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Implementation of generalized quantum
measurements for unambiguous discrimination
of multiple non-orthogonal coherent states
F. E. Becerra1, J. Fan1 & A. Migdall1

Generalized quantum measurements implemented to allow for measurement outcomes

termed inconclusive can perform perfect discrimination of non-orthogonal states, a task

which is impossible using only measurements with definitive outcomes. Here we demonstrate

such generalized quantum measurements for unambiguous discrimination of four

non-orthogonal coherent states and obtain their quantum mechanical description, the

positive-operator valued measure. For practical realizations of this positive-operator

valued measure, where noise and realistic imperfections prevent perfect unambiguous

discrimination, we show that our experimental implementation outperforms any ideal

standard-quantum-limited measurement performing the same non-ideal unambiguous state

discrimination task for coherent states with low mean photon numbers.

DOI: 10.1038/ncomms3028

1 Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA. Correspondence
and requests for materials should be addressed to F.E.B. (email: fbecerra@umd.edu).

NATURE COMMUNICATIONS | 4:2028 | DOI: 10.1038/ncomms3028 | www.nature.com/naturecommunications 1

& 2013 Macmillan Publishers Limited. All rights reserved.

mailto:fbecerra@umd.edu
http://www.nature.com/naturecommunications


M
easurement of the quantum properties of a physical
system is fundamental in quantum mechanics and
quantum information science1–4. Quantum mechanics

prohibits the perfect discrimination of non-orthogonal states due
to their intrinsic overlap. This seemingly impossible task can,
however, be accomplished by performing generalized quantum
measurements that allow for inconclusive results as a possibility
for the measurement outcomes. Quantum-state discrimination
among non-orthogonal states, besides being of fundamental
interest, is critical for many realizations of quantum information
processing. In particular, the discrimination of non-orthogonal
coherent states is essential in quantum key distribution
for unconditionally secure communications5-8, and coherent-
state-based quantum repeaters9,10 and quantum computing 11-13.
Moreover, multi-state discrimination can enable coherent-
state-assisted entanglement generation with high fidelity14,
entanglement swapping15 and photon number state preparation
and detection11. In addition, unambiguous multi-state
comparison allows for quantum digital signatures16.

There are two complementary approaches for non-orthogonal
state discrimination. The first of these, minimum error
discrimination (MED), seeks measurements that minimize
the probability of erroneously identifying the state2. The
second approach, unambiguous state discrimination (USD),
introduces inconclusive results to achieve perfect state
discrimination17-19, and aims to maximize the probability of
conclusive results. However, imperfections in realistic
implementations make ideal (error-free) USD impossible.
Thus, real-world USD becomes an intermediate measurement
strategy between MED and ideal USD, which retains the
conclusive results of ideal USD, but contains some errors in
those conclusive results. Although there do exist post-selection-
based conventional measurement techniques for coherent states
characterized by errors and inconclusive results, they cannot
improve upon standard-quantum-limited performance2,20,21.
Thus, the goal becomes to realize a USD measurement with
realistic imperfect devices that does surpass this conventional
measurement limit.

In contrast to significant efforts in MED2,22–28, studies of USD
of non-orthogonal coherent states have been limited21,29–31, and
experiments have been restricted to discrimination of just two
coherent states32. Moreover, the feasibility of implementing a
USD measurement for multiple non-orthogonal coherent states,
and whether implementation in the presence of imperfections can
outperform any ideal standard-quantum-limited measurement,
has been an open question. An analogous effort to demonstrate
the superiority of USD implementations for multiple qubits,
but over optimal projective measurements, was attempted in
ref. 33, but without success34. Recently, the implementation of
generalized measurements for optimal USD of two matter qubits
was demonstrated and shown to outperform the standard ideal
projective measurements35.

We demonstrate the first realization of generalized quantum
measurements for USD of four non-orthogonal coherent states
using coherent displacement and photon counting. We present a
full quantum mechanical description of this USD measurement in
the form of a positive-operator valued measure (POVM), and we
derive the probabilities of conclusive results and the corres-
ponding errors resulting from imperfections of the real experi-
mental implementation. We show that our USD implementation,
even though it uses a suboptimal strategy, which does not
maximize the probability of conclusive results, outperforms the
ideal conventional standard-quantum-limited measurement for
the discrimination of four non-orthogonal coherent states at low
mean photon numbers. In addition, our USD implementation is
scalable to higher numbers of coherent states, and should be

applicable to future implementations of quantum information
processing and quantum measurements.

