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Self-sustained oscillations of a torsional SQUID
resonator induced by Lorentz-force back-action
S. Etaki1,2, F. Konschelle1, Ya. M. Blanter1, H. Yamaguchi2 & H.S.J. van der Zant1

For the study of nanomechanical resonators, ultra-sensitive measurement techniques are

crucial. However, if the measurement sensitivity approaches quantum-mechanical limits, the

back-action of the detector on the resonator cannot be neglected. If the back-action is strong

enough, the corresponding instability can create self-sustained oscillators in the resonator.

Here we demonstrate that a torsional mechanical resonator, which contains a direct current

SQUID displacement detector, leads to this effect. We find that the Lorentz-force back-action

can be so large that, in combination with complex nonlinear Josephson dynamics, it generates

intrinsic self-sustained oscillations. The flux quantization limit of the maximum oscillation

amplitude is exploited to calibrate the displacement resolution, which is shown to be below

the standard quantum limit. The suspended torsional SQUID provides an interesting platform

to study on-chip laser-like physics in an electromechanical system that can be controlled by

both a flux and current bias.
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S
elf-sustained oscillations (SSOs) are distinct from the forced
motion of a resonator because the oscillation period does
not depend on the frequency of the driving force.

Resonators in the SSO regime typically produce signals with a
spectral line width, which is narrower than the intrinsic line
width of the resonator. The reduced line width enhances the
sensitivity of resonance-based force-gradient sensors1. On the
other hand, these oscillations are not desirable in experiments
that require observation of very small displacements, such as
those induced by gravitational waves2 and quantum-mechanical
zero-point fluctuations3–5. Therefore, understanding the origin
and behaviour of the SSO is essential.

Self-sustained mechanical oscillations are induced by strong
feedback between mechanical motion and the detector6–8. This
can be engineered externally, if the amplifier is added as an
external element in the circuit9,10. An example of such an
oscillator is an electronic amplifier, which applies a
magnetomotive feedback force to a mechanical resonator9. In
contrast, the feedback can also be due to intrinsic detector–
resonator interaction11,12. For example, an optomechanical
oscillator can be sustained by radiation pressure back-action11.
In electromechanical systems, mesoscopic electronics are an
important class of detectors. Devices such as the Atomic Point
Contact13 and the Single Electron Transistor14,15 greatly enhance
both the displacement resolution and the back-action. Despite
considerable theoretical interest16,17, direct observation of
sufficiently strong back-action and intrinsic SSO has not been
reported in a mesoscopic electromechanical system.

The displacement detector in this letter consists of a
mechanical resonator, which contains a direct current (dc)
Superconducting QUantum Interference Device (SQUID) loop.
By virtue of its high flux-to-voltage responsivity, the SQUID
enables accurate measurement of the vibrations of the resonator.
In contrast to previous work where only part of the loop was
suspended18, here we suspend the entire SQUID, forming a
torsional resonator. We have previously studied the dynamic
back-action that the SQUID exerts on an embedded resonator
when the resonator displacement causes only small flux
variations19. Here we show that the torsional resonator is more
strongly coupled to the SQUID.

Specifically, we find that the behaviour on the upward and the
downward flank of the voltage-flux curve is strikingly different.
Although the upward flank shows the usual driven motion, the
data for the downward flank display SSOs, as substantiated by the
large amplitude, sharp profile, and, most importantly, the ring-
shaped distribution of the waveform amplitude around zero. The
mechanical vibrations cause large flux oscillations, on the order of
a flux quantum, ^0¼ h/2e¼ 2 fWb.

