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Evolution of Landau levels into edge states
in graphene
Guohong Li1, Adina Luican-Mayer1, Dmitry Abanin2, Leonid Levitov3 & Eva Y. Andrei1

Two-dimensional electron systems in the presence of a magnetic field support topologically

ordered states, in which the coexistence of an insulating bulk with conducting

one-dimensional chiral edge states gives rise to the quantum Hall effect. For systems confined

by sharp boundaries, theory predicts a unique edge-bulk correspondence, which is central to

proposals of quantum Hall-based topological qubits. However, in conventional semi-

conductor-based two-dimensional electron systems, these elegant concepts are difficult to

realize, because edge-state reconstruction due to soft boundaries destroys the edge-bulk

correspondence. Here we use scanning tunnelling microscopy and spectroscopy to follow the

spatial evolution of electronic (Landau) levels towards an edge of graphene supported

above a graphite substrate. We observe no edge-state reconstruction, in agreement

with calculations based on an atomically sharp boundary. Our results single out graphene as a

system where the edge structure can be controlled and the edge-bulk correspondence is

preserved.
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T
he gapless one-dimensional chiral edge states near the
boundaries of a two-dimensional (2D) electron system
(2DES) in the quantum Hall (QH) regime host chiral

charge carriers, where the right- and left-moving species reside on
opposite edges1–3. As a result, backscattering is suppressed for
well-separated edges4, leading to robust one-dimensional ballistic
channels that provide an ideal laboratory for quantum transport
in one dimension5–7. In particular, the edge states of topologically
ordered 2DES exhibiting the QH effect are expected to display an
edge-bulk correspondence, which is currently much sought after
because of its pivotal role in QH-based quantum computing8–10.
However, in the semiconductor-based 2DES studied thus far, this
‘topologically protected’ correspondence is notoriously difficult to
realize11,12. The most likely cause of the discrepancy between
theory and experiment is the generic occurrence of edge
reconstruction13–23 in the semiconductor 2DES, which induces
additional edge modes that are not tied to the bulk topology and
disrupt the predicted universality24. In these systems, the
lithographically defined edges have soft confinement potentials,
caused by the gates and dopant layer being far away from the
2DES, which favour the reconstruction of the edge states into
alternating compressible and incompressible strips (Fig. 1a). This
obscures the universal behaviour expected for edge states18 and is
problematic for applications, which rely on the topological
properties of the edges8–10.

Graphene, a one-atom-thick crystal of carbon atoms arranged
in a honeycomb lattice25–27, provides unprecedented oppor-
tunities to revisit the physics of QH edge states. The fact that its
structure is strictly 2D, with electrons residing right at the surface,
provides flexibility in choosing the distance to the screening
plane. In typical devices, the graphene sample is deposited on a
300-nm-thick SiO2 layer, capping a highly doped Si backgate28.
In this configuration the confinement potential varies gradually
over the screening length, ls, which is comparable to the
thickness of the insulating spacer, leading to charge
accumulation near the graphene edge over the same length
scale29. When the spacer distance is much larger than the
magnetic length lB ¼

ffiffiffiffiffiffiffiffiffiffi
�h=eB

p
� 26 nm=

ffiffiffiffiffiffiffiffiffi
B½T�

p
(�h is the reduced

Planck constant, � e is the electron charge and B is the magnetic
field), as is the case in typical graphene devices, similar to the
case in semiconductor-based 2DES, then the edge-state
reconstruction is inevitable29. Here we show that edge-state
reconstruction can be avoided when the graphene layer is very
close to a screening plane. In this configuration the confining
potential becomes atomically sharp. Thus, by controlling the
thickness of the insulating spacer, it should be possible to carry
out a systematic study of edge states under controlled screening
conditions, which would allow testing theoretical ideas of QH
edge physics30.