Results
POVMs for USD of multiple coherent states. USD of non-
orthogonal states is possible with a measurement process that
allows for what are termed inconclusive results. As a result, the
number of outcome possibilities of the USD measurement pro-
cess is one greater than the number of possible states of the
system under test. Generalized quantum measurements for USD
of four non-orthogonal symmetric coherent states,
j aki¼ fj ai; j iai; j � ai; j � iaig, with equal initial prob-
abilities, pk ¼ 1

4, (k¼ 1,..,4), are described by a complete set of
POVMs, �̂m, m¼ 1,y,5 satisfying

P
m �̂m ¼ 1 and �̂m � 0 for

all m (ref. 36). The outcomes of the measurement operators
f�̂1; �̂2; �̂3; �̂4g unambiguously identify one of the possible
non-orthogonal states, and �̂5 � �̂ ? corresponds to an
inconclusive result. The probability of obtaining an inconclusive
result is pinc ¼

P4
k¼ 1 pkhak j �̂ ? j aki, where hak j �̂ ? j aki is the

probability of an inconclusive result given the input state j aki.
There is a known theoretical optimal solution for USD of linearly
independent symmetric non-orthogonal states, which maximizes
the probability of conclusive results, pconc¼ 1� pinc (ref. 36). In
particular, there is a known scheme, which, in the limit of small
amplitudes, approaches optimality for multiple coherent states
based on feed forward and photon counting30. However, finding a
USD strategy which is optimal for any input powers for these
states is an open problem. Here we implement a measurement
scheme for suboptimal USD for four non-orthogonal states based
on displacement operations and photon counting30 (see Fig. 1a).

The unknown state j aki enters a branched set of
beam splitters with four outputs j ak=2i. Each output undergoes
a coherent displacement D̂i ¼ D̂ð�bi=2Þ so that j ak=2i -
D̂i j ak=2i¼ j ðak � biÞ=2i with j ak j ¼ j bi j, and a single-
photon detector (SPD) detects the photons in the displaced state
with two outcomes di¼ {0,a0} representing the absence or
presence of photons, respectively. A photon detection dia0 in
one of the ports unambiguously eliminates one possibility for the
input state j bii 6¼ j aki. Thus, by performing joint detections in
the four ports, the four-element joint-detection event DET¼ {d1,
d2, d3, d4} with one null detection in detector j, dj¼ 0, and non-
zero photon detections in all the other detectors, dia0 (iaj),
unambiguously identifies the input state as j bji.

The POVM describing the USD operations realized in this
scheme is a generalization of the optimal USD of two coherent
states29 and can be expressed as:

�̂USD
i ¼ : R̂i : �

X4
j¼ 1

Ŝi;j þ
X4
j;k¼ 1

T̂i;j;k � : R̂1R̂2R̂3R̂4 : ð1Þ

for i¼ 1,2,3,4, where R̂i ¼ e�
1
2ðâw �b�i Þðâ� biÞ with â and âw being the

creation and annihilation bosonic operators, respectively,
and bi the displacements of the input field. Ŝi;j ¼ ½: R̂iR̂j :�io j þ
½: R̂jR̂i :�jo i and T̂i;j;k ¼ ½: R̂iR̂jR̂k :�io jo k þ ½: R̂kR̂iR̂j :�ko io j þ
½: R̂jR̂kR̂i :�jo ko i; and the symbol :: means normal ordering

where ½�̂a;b;c;:::�ao bo c::: indicates evaluation of operator �̂ under
the constraint (aobocy). These operators, covering all possible
combinations of states, are related to the joint projection
operations of the input state j aki onto different test states j bii
performed by the USD measurement. The measurement operator
describing an inconclusive result measurement is
�̂ ? ¼ 1�

P4
i¼ 1 �̂i.
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In the presence of imperfections of realistic implementations,
the probability of conclusive results is obtained from
pUSDC ¼

P4
i;k¼ 1 pkhak j �̂i j aki and is given by:

pUSDC ¼ 1
4

X4
k¼ 1

Fkð1� e� Zjaj2Þð1� e� Zjaj
2

2 Þ2 þ

1
4

X4
k¼ 1

Gkð1� e� Zjaj
2

2 Þe� Zjaj
2

2 ½2� 3e� Zjaj2 þ e� Zjaj
2

2 �;
ð2Þ

where Gk¼ 1� Fk, and Fk ¼ e� Zjak � bkj2=4. j ak �bk j2 quantifies
the mode mismatch between the input state j aii and displace-
ment field j bii and is defined as j aj �bk j2 �
2 j a j2 f1�V� cos½argðajÞ� argðbkÞ�g, where V is the measured
visibility of the displacement operation, and Z is the system
detection efficiency. The first term in equation (2) is the
contribution from correct identifications,