Results
Voltage noise spectra. The torsional dc SQUID (Fig. 1a) is fab-
ricated from an InAs-AlGaSb heterostructure, which is epitaxially
grown on a GaAs [111a] substrate (see Methods). Measurements
are performed at 20mK in vacuum. To detect the out-of-plane
motion of the suspended SQUID loop, a parallel magnetic field is
applied (Fig. 1a,d). The field transduces the change in loop area
into a change in magnetic flux. The SQUID transport char-
acteristics are shown in Fig. 1c (voltage-current) and its inset
(voltage-flux). For the measurements below, the SQUID is
operated in a feedback loop that is set to the blue dots in Fig. 1c.
Note that the SQUID can be biased to either the upward or the
downward flank of the voltage-flux curve (see Methods).

The resonator displacement is detected by measuring the
SQUID output voltage. The eigenmodes of the torsional SQUID
are found by driving a piezo actuator with a sinusoidal voltage

and measuring the SQUID voltage at the same frequency. The
lowest mechanical resonance modes are found at 109 and
129 kHz. The quality factor is extracted from a fit to the frequency
response, yielding a quality factor of around 7,000 for both
modes. Finite-element simulations show the nature of the
eigenmodes to be a combination of flexural and torsional motion
(Fig. 1d). The lowest mode exhibits in-phase motion of the two
arms, but is still detectable due to some arm asymmetry. The
piezo drive is used only to locate the eigenmodes and is turned off
for the measurements below.

Voltage noise spectra of the two lowest modes are shown in
Fig. 2a,b. The spectra are measured on the upward flank (blue
data) and the downward flank (red data) of the voltage-flux curve.
Compared with the spectra on the upward flank, the spectra on
the downward flank are much sharper, and the total power (the
area under the resonance peaks) increases strongly, indicating
oscillations with high amplitude. Figure 2c,d shows the power and
the effective quality factor as a function of the bias current,
respectively. The effective quality factor Q is defined as the full-
width at half-maximum of the peaks divided by the peak
frequency9. The high amplitudes for the 109-kHz mode occur at
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Figure 1 | Device characteristics. (a) Colourized scanning electron

microscope image of the suspended 95�40mm2 SQUID (red) at an angle

of 80 degrees to the substrate (blue). The Josephson junctions are located

in the loop. (b) Schematic overview of the SQUID geometry and

parameters. The resonator is represented by the deformed section of the

loop marked in red. In reality, the displacement is out-of-plane and the

magnetic field in-plane; in the schematics, motion for convenience is

represented as in-plane. B, Ib, and ^a are the applied magnetic field, bias

current and magnetic flux, respectively. The two junctions have phase d1,2 of
the superconducting order parameter, u is the deflection of the resonator

coordinate from its equilibrium position, J is the circulating current around

the loop and FL is the Lorentz force on the resonator. The voltage across the

loop is measured using a low-frequency (LF, o1 kHz) and a high-frequency

amplifier (HF, 41 kHz). The arrows point in the positive direction of the

respective variables. (c) Measured SQUID voltage versus bias current. For

each bias current in the main plot, a voltage-flux trace is measured over at

least one flux quantum (inset). The red lines in the main figure show the

minimum and maximum voltages (green dots) obtained from each trace.

The blue dots mark the bias at which the resonator measurements of Fig. 2

are taken. (d) Finite-element simulation of the two lowest mechanical

resonance modes for a geometrically symmetrical SQUID. Red denotes high

displacement amplitude, whereas blue denotes a small displacement.
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positive bias, near the maximum critical current (Fig. 1c), whereas
the high amplitudes for the 129-kHz mode occur at negative bias
current. Thus, the modes do not oscillate with high amplitude
simultaneously, and apparently the large motion of one mode
disrupts the motion of the other. Similar competition was also
observed between cantilever modes in optomechanical cavities6

and between cavity modes in lasers20.

Time record. Figure 3a shows the measured and processed time
record of the SQUID voltage due to the 129-kHz mode after
switching the SQUID from the upward flank to the downward
flank (see Methods). The ring-up timescale is longer than the
ring-down because the ring-up occurs with a high quality factor
(Fig. 2d), whereas the ring-down is faster because of the lower
quality factor. The individual oscillations in the saturated range of
Fig. 3a are shown in Fig. 3c. For comparison, the much smaller
waveform at the upward flank is also shown. Note that on this
timescale, both waveforms have a constant amplitude and phase.
This is expected even for random thermal motion because the
intrinsic quality factor of the 129-kHz mode (7,000) is such that
the amplitude and phase are randomized on a timescale much
larger than the one used in Fig. 3c.

