
ARTICLE

Received 22 Jan 2013 | Accepted 17 May 2013 | Published 17 Jun 2013

Dynamical spin–orbital correlation in the
frustrated magnet Ba3CuSb2O9
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At low temperatures, atomic magnetic moments usually exhibit some order, for example

ferromagnetic order. An exception is frustrated magnets, in which the symmetry impedes the

minimization of energy by pairwise magnetic interactions. In such frustrated magnets, new

quantum phases, such as spin liquids, are expected. Theoretically, a quantum liquid based on

the orbital degree of freedom has also been considered possible when spin and orbital

degrees of freedom are entangled. However, to date, experimental observation of such a

dynamic spin–orbital state has been a challenge. Here we report an X-ray scattering study of a

dynamic spin–orbital state in the frustrated magnet Ba3CuSb2O9. Orbital dynamical motion

and increasing short-range orbital correlation with cooling are observed. The most significant

feature is that the temperature variation of the orbital correlation is clearly affected by the

magnetic interaction. This finding strongly supports a new quantum state in which spins and

orbitals are entangled.
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F
rustrated magnets have been widely studied, and various
novel quantum phases have been predicted1–3. In a similar
fashion, orbital degrees of freedom are often frustrated

because of the strong anisotropy of the orbital coupling4–7. The
orbital degree of freedom is relevant when electron orbitals with the
same energy are occupied, and is often seen in transition metal
oxides. For example, a Cu2þ ion has nine 3d electrons, and there is
a degree of freedom in which one of the 3d orbitals is left
unoccupied. The coupling between the two frustrated degrees of
freedom may lead to exotic states of matter. Motivated by such
expectations, spin–orbital quantum liquid states have been
extensively discussed for materials such as the triangular lattice
magnet LiNiO2 (refs 8–11) and the spinel FeSc2S4 (ref. 12). However,
in these compounds, spin and/or orbitals are found frozen at low
temperatures13–15. The spin and orbital are usually decoupled
because the orbital interaction is typically one order of magnitude
stronger than the magnetic. If frustrated spins and degenerate
orbitals have similar energy scales, the interaction between them
may lead to a new quantum phase. A recent report16 on a spin–
orbital short-range order in the honeycomb-based magnet
Ba3CuSb2O9 provides a chance to study such a novel quantum state.

The crystal structure of Ba3CuSb2O9 is shown in Fig. 1. The Cu
and Sb are disordered in the yellow octahedra, and they form a
short-range (B1nm) honeycomb-based lattice16. Magnetic
susceptibility shows that the magnetic interaction, J, is around
50K. While some spins form spin singlets at around 50K, the
system exhibits gapless spin-liquid behaviour without forming any
symmetry-breaking state down to 0.02K (ref. 16). Therefore, the
magnetism in this compound is highly frustrated. The orbital
interaction energy is expected to be small because of the indirect
connection of CuO6 octahedra and the Cu-Sb dumbbell structure16.
As a result, a long-range ferro-orbital ordering, which induces the
symmetry change from hexagonal to orthorhombic, has been
reported in slightly off-stoichiometric Ba3Cu1� dSb2þ dO9 at
temperatures as low as 200K (ref. 16). This temperature sets the
characteristic scale for the orbital energy in this compound, and is
not far from the magnetic energy scale, zJB180K, where z is the
coordination number16. Therefore, we expect a noticeable degree of
interaction between the orbital and spin systems, resulting in a new
quantum phase that involves both spins and orbitals.

In this paper, we experimentally investigate the spatial and
temporal correlation of the orbital degree of freedom in
hexagonal Ba3CuSb2O9 using the long-range strain field caused
by the Jahn-Teller (JT) distortion as an indicator of orbital
occupancy. In the hexagonal phase, the average structure of CuO6

octahedra has three-fold symmetry. However, the local structure
violates this symmetry, as extended X-ray absorption fine

structure (EXAFS) measurements have found temperature-
independent JT distortion of the octahedra16. Every single
CuO6 octahedron with a static JT distortion makes a strain
field as shown in Fig. 1b, which can be treated as a strain field
around a point defect. Such a strain field gives rise to diffuse,
Huang, scattering around the Bragg peaks with a significant
anisotropy that reflects the symmetry of the strain field17–19. Here
we report the observation of dynamical spin–orbital correlation in
this compound through analysis of the Huang scattering. We
found a clear saturation of the orbital correlation at the formation
temperature of spin-singlet dimers, which strongly suggests
entanglement between the spin and orbital degrees of freedom.
Both the dynamic orbital correlation and temperature
dependence of the local orbital arrangement indicate formation
of a spin–orbital resonant state16,20.

