anaphylactic shock, in
which comparatively harmless allergens provoke potentially fatal
systemic immune reactions. In a predator–prey example, snails
from freshwater springs in northern Mexico develop shells that
are 2–3 times harder than is necessary to withstand the maximum
biting force of the local molluscivorous cichlid fish26. Such
defences have been attributed to environment-dependent fitness
costs of defences26 and historical, but now absent, selection25.
However, we offer a simple explanation that only requires
asymmetric selection and phenotypic variance, both of which are
universal properties of natural systems.

We develop a model in which a victim population can evolve
defences against the enemy population (see Methods and
Supplementary Methods for details). We create an asymmetric
individual fitness surface such that fitness is skewed toward
greater predator defence. We expect this fitness asymmetry to be
quite general, because insufficient defence often will be fatal
whereas excessive defence might only incur more trivial energetic
costs. We assume that victim survival is positively and
exponentially related to defence up to a threshold in
equation (7). Beyond this threshold, the victim becomes
invulnerable (Fig. 4a). For example, shell thickness, body size or
an immune response can provide increasing protection against
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phenotypes. The equilibrium mean phenotype calculated from simulations
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incorporated. Theory that includes the effect of skewness (solid line)

predicts genetic simulation results. Parameters not listed in the inset are

K¼ 5000, d¼0:25 for m¼0.00225 and m¼0.0072, and d¼0:35 for

m¼0.05.
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enemies up to a level at which the victim becomes invulnerable27.
We assume that fecundity declines linearly with increasing
investment in defences because energy allocated to defence would
otherwise be allocated to reproduction28. This decline becomes
most evident in the model when victims have defence levels
exceeding the invulnerability threshold (left side in Fig. 4a) where
defence benefits no longer counter fitness costs. We assume a
predator population with discrete population dynamics where
birth rate is proportional to prey consumed and assuming a fixed
death rate in equation (8).

The mean fitness of the population reaches a maximum when
the population is just invulnerable but does not invest any more
into costly defences (optimal defence¼ 0.5; Fig. 4b; green line).
However, with intraspecific trait variance, we observe a displace-
ment in equilibrium defence values toward the flatter shoulder of
the individual fitness surface as predicted by our analytical theory.
This bias increases with increasing trait variance (Fig. 4b,
compare dark blue versus light blue symbols). The approximate
theoretical predictions match simulation results well when enemy
abundances are large (Fig. 4b, theoretical predictions as lines)
despite ignoring higher-order terms and other processes. Theory
underestimates mean defences at low predator abundances,
because fecundity selection overwhelms mortality selection and
equation (7) no longer accurately represents the two combined
phases of selection. In addition, at very low enemy abundances,
the mode of selection occurs outside the phenotypic range and
theory no longer applies.

Eco-evolutionary feedbacks29 further amplify the difference
between individual optima and the equilibrium trait mean.
Phenotypic variation among victims generates maladapted
individuals with lower defences than the optimal value. These
individuals subsidize enemy reproduction leading to higher
enemy abundance than occurs for a homogeneous population
with the optimal defence. More enemies generate greater
mortality risk for under-defended individuals that, in turn,
results in a more asymmetric fitness surface (Fig. 4b, moving
from left to right). This greater asymmetry then increases the
optimal investment in defences. In the representative dynamic in
Fig. 5 based on simulations of Equations (7) and (8), we display
(a) victim and enemy abundances through time and (b) the
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evolution of prey defences relative to enemy abundances through
time. Victims evolve from an initial defence value of 0.5 (which is
optimal without asymmetrical selection or trait variation) to 0.59
in 5 generations (dashed vertical line), which is the optimal
defence predicted from numerical simulations based on genetic
variance and fixed enemy population size (Fig. 5b). However,
maladapted victims augment the enemy population, maintaining
it well above the initial abundance of ten (Fig. 5a). A stable eco-
evolutionary equilibrium is reached after 120 generations when
the enemy population size stabilizes at 100 and victim defences
evolve to 0.7.