Results
Band structure and Landau levels in graphene. The low-energy
band structure of graphene, consisting of electron-hole symmetric
Dirac cones, which touch at the Dirac points (DP) located at the
K and K0 corners (valleys) of the Brillouin zone, leads to a density
of states (DOS), which is linear in energy and vanishes at the DP.
In a magnetic field, B, normal to the graphene plane, the spec-
trum consists of a sequence of discrete Landau levels (LL):

En ¼ ED � e0
ffiffiffiffiffiffiffiffiffi
jN j

p
ð1Þ

where N¼ 0, ±1, ±2.. is the level index and e0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e�hv2FB

p
is a

characteristic energy scale. Here vFB106m/s is the Fermi
velocity, ± refers to the electron/hole branches and ED is the
energy of the DP measured relative to the Fermi energy. The LL
spectrum in graphene is qualitatively different from that of the

2DES in semiconductors: it is electron-hole symmetric, displays
square-root dependence on field and level index, and it contains
an N¼ 0 level, which reflects the chiral nature of the quasi-
particles. The wave functions of the N¼ 0 LL in valleys K and K0

reside on different sublattices (A or B) of the honeycomb lattice.
In finite size graphene samples, crystallographic edges can be
either zigzag form, consisting of atoms belonging to only one
sublattice, or armchair form that contains atoms from both
(Fig. 1d).

Samples and tunnelling spectra. In this work we use low-
temperature, high-magnetic field scanning tunnelling microscopy
(STM) and spectroscopy (STS) to follow the spatial evolution of
the local DOS in graphene supported on a graphite sub-
strate27,31,32. As characterized previously31, the graphene flake is
partially suspended over the graphite substrate at a distance
B0.44 nm, which is B30% larger than that for AB (Bernal)-
stacked graphite. This was found to suppress tunnelling between
the layers so that the flake is electronically decoupled from the
substrate and shows the hallmarks of intrinsic single-layer
graphene: linear DOS that vanishes at the DP in zero field and
an LL sequence with square-root dependence on magnetic field
and level index27,31. The sample topography in Fig. 1c shows an
edge, which is parallel to the zigzag direction as determined from
the atomic-resolution image (Fig. 1c inset). In the interior of the
sample, the atomic-resolution image (Fig. 1e) reveals a well-
resolved honeycomb structure. Plotted in Fig. 1f, the position
dependence of the intensity along the dashed line indicated in
Fig. 1e reveals an B10% asymmetry between the two sublattices.

LL spectra and their evolution towards a zigzag edge. In the
presence of a magnetic field, local LL spectra (averaged over an
area 0.4� 0.4 nm2), shown in Fig. 2a, were taken starting from
the edge and towards the bulk at the positions marked 1 to 6 in
Fig. 1c, which were spaced by intervals of 6.5 nm¼ 0.5 lB. Far
from the edge, in the bulk of the sample, the spectra exhibit a
series of pronounced peaks at energies that follow a square-root
dependence on field and level index31,33 as expected for the LL
sequence of massless Dirac fermions (Equation (1)). In what
follows, we discuss two notable features of the spectra: (a) the
proximity of the edge is not felt up to a distance of B2.5 lB, and
then only as a subtle redistribution in spectral weight, whereas the
peak positions remain unchanged; (b) the double peak
corresponding to the split N¼ 0 LL stands out in its robustness
and persists all the way to the edge as expected for a zigzag
termination.

First, we consider the position of the peaks in the STS traces,
which remain practically unchanged upon approaching the edge.
This reflects the fact that the small screening length, determined
by the distance to the graphite substrate (lsB0.4 nm), defines an
essentially atomically sharp confinement potential. The
connection between screening and the dispersion of the LL
spectra with distance from the edge can be understood by
considering the problem in the Landau gauge natural to the strip
geometry. In this gauge, the high degeneracy of bulk LLs
represents multiple choices for the position of the guiding centre,
xm ¼ 2pmlB=Ly; m¼ 0; 1; 2; :: where Ly is the width of the sample
along the edge direction, y. For N¼ 0 the electronic
wavefunctions, c0mp eikmye� x� xmð Þ2=2, reside on only one
sublattice, say A, whereas for higher-order indices, Na0, both
sublattices carry the electronic wavefunctions that take the
form cA