P4
i¼ 1 pihai j �̂i j aii,

and the second term comes from erroneous identifications,P4
i;k¼ 1 pkhak j �̂i j aki (iak). The probability of error given the

probability of conclusive results is perror ¼
P4

j;k¼ 1 pkhaj j �̂k

j aji=pUSDC (jak). For this realization, the probability of error is

pUSDe ¼
P4

k¼ 1 Gkð1� e� Zjaj
2

2 Þe� Zjaj
2

2 ½2� 3e� Zjaj2 þ e� Zjaj
2

2 �
4�pUSDC

:

ð3Þ

Figure 2 shows the probability of conclusive results, and the
probability of errors, as a function of mean photon number hni of
the input state for the USD scheme30 of Fig. 1a, with 100%
detection efficiency and visibilities ranging from 0.9 to 1. The
maximum probability of conclusive results for optimum USD is
included in Fig. 2a as a reference from ref. 36. For small mean
photon numbers, the probability of conclusive results increases
slightly as the visibility decreases from V ¼ 1 owing to an increase
of the probability of photon detections caused by imperfections in
the system. At the same time, the probability of errors increases
rapidly as V degrades in this few-photon-number region. The
decrease in the probability of conclusive results at high mean
photon numbers, as V ¼ 1 degrades, results from the possibility of
non-zero photon detections due to the leakage, even when no
photon should be seen.
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Figure 1 | Non-orthogonal unambiguous multi-state discrimination. (a) Scheme for USD of four non-orthogonal coherent states. (b) Ideal

standard-quantum-limited measurement with an inconclusive region, enclosed by linear thresholds defined by x0 and y0 (black dashed lines) where

(x, y)¼ (Re{a}, Im{a}), can perform an intermediate discrimination measurement analogous to a non-ideal USD measurement. Alternatively, the optimal

post-selection thresholds e, f and g (solid blue lines) define the optimal regions resulting in the lowest probability of error for three examples of different

conclusive result probabilities 0.34 (e), 0.65 (f) and 0.93 (g) for a fixed mean photon number of 1. This scheme decreases the probability of error by

increasing the region for inconclusive results defined either by the linear post-selection thresholds x0 and y0, or by the optimal post-selection thresholds,

which result in the lowest probability of error. (c) Experimental implementation of POVM for USD of four non-orthogonal coherent states. The inset

shows the four non-orthogonal symmetric coherent states under measurement j aii with phases f¼ {0, p/2, p, 3p/2}. AOM, acousto-optic modulator for

pulse preparation; WPs, waveplates for state preparation; SMF, single-mode fibre; j aii state under measurement with vertical (V) polarization; j LOi,
auxiliary displacement field with horizontal (H) polarization; BS, 50/50 non-polarizing beam splitter; PS, phase shifter; Pol, polarizer; SPD, single-photon

detector; M, mirror.
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An intermediate measurement between MED and USD
containing errors and conclusive events, analogous to the non-
ideal USD process in realistic implementations of this POVM for
USD, can be performed by an ideal standard-quantum-limited
measurement corresponding to the heterodyne measurement
with conclusive postselection2,21. The measurement operators
describing conclusive results for the ideal heterodyne
measurement are �̂Het

i ¼ 1
p

R
Gi
j aiha j d2a, where !i defines the

post-selection region in phase space. Figure 1b shows examples of
the ideal heterodyne measurement with different post-selection
regions !i delimited by either the linear post-selection thresholds
x0 and y0 (dashed lines), or by the optimal post-selection
thresholds indicated with blue lines, which result in the lowest
error for a given probability of conclusive results. This
measurement can decrease the probability of error by
increasing the region for inconclusive results with different
post-selection thresholds. (The states under measurement shown
in Fig. 1b have been rotated by p/4 compared with the states in
our implementation for clarity, and to simplify the calculations
without loss of generality.) The probability of conclusive results
using linear post-selection thresholds x0 and y0 for the input state
j ai as a function of threshold x0¼ y0 is