Discussion
Quantitative genetics is the primary tool for predicting the
evolutionary responses of continuous traits to natural selection.
For mathematical convenience, mostly symmetrical fitness
surfaces have been assumed when studying evolution of
quantitative traits under stabilizing selection. Yet, fitness surfaces
often are not symmetrical. For instance, evolutionary biologists
frequently use cubic splines to represent non-Gaussian surfaces8.
On non-Gaussian fitness surfaces, a population’s equilibrium trait
mean need not match the peak of the individual fitness surface.
Previous research has explored the divergence between the
adaptive landscape and individual fitness surfaces that are
bimodal6 and in a ridge and saddle configuration7. Here we
explore the general case of asymmetrical selection, which is
commonly encountered in nature (Fig. 1). Our theory predicts
that evolutionary outcomes can diverge strongly from the
peak of the individual fitness surface when asymmetry is
pronounced and populations vary phenotypically. This theory
incorporates both the direct effects of asymmetric selection on the
optimum mean phenotype and the indirect effects via skew in the
distribution of breeding values. Asymmetric selection and
phenotypic variance are likely to be ubiquitous in nature, and
thus we expect this deviation in evolutionary optima from the
peak of the individual fitness surface to be quite common.
Existing theory will suffice for selection that is relatively
symmetrical. However, when faced with strong asymmetry in
selection, practitioners of quantitative genetics must consider the
skewness—not just the mean and variance—of fitness surfaces as
is commonly practiced.

An asymmetric fitness surface directly shifts the optimum
mean phenotype toward its flatter shoulder. In this part of the
fitness surface, the marginal cost of deviating from the optimum
is small compared with the marginal cost of deviations on the
other side10,13. Greater variance amplifies this evolutionary bias
by ensuring greater sampling of asymmetrical fitness outcomes
(Fig. 2c), a result also shown numerically for Drosophila body
size13. The indirect effect of asymmetric selection occurs because
a skewed genotypic distribution also modifies the selection
response. This biases the mean phenotype toward the steeper
shoulder, thus opposing the direct effect. Genetic simulations
suggest that the direct effect usually dominates, and populations
generally evolve a mean trait shifted toward the flatter shoulder of
the fitness surface. However, opposite effects are theoretically
possible with strong trait skew and high population variance or
with environmental variance that further skews phenotypic
distributions (for example, Yoshimura et al.30).

We also show that considering asymmetrical selection can be
vital to understanding the evolutionary optima of ecologically
important traits. We evaluate how asymmetrical selection affects
the evolutionary dynamics of enemy defences. We assumed two
simple functions for fitness: (1) a linear decline in fecundity due
to costs of higher defence and (2) an exponential increase in
predation risk with lower defence. Together, these fitness
functions create an individual fitness surface that is skewed

toward greater defence (Fig. 4a). Simulations confirm that effects
of skew on the evolution of defence can be substantial. Our
example shows that greater skew and higher population variance
increase mean investment in the trait up to a 22% more than
predicted based on individual fitness alone (Fig. 4b), with higher
biases possible if we assumed higher phenotypic variance or more
strongly skewed selection surfaces. Results highlight the impor-
tance of phenotypic variance in altering both evolutionary and
ecological dynamics31. Moreover, eco-evolutionary dynamics
amplify these effects because maladapted victim populations
promote larger enemy populations, thereby increasing selection
skew and subsequent evolutionary bias (Fig. 5). As less defended
victims are likely to enhance enemy populations, such eco-
evolutionary amplification might be a common way that
extraordinary defences emerge from natural species interactions.