Waveforms. To study the amplitude and phase drift, the wave-
form behaviour on a longer timescale is measured and shown in a

phase plot. In such a plot, the in-phase and quadrature compo-
nents of the waveform are extracted (see Methods), so that the
amplitude and phase of the waveform can be observed over many
oscillation periods. Figure 4a shows the phase plot of the low-
amplitude waveform of Fig. 3c over 2,000 s. A noiseless oscillator
has a phase plot, which consists of a single point, or in other
words, it is a stable phasor. Amplitude noise causes broadening in
the direction of the phasor, whereas phase noise causes broad-
ening in the tangential direction. If the resonator displacements
are due to thermal force noise, the phase plot consists of a
Gaussian distribution, which is symmetrical and centred around
zero amplitude. The phase plot in Fig. 4a has such a distribution,
confirming that the blue waveform of Fig. 3c is due to thermal
motion. We have verified that the other blue spectra in Fig. 2 have
the same characteristic Gaussian distribution, and we therefore
refer to these as thermal spectra.

In contrast, Fig. 4b shows that the high-amplitude waveform of
Fig. 3c has a ring-shaped distribution around zero. The amplitude
shows an asymmetric peak around a non-zero mean, and the
noise in the amplitude direction is much smaller than the mean
value. The phase, on the other hand, goes through all angles. This
behaviour is expected for resonators that experience nonlinear
negative feedback21: the oscillation amplitude grows until the
SQUID can no longer increase its back-action on the resonator,
causing the amplitude to settle on a steady-state value. The phase
of the oscillator has no restrictions and is therefore allowed to
drift freely, leading to a ring-shaped phase plot. Such a plot is thus
a clear signature of SSO.
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Figure 2 | Spectral measurements. (a) Power spectral density of the

109 kHz mode at Ibias¼ þ 1.4mA. The blue spectrum is due to thermal

motion of the mode, measured on the positive (upward) flank V^40. On

the negative (downward) flank V^o0, the noise peak (in red) sharpens and

increases in amplitude by four orders of magnitude, indicative of SSOs. The

frequency shift between the two spectra is due to the SQUID back-action.

(b) The spectra of the 129 kHz mode are measured at Ibias¼ � 1.4mA. The
behaviour is similar to the 109 kHz mode, with SSO occurring on the same

flank V^o0. (c) Integrated noise power of the resonance peaks as a

function of bias current. Red points are measured for negative bias currents

with solid circles identifying the SSO regime; dark red: 109 kHz; light red:

129 kHz. Open circles represent the non-SSO regime. The data points for

the spectra of figures a and b are marked by the green window. On the

positive flank V^40, no SSO is observed and the noise power is due to

thermal motion (open blue circles). Only the 109-kHz thermal data is

shown, as the 129-kHz data, measured on the opposite V–^ flank, is nearly

identical. (d) Effective quality factor obtained from fits to the noise spectra.

The thermal spectra on the positive flank V^40 have the lowest Q values,

whereas the 129-kHz mode reaches values 4105 in the SSO regime.
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Figure 3 | Time-resolved measurements of the SQUID voltage at

Ib¼ � Ic
max. (a) Measured oscillator waveform during startup and ring-

down (red). The startup follows the step response of a negative-feedback

amplifier (left blue line), and the ring-down follows the exponential decay,

which is expected for a harmonic oscillator with Q¼ 7,000 (right blue line).

The voltage is measured using a high-mobility-electron transistor (HEMT).