pHet
C ¼ 1

4
½erfcðx0 �

j a jffiffiffi
2

p Þþ erfcðx0 þ
j a jffiffiffi
2

p Þ�2; ð4Þ

and the probability of error for these post-selected results is

pHet
e ¼

erfcðx0 þ jajffiffi
2

p Þ½erfcðx0 þ jajffiffi
2

p Þþ 2erfcðx0 � jajffiffi
2

p Þ�
4�pHet

C
: ð5Þ

The optimal post-selection regions for this intermediate
measurement regime with errors and inconclusive results are
found using numerical methods analogous to the work in ref. 37.
These optimal post-selection regions result in the same
probability of conclusive results as the realistic implementation
of USD under the constraint that each region contains events
with the lowest probability of error for a given input state with a
fixed mean photon number (see Methods). In this way, these
optimal post-selection regions ensure the lowest probability of
errors for a given probability of conclusive results. Therefore,
it is possible to compare the performance of any realistic
implementation of the POVM for USD, performing a non-ideal
USD process to the ideal standard-quantum-limited
measurement by investigating the error probabilities of both
schemes for a fixed probability of conclusive results20.

Experimental realization of multi-state USD. We implement
the POVM for USD of four non-orthogonal coherent states,
investigate the discrimination process in realistic experimental
conditions, and compare its performance with ideal standard-
quantum-limited measurements implementing an intermediate
discrimination process2,20,21. Figure 1c shows our experimental
implementation of generalized quantum measurements for USD
of four non-orthogonal symmetric coherent states j aki¼ fj ai;
j iai; j � ai; j � iaig with equal input probabilities. An acousto-
optic modulator and a set of waveplates prepare the state under
measurement j aki and the auxiliary displacement field j LOi in
the two orthogonal polarization modes of 100 ns light pulses27 at
a rate of 40 kHz. The mean photon number of the input state j aki
varies from 0.1 to 3, and the displacement field j LOi is 100 times
stronger than the input state. These fields enter a set of three
branched beam splitters, and the four outputs are directed to four
elimination stages. Each stage is set to eliminate a given
possibility for the phase f¼ {0, p/2, p, 3p/2} of the input state
j aki by displacement of this state and photon counting. The
displacement operation is performed with a phase shifter that
controls the relative phases of the input and auxiliary fields, and a
projection onto a given polarization axis with a polarizer. This
axis is chosen to transmit 99% of the input field j aki and 1% of
the strong auxiliary field j LOi so that after this projection both
fields have equal strengths27. When the relative phase between
these fields is p, this projection displaces the input field to the
vacuum. An SPD in each elimination stage detects the presence or
absence of photons in the displaced state, allowing for the
elimination of a possible phase of the incoming state. The
measured efficiencies of the SPDs are 84.0(5), 84.0(5), 83.0(5) and
82.0(5)%, and with 15 dark counts per second, which has a
negligible effect on the USD measurement (all uncertainties
quoted in this paper represent 1 s.d., combined statistical and
systematic uncertainties). The total detection efficiency of the
system is 75(1)%, which corresponds to the average of the
efficiencies of the four elimination stages, which are 80.0(5),
78.0(5), 70.8(5) and 70.5(5)%, and account for the optical losses
in each stage and the detection efficiency of the SPDs. The losses
in each stage account for the splitting losses of the BSs and
mirrors, and the optical components inside the stages that
perform the displacement operations and couple light into the
SPDs. The measured average visibility is V ¼ 99:1ð1Þ% limited by
amplitude and phase mismatch and all other imperfections.

The joint detection events DET¼ {d1, d2, d3, d4} of the SPDs in
the elimination stages with only one null result correspond to
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Figure 2 | Theoretical probability of conclusive results and errors.

(a) Probability of conclusive results as a function of mean photon number

hni for the USD scheme with different values of mode-mismatch visibility

from V ¼ 1 (solid red line) to V ¼0:9 in steps of 0.01 (dotted lines) with

100% detection efficiency. For reference, the solid black line shows the

theoretical maximum probability of conclusive results for the optimal

USD36 (b) Probability of errors for the USD scheme with the same

mode-mismatch visibilities as panel a.
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conclusive measurements of the POVM in equation (1). The
probability of conclusive results correspond to the ratio of the
number of observed conclusive events to the total number of
experimental trials, which ideally correspond to a perfect USD.
Any other case of joint photon detection events correspond to
inconclusive results. The probability of error caused by reduced
visibility corresponds to the ratio of the number of errors to the
number of conclusive results.