Through both shifts in optima and eco-evolutionary amplifica-
tion, asymmetric selection provides a general explanation for the
apparent over-investment in defences. Asymmetric selection
could provide a general explanation for the evolution of
autoimmune diseases, such as type-I diabetes, rheumatoid
arthritis and multiple sclerosis; these debilitating disorders
affect a subset of individuals within a population as a side effect
of strong average immune function. Similarly, asymmetric
selection might explain excessive levels of costly anti-predator
defences26. Often, the per capita mortality costs of low defence
are likely to exceed the per capita fitness costs of investment in
predator defences. As a result, it might not be necessary to invoke
more complicated scenarios in which excessive defences result
from the residual effect of stronger selection in the past. Although
we highlight how asymmetrical selection alters defence optima
here, such selection will alter the evolution of any quantitative
trait regardless of function (for example, see Mountford12 and
Yoshimura et al.13).

Future empirical work will be needed to test this theory. In
most cases, biologists have not explored asymmetric stabilizing
selection as an explanation simply because as a discipline we have
usually assumed symmetry. We predict that a greater apprecia-
tion of asymmetrical selection and its effects on evolution will
improve the accuracy of evolutionary predictions and explain
additional paradoxes in phenotypic evolution.

Methods
Asymmetric stabilizing selection and the adaptive landscape. We assume
an asymmetric individual fitness surface. Unless the phenotypic variance is
unusually large, it is sufficient to describe the fitness surface near its optimum.
We approximate the two slopes of the fitness surface by polynomials of
degree three. Essentially, we describe the individual fitness surface by its
first three derivatives to the left and right of the optimum. More precisely,
we assume

wðxÞ¼ 1þ a1xþ a2x2 þ a3x3 if x � 0;
1þ b1xþ b2x2 þ b3x3 if xo 0:

�
ð3Þ

If we require that the individual optimum is at x¼ 0 (and w(0)¼ 1), we must
have a1r0 and b1Z0. The first line in equation (3) describes the shape of the right
shoulder, and the second that of the left shoulder. A Gaussian or quadratic function
with optimum at 0 satisfies a1¼ b1¼ a3¼ b3¼ 0 and a2¼ b2¼ � s, where s40
measures the strength of stabilizing selection. More generally, a fitness surface
that is smooth and describes stabilizing selection with optimum at 0 satisfies
a1¼ b1¼ 0 and a2¼ b2o0. Symmetric fitness functions satisfy a1¼ � b1r0,
a2¼ b2r0 and a3¼ � b3.

We calculate the mean fitness given a Gaussian phenotype distribution in
Supplementary Methods, Supplementary equation (S1). If s2 denotes the
phenotypic variance, we find the following condition for the optimum of mean
fitness to be positive, that is, shifted to the right of the optimum of the individual
fitness surface:

a3 þ b3 4 � 1
3s2

a1 þ b1 þ
2
ffiffiffi
2

p
sffiffiffi
p

p ða2 � b2Þ
� �

: ð4Þ

In general, this implies that the optimum of mean fitness is shifted to the flatter
shoulder of the individual fitness surface. If the individual fitness surface has
derivatives of order one and two, hence a1¼ b1¼ 0, a2¼ b2o0, then this condition
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becomes a3þ b340. If a1þ b140 and a2 and b2 do not differ greatly, then the right
shoulder is flatter, and the above condition will be satisfied for the majority of the
parameter range if s2 is small.

We model stabilizing selection by a modified skew-normal distribution:

wðxÞ¼

(
e
c2

2 1þ cxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc2

p
 !

exp � 1
2

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc2

p þc

 !2" #
if x4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc2

p
c

; ð5Þ

where c determines skew. This fitness function has its optimum at x¼ 0, where it
assumes w(0)¼ 1, a long right tail and steep left shoulder (see Fig. 2). The
curvature of w(x) at the optimum, which describes the strength of stabilizing
selection, is � 1. If c¼ 0, then w(x) becomes Gaussian with optimum 0 and
curvature � 1. Assuming a Gaussian phenotypic distribution, the mean fitness �w
and its mode are given in Supplementary Methods, Supplementary equations (S5)
and (S10). Both higher skew and higher phenotypic variance inflate the distance
between the modes of the adaptive landscape and of the individual fitness surface
(Fig. 2c). We also note that in terms of the fitness function considered in
equation (5), we obtain for (3):

a1 ¼ b1 ¼ 0; a2 ¼ b2 ¼ � 1=2; a3 ¼ b3 ¼
c3

3ð1þc2Þ3=2
ð6Þ

Therefore, equation (4) is always satisfied and the mode is shifted to positive
values.