(b) Oscillation frequency during the same startup and ring-down. When the

V^ flank is switched, the frequency shifts to its new value within a few

milliseconds. In contrast, the amplitude of the oscillator as seen in a reacts

more slowly. (c) Measured waveforms of the 129-kHz SSO at Ib¼ � Imax
c

(red) and of the thermal motion on the other V^ flank (blue). The oscillator

waveform contains higher harmonics due to the non-linear response of the

SQUID detector. (d) Simulated oscillator waveform, with the peak-voltage

and peak-flux oscillation amplitude as free parameters. The flux oscillation

amplitude is found to be 0.3 ^0 and the peak–peak voltage amplitude is

0.75V.
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The SQUID-resonator back-action is provided by the Lorentz
force, which acts on the resonator and modifies the effective
spring constant and effective damping. This Lorentz force is
created by the external magnetic field and is proportional to the
current circulating through the SQUID loop19. In turn,
the current depends non-linearly on the magnetic flux through
the loop, which is sensitive to the displacement of the resonator.
The back-action can be probed by investigating the shifts of the
frequency and the quality factor of the resonator at different
biasing conditions (magnetic flux and bias current). For the
device used in the experiments, the coupling between the SQUID
and the resonator is sufficiently strong to cause negative damping
of the mechanical resonator close to the critical current. This
implies that the resonator gains energy each oscillation cycle
instead of losing it, which causes it to exhibit SSO. Quantitative
estimates for the back-action are presented in Methods section,
and a simplified model is given in Supplementary Methods.

Responsivity. To calibrate the displacement responsivity of the
SQUID, we use the waveform of the SSO (Fig. 3c) and the fact
that the SQUID voltage response is ^0 periodic. This periodicity
serves as the calibration standard: From the applied magnetic
field and the dimensions of the resonator, we calculate that a
resonator displacement of 0.27 nm relates to a flux change of one
quantum. The waveform is fit to the flux response shown in
Fig. 1c, and we find a flux oscillation amplitude of 0.3 ^0. The
fitted waveform is shown in Fig. 3d. From the fit, we get a
responsivity of 6.1 mV fm� 1. This calibration method provides a
fast, accurate alternative to the standard thermal calibration18,22,
which does not work here because of the large back-action. The
responsivity, combined with the output voltage noise floor of the
amplifier (4.1 mV ðHzÞ�1=2), spring constant (1.5Nm� 1) and
effective bandwidth (29Hz) of the mechanical resonator, yields a
detector resolution of 3.6 fm, which is below the standard

quantum limit of 5.3 fm. Detailed calculations are provided in
Supplementary Methods.

Discussion
The intrinsic nature of the SSO, combined with the large
operating bandwidth of the Josephson junctions, means that
embedded nano-scale resonators with GHz frequencies
(for example, carbon nanotubes) may also exhibit SSO without
any external feedback. Future research must be directed at
understanding how the possibility of SSO affects applications of
SQUID-based electronics for ultra-sensitive position detection4,5,
for quantum state transduction3, for studies of frequency
entrainment23–25 and sensitive force-gradient detection1. The
observation of SSO suggests that a torsional SQUID oscillator
may also be a good candidate to observe laser-like physics
with phonons previously predicted theoretically for other
nanomechanical systems16,17,26. Both the applied flux and
current bias can be used as control parameters, providing
access to a wide parameter range.

Methods
Sample preparation. The dc SQUID (Fig. 1a) is fabricated from an InAs-AlGaSb
heterostructure, which is epitaxially grown on a GaAs [111a] substrate. The SQUID
ring (95� 40 mm2) is formed by evaporation of 100 nm of Nb on the InAs surface.
A 250-nm long gap in each of the 4.5-mm wide arms forces current to flow through
the 42.5-nm thick InAs layer, thereby forming superconductor-normal metal-
superconductor-type Josephson junctions. Titanium-gold contacts are evaporated
on the leads for connection to off-chip electronics. Around the SQUID, the InAs
and AlGaSb layers are removed by a BCl3-reactive ion etch to define the resonator
and provide electronic insulation. The GaAs underneath the resonator is removed
by an isotropic ammonia wet etch so that the SQUID is almost completely sus-
pended; only the current leads anchor the SQUID to the substrate. This geometry
allows the SQUID loop to perform flexural and torsional motion. The substrate
with the SQUID is glued on top of a piezoelectric transducer, which is used to
excite the eigenmodes of the resonator. This ensemble is mounted inside a dilution
refrigerator and is operated at its base temperature of 20mK in high vacuum.