Results
Diffuse scattering from dynamical distortion. Figure 2a shows
the observed intensity distribution around the 220 Bragg reflec-
tion at 290K. This reflection remains un-split down to 4K,
demonstrating the hexagonal symmetry of this crystal. We clearly
see anisotropic diffuse intensity with lobes along the (horizontal)
direction. The overall intensity distribution coincides with what
is expected for Huang scattering caused by the JT distortion
(Fig. 2c), and differs from the intensity distribution caused by the
breathing mode distortion due to the difference in ionic sizes of
Cu2þ and Sb5þ (Fig. 2d). This shows that the JT-distorted CuO6

octahedra, or the anisotropic Cu 3d orbitals, create a strong lattice
strain field characterized by the mode shown in Fig. 1b. The
intensity of the Huang scattering is so strong that the thermal
diffuse scattering, which is induced by phonons and has less
anisotropy21, is overwhelmed.

To clarify whether the orbital fluctuation is dynamic or static,
we performed an inelastic X-ray scattering measurement at room
temperature in the quasielastic scattering region22. Figure 2e
presents the spectrum measured at (4.2 3.8 0), which is on the
lobe of the Huang scattering around the 440 reflection, together
with the instrumental resolution profile. The signals at ±5meV
are caused by the acoustic phonons, and the central quasielastic
component is the Huang scattering. While random chemical
disorder produces a monotonic elastic background, such a signal
is at least one order of magnitude weaker than the quasielastic
signal observed in this figure. A 3-peak fitting (pseudo-Voigt
function for the central peak and Lorentzians for acoustic phonon
peaks) performed on the spectrum yields 1.67(5)meV for the full
width at half maximum of the quasielastic component, while the
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Figure 1 | Structure of Ba3CuSb2O9. (a) Crystal structure of Ba3CuSb2O9. (b) Strain field induced by a JT-distorted CuO6 octahedron within the c-plane

boxed in a. (c) Ferro-orbital cluster and (d) honeycomb orbital order cluster. Blue arrows show the direction of the octahedron distortion, and orange

ellipses denote possible singlet pairs in a larger cluster.
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instrumental resolution is 1.36(5)meV. The intrinsic peak width
of the diffuse intensity is 0.35(10)meV, which corresponds to a
2-ps lifetime for the orbital motion, and is, therefore, slower
than the typical oxygen vibration frequency of a JT-distorted
octahedron. This may be the result of spin–orbital coupling, as we
will discuss.

Temperature variation of orbital correlation. The diffuse
intensity shows noticeable temperature variation. Figure 2b
shows the diffuse intensity measured at 4K. It is stronger
than that at 290K for every region measured. This result
means that the magnitude of the strain field increases with
cooling, whereas the degree of JT distortion in each octahedron is
temperature-independent16.

The diffuse scattering intensity reflects the Fourier transform of
the strain field. Assuming that the whole strain field is
represented by the sum of the lattice distortion due to each
orbital in the crystal, the diffuse intensity at the scattering vector
Q is written as

I diff ðQÞ¼N
X3
a;b¼ 1

X
m

hrað0ÞrbðrmÞi expði Q � rmÞ
" #

�Q � ta�ðqÞ Q � tbðqÞ
ð1Þ

where ra(rm) denotes the occupancy of orbital a of the m-th site
at position rm, ta(q) denotes the Fourier transform of the strain
induced by the orbital a at the origin with q the deviation of Q
from the reciprocal point nearby, and N denotes the number of
orbitals in the sample. The sum over m is taken over the whole
crystal, and provides the Fourier transform of the pair correlation
function of the orbitals /ra(0)rb(r)S. The asterisk denotes the
complex conjugate. A static isolated point defect at the origin
creates a strain field proportional to |r| � 2 for large values of |r|
(ref. 17). As a result, the radial dependence of |t(q)| and
the amplitude from a single orbital, F(Q)¼ Q ? ta(q), are
proportional to q� 1 for small values of q¼ |q| while their angular
dependence is governed by the symmetry of the orbital, as well as
the elastic constants. For a random orbital distribution, the real
space pair correlation function /ra(0)rb(r)S is dr, 0da,b, which
means that the Q-space orbital pair correlation function is
constant. This makes the intensity proportional to |F(Q)|2, as
shown in Fig. 2c.

As the radial dependence of |F(Q)|2 is proportional to 1/q2, the
pair correlation function along a line through the G point is found
by plotting the intensity multiplied by q2. Such a plot eliminates
not only the uncorrelated part but also the thermal diffuse
scattering, because it also has a 1/q2 dependence in the small q
region. In Fig. 3a,b, we plot the experimentally observed intensity
multiplied by q2 for 290 and 4K, together with that calculated for
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Figure 2 | Diffuse scattering around hh0 Bragg reflection. Intensity distribution around the 220 Bragg reflection measured at (a) 290K and (b) 4K.

Calculated Huang diffuse intensity induced (c) by a JTmode distortion and (d) by a breathing mode distortion. Elastic constants for the calculation were

obtained from inelastic X-ray scattering results (see Methods). All the maps present the intensity in a log scale. (e) Inelastic X-ray scattering spectrum of

the diffuse intensity measured (4.2 3.8 0) at room temperature. Turquoise colouring highlights the quasielastic scattering component. a.u., arbitrary unit.