Evolution under asymmetric selection. Under asymmetric selection, mean
phenotypes evolve according to equation (1) in the main text, and equation (2)
provides an approximate condition for equilibrium. From the formula for equili-
brium mean fitness (see Supplementary Methods, Supplementary equation (S5)),
we obtain explicit (but approximate) expressions for the selection differentials L1
and L2 as functions of c, �x and s2 (Supplementary Methods, Supplementary
equations (S6–S9)). Substituting these expressions into equation (1), we obtain the
relationships between �x, s2, C3 and c that must be approximately satisfied at
equilibrium. We determine equilibrium values based on genetic parameters derived
from individual-based simulations.

In individual-based genetic simulations, we assume N haploid individuals with
discrete annual dynamics with a trait determined additively by 20 biallelic loci with
equal effects ±d. Individuals survive with a probability equal to their fitness along
the asymmetric fitness surface in equation 5. After viability selection, surviving
individuals are paired to become parents through random sampling with
replacement until the population reaches carrying capacity K. Offspring have a
genotype sampled randomly from both parents with mutations occurring with rate
m. We explored three mutation rates that produced genetic variances of B0.1, 0.25
and 0.50. We ran 50 simulations for each combination of c and m for 25,000
generations, which ensured that the population reached quasi-equilibrium.
Estimated s2 and C3 from simulations were substituted into equation (2) to
calculate the expected equilibrium mean phenotype, �x. As there is recurrent
mutation between the two alleles at each locus, mutation generally influences the
between-generation change of the mean and reduces skewness. The change in the
mean caused by mutation is M¼ � m�x (see equations (1) and (2)). For the cases
with a high mutation rate, not only does this change the mean but also the skew-
reducing effect of mutation is quite large. This is the reason why in Fig. 3 the
difference between the predictions ignoring and invoking skew is small. For
symmetric mutation models such as the random walk model by Bürger20, this
difference will be larger.

Evolution of extraordinary defences. We similarly developed a stochastic
individual-based simulation for an evolving victim population with discrete logistic
population dynamics, but in response to an asymmetric fitness surface generated
by defences against an enemy population. The individual fitness surface can be
approximated by

w xð Þ¼ expð� P max½0; amax � gx Þmax� 0; 1þ r 1� N
K

� xc

� �� �
ð7Þ

when predation-induced mortality is strong relative to fecundity selection. In the
genetic simulations, individuals first undergo mortality selection. Victim survival
declines exponentially with predator density P times the predator’s maximum
attack rate amax minus the decrease in enemy attack with increasing defence g(x).
After mortality selection, surviving individuals reproduce sexually. In this step,
fecundity declines linearly with a cost to defence investment c. Predator population
dynamics were determined by the total number of victims eaten, e, and fixed death
birth and death rates:

Pt þ 1 ¼Pt þ be� dPt : ð8Þ
The defensive trait was determined additively by 20 biallelic haploid loci. We

randomly mated surviving individuals to produce offspring with clutch size
determined as a Poisson realization of the mean fecundity of the two parents.
Offspring have a genotype sampled randomly from both parents with mutation
rate m, which we varied to alter population variances. We ran 50 simulations for

each parameter evaluated for 10,000 generations, which ensured that the
populations reached quasi-equilibrium. A detailed account of the analytical
theory is provided in the Supplementary Methods (Supplementary equations
(S14–S16)).
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