Experimental details. Stable operation is achieved by operating the SQUID in a
low-frequency feedback loop (o1 kHz), which adjusts the applied flux to maintain
a constant setpoint voltage VSP. Note, that for a given bias current and voltage
setpoint, the feedback loop can be set to lock either to the upward or the downward
flank of the V–^ curve (inset of Fig. 1c). These are denoted by V^� @V/@^40
and V^o0, respectively. The magnetic field is applied to the SQUID by a super-
conducting solenoid magnet, whereas the magnetic flux through the loop is fine-
tuned with a small coil near the device. The voltage generated by the resonator
motion is measured using a high-electron-mobility transistor amplifier at the 1K
stage of the dilution refrigerator.

SQUID transport characterization. To determine the working point of the
SQUID, its electronic transport characteristics are first measured. Figure 1c shows
voltage-current and voltage-flux traces for the SQUID at an applied magnetic field
of B¼ þ 80mT, which is used throughout this work. The SQUID output voltage is
zero at low-bias currents and behaves Ohmically at bias currents well above the
critical current. The maximum critical current is Imax

c ¼ 1.1 mA (0.55 mA per
junction), and the normal-state resistance of the two junctions in parallel is R¼ 8O.
The voltage is most sensitive to the magnetic flux in the transition region between
superconducting and Ohmic behaviour. The inset of Fig. 1c shows the output
voltage of the SQUID when the magnetic field is swept. The voltage is periodic with
a period of one flux quantum. The linear response of the SQUID is largest near the
middle of the upward and the downward flank of the V–^ curve, and this is where
we bias the SQUID (blue points in Fig. 1c).

Torsional SQUID displacement. The displacement u of a given resonance mode is
defined as the root-mean-squared displacement of that mode, integrated over the
resonator length. The amplitude u of each normal mode is thus determined
through the spatial profile of the mode (see Poot and van der Zant27 for more
details). This definition ensures that the spring constant equals kR¼mRo2

R, where
mR is the total mass of the resonator and oR is the resonance frequency. The
change in magnetic flux for a given displacement is then found by calculating the
change in area of the inner loop in the plane perpendicular to the magnetic field
direction. This results in a flux change @^/@u¼ aB‘ per unit deflection. Here, ‘ is
the length of the resonator, perpendicular to the magnetic field direction, and a is a
geometrical factor that depends on the shape of the resonance mode and the
orientation of the magnetic field. For the two lowest modes, we estimate aE1. For
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Figure 4 | Phase plots of the 129 kHz waveforms measured over a period

of 2,000 s. Colours indicate the probability of observing a given amplitude

and phase (probability density function (pdf)), where yellow and red

indicate high and low probability, respectively. White indicates zero

incidence. (a) Phase plot of the low-amplitude waveform (top graph is a

horizontal line trace through zero). Both the amplitude and the phase have a

Gaussian distribution around zero, a signature of random, thermal motion.

(b) Phase plot of the high-amplitude waveform. The amplitude of the

oscillation is well defined, and phase noise dominates a signature of steady-

state oscillation. Note that the horizontal scale of b is almost an order of

magnitude larger than that of a, consistent with the high- and low-

amplitude waveforms measured in real time.
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two dissimilar arms, the geometrical factor is effectively that of a single-beam
resonator, for which the geometrical factor is 0.91 (ref. 18). Distortions of the loop
may also have a minor influence on the value of a, therefore we have taken aE1 in
the remainder of the manuscript.