Figure 3a shows the measured probability of conclusive results
as a function of mean photon number together with the
theoretical predictions from equation (2), incorporating the
experimental detection efficiency and visibility. The experimental
data points result from four independent sets, each consisting of
106 independent experiments, and the error bars represent 1�s
statistical uncertainty. Figure 3b shows the errors by mode
mismatch for the experimentally conclusive results together with
the theoretical predictions from equation (3) for the measured
experimental parameters. We observe an excellent agreement
between the experimental observations and the theoretical
predictions for the measured detection efficiency and visibility.

Discussion
We evaluate the advantage of our realization of the POVM for
USD of four non-orthogonal states over the ideal standard-
quantum-limited measurement. We observe that our POVM
implementation for USD (shown in Fig. 1c) achieves lower error
probabilities than the ideal standard-quantum-limited measure-
ment for small mean photon numbers at a given probability of
conclusive results. Figure 3a shows the probability of conclusive
results for the ideal heterodyne measurement, where we have
adjusted the linear post-selection threshold x0 in equation (4), or
alternatively applied optimal post-selection thresholds, to obtain
the same conclusive result probabilities as in the experimental
USD implementation. The insets show examples of the linear and
optimal thresholds for mean photon numbers of 0.1, 0.5 and 3.
We observe that for our experimental conclusive results and
mean photon numbers, the heterodyne measurements with linear
thresholds and optimal thresholds result in similar post-selection
regions. The corresponding error probabilities of the ideal
heterodyne measurement with linear thresholds, for these values
of the probabilities of conclusive results, are shown in Fig. 3b
(red open circles) together with the theoretical predictions from
equation (5) (dashed black line), and for the heterodyne
measurement with optimal postselection (solid blue line). Note
that this corresponds to a perfect ideal heterodyne measurement
with perfect detection efficiency and that, for the experimental
parameters, optimal postselection shows only slightly lower errors
than heterodyne with linear post-selection thresholds. We
observe that our USD implementation performs with much
lower errors, up to nine times lower, than is achievable with ideal
standard-quantum-limited measurements for mean photon
numbers up to 1, without any adjustment for system detection
efficiency. These results highlight the real advantage of our USD
implementation over ideal conventional technologies performing
the same non-ideal USD process.

In conclusion, the realization of generalized quantum
measurements is essential for many quantum information and
quantum metrology applications. We have demonstrated the first
experimental realization of a POVM for USD of multiple non-
orthogonal coherent states. Given the unavoidable noise and
imperfections in any realistic implementation of these generalized
measurements, we showed that our USD implementation
outperforms any ideal standard-quantum-limited measurement
for small mean photon numbers. Furthermore, because of its
simplicity, the experimental scheme is scalable to higher numbers

of coherent states. This implementation represents an important
advance in state discrimination and quantum measurements, and
can be applied to many quantum information tasks based on
coherent states with small mean photon numbers.

Methods
Optimal post-selection regions. For a set of input states fj akig with prior
probabilities {pi}, the heterodyne measurement with an optimal choice of
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post-selection region gives a probability of conclusive results

pHet
C; OptðbÞ¼

Z

Rbðx;yÞ

pHet
C ðx; yÞdxdy; ð6Þ

where pHet
C ðx; yÞ¼

P4
j;k¼ 1 pkhak j �̂Het

j ðaÞ j aki, and �̂Het
j ðaÞ¼ 1

p j aij ha j is
the measurement operator density in quadrant j in the phase space with
(x, y)¼ (Re{a}, {Im{a}). Here Rb(x, y) is the optimal post-selection region
consisting of points (x,y) satisfying pHet

e Regionðx; yÞ � b, where

pHet
e Regionðx; yÞ¼

P4
j;k¼ 1;j 6¼ k pkhak j �̂Het

j ðaÞ j akiP4
j;k¼ 1 pkhak j �̂Het

j ðaÞ j aki
ð7Þ

is the conditional error probability for point (x, y) and b is the maximum value of
conditional error probability for points in Rb. Thus, Rb contains only points in
phase space with the probability of conditional error lower than or equal to b, and
minimizes the conditional error probability for a certain probability of conclusive
results given by equation (6). We find the optimal postselection region resulting in
the same probability of conclusive results as our USD implementation by
numerically solving the equation

pUSDC � pHet
C; OptðbÞ¼ 0: ð8Þ

In this way, Rb(x, y) defines a post-selection region with the minimum
probability of error for a given probability of conclusive results pHet

C;OptðbÞ equal to
our USD implementation. This is analogous to the optimization process in ref. 37
to find the post-selection area in phase space for maximizing the mutual
information38.
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32. Bartušková, L., Cernoch, A., Soubusta, J. & Dušek, M. Programmable
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