The error bars are defined as the square root of the counted photon number, that is, the statistical error of the photon counting.
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non-correlated orbitals (c). For a random orbital distribution, the
contour plot shows no radial dependence, and only the angular
distribution remains as shown in Fig. 3c. By contrast, both panels
Fig. 3a,b show a peak centred at q¼ 0, corresponding to a finite
orbital correlation. Figure 3d shows the profiles along the dashed
lines in Fig. 3a,b. It is clear that the correlation grows with
decreasing temperature, and the correlation length, that is, the
inverse peak width, increases up to 19Å with cooling.
Theoretically, finite orbital coupling is expected20 through the
antiferromagnetic coupling J. In this case, the typical energy scale
of the magnetism-originated orbital motion is zJB180K (ref. 16).
As shown in Fig. 3e, the orbital correlation starts growing at
B400K. The discrepancy between 180 and 400K is attributable
to the fluctuation of z, as z can vary between 0 and 9 from site to
site. The order grows as the temperature decreases down to 50K.
The top panel shows the magnetic susceptibility obtained by both
the NMR measurement and dc-susceptibility23, which shows the
singlet formation for some of the spins around 50K. The orbital
correlation, whose characteristic energy scale is 200K, is clearly
affected by the magnetism with JB50K.

Based on this observation, we expect that the dynamical
movement of the orbital observed at room temperature persists
even at low temperature, and a quantum state that involves both
spin and orbital occurs below 50K in this compound. To test this

idea, we used the diffuse intensity distribution to examine the
structure of the orbital short-range order.

The peak at the G-point in the I . q2 map is caused by the ferro-
orbital correlation shown in Fig. 1c, the same mode as the static
JT distortion in the off-stoichiometric sample. In addition, excess
intensity that emerged in cooling was observed in Fig. 2b around
(D,d)¼ (2±0.05,±0.05). The ferro-orbital correlation cannot
reproduce such anisotropy in diffuse intensity, but the honey-
comb orbital correlation in Fig. 1d and its inversion variant,
which were proposed in Nakatsuji et al.16 and Nasu et al.20,
reproduce the feature as shown in Fig. 4a,b. The growth of the
anisotropy in the intensity distribution, as well as the intensity
around the G-point indicates increasing competition between the
antiferro- and ferro-orbital orders with decreasing temperature.

Discussion
Our results show that the orbitals fluctuate with correlation down
to much lower temperature than the orbital energy scale.
Figure 1c,d show the experimentally observed orbital structures,
in which two adjacent orbitals align ferroically to form a spin-
singlet pair. This arrangement supports recent theoretical work
on this compound20,24 that predicts an entanglement between
spins and orbitals. From a calculation for a small cluster20, the
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theory derives the resonant state of the orbital arrangement shown
in Fig. 1d and its inversion variant with a typical time scale of 1–10ps.
All of these agree with our measurements. The experimentally
observed ferro-orbital correlation may be caused by the large system
size of the real crystal, which is not taken into account in the theory.
When the entangled state is established, the growth of the orbital
correlation is expected to saturate, just as we observe (Fig. 3e).
Another interpretation of the saturation would be orbital freezing or
an orbital glass transition. However, there is no corresponding
signal in the specific heat25,16 or NMR (ref. 23) around 50K.

In summary, we performed a series of X-ray scattering
experiments on the frustrated system Ba3CuSb2O9, and found
competing ferro- and antiferro-orbital fluctuations. The two
fluctuations develop with cooling, and the ferro-orbital correla-
tion saturates at the spin-singlet formation temperature. This
saturation implies the formation of a spin–orbital entangled state
in the hexagonal Ba3CuSb2O9. We note that the method used
here to study the orbital correlation is based on the observation of
the strain field induced by the JT effect, thus is applicable to other
orbitally fluctuating JT systems. In particular, eg electron systems
of octahedral coordinated compounds, such as Mn3þ and Cu2þ

oxides, would provide strong signal intensity because of their
large orbital-lattice coupling.

Methods
Sample. Single crystals of Ba3CuSb2O9 were grown by the flux method. The
sample studied in this study keeps hexagonal symmetry down to 4 K.

Diffuse X-ray scattering. The diffuse X-ray scattering measurements on the
obtained crystal with dimensions of 0.4� 0.3� 0.05mm were performed with
12 keV X-rays using four-circle diffractometers at BL-3A and BL-4C of the Photon
Factory, KEK, Japan. The temperature dependence measurements were performed
with a closed cycle refrigerator in a warming process.

Inelastic X-ray scattering. The inelastic X-ray scattering measurements with
21.747 keV X-rays were conducted at BL35XU of SPring-8 in Japan26. The energy
resolution was determined using scattering from polymethyl methacrylate. Pseudo-
Voigt fitting gave the full width at half maximum of 1.36(5)meV as shown in
Fig. 2e.

Calculation of diffuse scattering. The calculation of the diffuse intensity was
done with elastic constants c11¼ 320GPa and c12¼ 209GPa, which were obtained
from the inelastic X-ray scattering measurements. Equal amounts of three orbital
domains that are connected by 120� rotation about the c-axis were assumed.
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