Waveform data processing. For the data in Fig. 3, the mean of the measured
waveform has been subtracted. In addition, the waveform has been filtered such
that it only contains the signal in a bandwidth of 1 kHz around the 129-kHz
resonance peak and its harmonics. Note that the full-width half-maximum of the
mechanical signal is o20Hz. The phase plots in Fig. 4 are processed from
waveforms such as those in Fig. 3c, recorded over a longer timescale (2,000 s).
To extract the amplitude and the phase of the measured waveform, the time record
is multiplied by pure cosine and sine waveforms at the oscillation frequency. The
resulting time series are passed through a moving-average filter to eliminate
spurious frequency components. This yields the in-phase and quadrature
(90 degrees out-of-phase) amplitudes of the waveform, from which the phase plots
of Fig. 4 are constructed.

SQUID-induced frequency shift. In addition to the resonator damping shifts, the
SQUID back-action also shifts the resonance frequency. Supplementary Fig. S1
shows the frequency shift as a function of applied bias current. The instantaneous
frequency is extracted from the waveform by filtering out the harmonics of the
129-kHz signal and locating the times at which the resulting waveform crosses the
zero volt axis. The frequency is then calculated by taking the reciprocal of the time
between two adjacent zero-crossings.

The trend is similar to what was observed for the SQUIDs with the embedded
MHz beam resonators in previous work19. In that work, the back-action strength
was quantified by the dimensionless coupling parameter Df for the frequency shift
and DQ for the quality factor:

Df ¼
a2B2‘2

mRo2
0

Imax
c

2F0
; DQ ¼ a2B2‘2

mRo0R
Q0

2p
; ð1Þ

where o0 and Q0 are the intrinsic resonance frequency and quality factor of the
mechanical resonator, and R is the resistance of Josephson junctions. The
frequency shift relative to the intrinsic resonance frequency is stronger for the
torsion resonator than for the beam resonator. This is consistent with the increased
coupling parameter; Df¼ 1� 10� 2 for the torsion resonator versus Df¼ 4� 10� 4

for the beam resonator of ref. 19.
It is interesting to examine the time it takes for the resonance frequency to shift

after the SQUID switches flanks and compare it to the ring-up and down times.
The resonance frequency shifts with SQUID bias due to dynamical back-action19.
Figure 3b shows the frequency as a function of time. There, the frequency shifts by
1 kHz within a few milliseconds of switching the flanks. The step response of the
frequency is thus much faster than the amplitude step response. This also implies
that the time it takes to switch the SQUID between the positive and negative flanks
is less than a few milliseconds.

Back-action estimates. To quantify the back-action in the torsional SQUID, we
use the analysis presented in ref. 19. In that paper, the dynamical back-action on
the resonator is modelled as a change in the effective damping and resonance
frequency of the mechanical resonator due the current that circulates around the
SQUID loop. The total damping of the resonator was written as

g0ð1� jf_DQÞ; ð2Þ

where g0 is the intrinsic resonator damping. The dimensionless gain factor jf? is
tunable by the applied bias. Other than this, jf? only depends on the inductance and
capacitance of the SQUID, which are the same as for the device in Poot19. Its
maximum value was calculated to be 500. The dimensionless coupling parameter
DQ is independent of the bias of the SQUID but depends on the parameters of both
the SQUID and the resonator. Negative damping occurs when the product jf?DQ is
greater than one. For the sample with the embedded beam resonator19, the
coupling parameter DQ¼ 2.8� 10� 4, which means that the maximum product
max(jf?DQ)¼ 0.14 was too small to achieve negative damping. The increased length
of the torsion SQUID resonator (95 versus 50 mm) and its decreased spring
constant (1.5 versus 100Nm� 1) result in DQ¼ 2.2� 10� 3. This coupling is
almost an order of magnitude larger than that of the beam-SQUID and is
sufficiently strong to induce negative damping, in agreement with our observations.
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