Nm / c0mHNð x� xmj jÞ on sublattice A, and cB
Nm /

c0mHN � 1ð x� xmj jÞ on sublattice B. Here x, measured in units
of lB, is the distance from the edge, km ¼ 2pm=Ly and HN are the
Hermite polynomials. The wavefunctions form strips of width
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� 2
ffiffiffiffi
N

p
lB that are centred on xm and run parallel to the edge. For

guiding centres far from the edge, mc1, the states are identical to
those in an infinite system. Near the edge, the wave functions are
modified due to the boundary conditions and the degeneracy is
lifted,1,5–7 resulting in LLs bending away from the DP and the LL
energy ENm corresponding to cNm now depends on the distance
from the edge. This produces dispersive edge states, which,

according to theory, carry the transport currents responsible for
the QH effect1–4. The nature of the current-carrying states
depends on the relative magnitudes of ls and lB. In the limit
ls44lB, accessed in the experiments on semiconductor-based
2DEG, the system lowers its energy by reconstructing the edge
states into steps, as shown in Fig. 1a, which produce alternating
compressible and incompressible strips13 that carry the QH
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Figure 1 | Edges and LLs and graphene structure. (a) Edge reconstruction in semiconductor-based 2DES. The distances from gates and screening plane

are much larger than the magnetic length. Top: spatial variation of LL energy as a function of distance from the edge shows the effect of edge-state

reconstruction. Dashed lines mark the boundary between compressible and incompressible strips. Bottom: spatial variation of the reconstructed carrier

density close to the edge. (b) Same as in a for graphene and distances from screening planes that are much smaller than the magnetic length. Inset:

schematic illustration of graphene sample and screening plane. (c) STM of a graphene flake on a graphite substrate near a zigzag edge measured in a field

of 4 Tat 4.4 K. Inset: the edge type is determined from atomic-resolution STM at a distance ofB32 nm¼ 2.5 lB from the edge (position 6 ). The dashed line

marks a zigzag direction and is parallel to the edge, also marked with a dashed line in the main panel. LL spectra taken at intervals of 0.5 lB (at the positions

marked 1–6) and averaged over an area 0.4�0.4 nm2 (marked by the white square in the inset for position 6) are shown in Fig. 2. Scale bars: 5 nm

(main panel), 500 pm (inset). The rectangles at position 1, 2 and 6 indicate the areas of the topography maps in Fig. 4 and the inset. (d) Graphene edges.

The two sublattices in the honeycomb structure are denoted A and B. The zigzag edge termination contains either A- or B-type atoms, whereas the

armchair contains both types. (e) Atomic-resolution STM topography measured far from the edge shows the honeycomb structure with a slight intensity

asymmetry on the two sublattices. Scale bar: 500 pm. (f) Intensity plot taken along the line in panel e displays an intensity modulation where one of the

sublattices, marked A, appears 10% less intense than the other marked B.
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current and stabilize the QH plateaus even in the limit of a
perfectly clean sample. Recent scanning probe microscopy
experiments20–23 have demonstrated the existence of these
strips several magnetic lengths away from the edge. In the
opposite limit, lsoolB, the case of the experiments reported here,
the strips are absent, and the Nth LL shifts monotonically away
from the DP for distances within

ffiffiffiffi
N

p
lB of the edge5–7. For the

case of a zigzag edge in graphene, there is one non-dispersive
N¼ 0 state confined to one of the valleys6. At larger distances
from the edge x442

ffiffiffiffi
N

p
lB, the LL energies are identical to those

in the bulk. The local DOS (LDOS) measured with STS is given
by:

DðE; rÞ¼
X

Nmi

jci
Nm
ðrÞ j 2 dðE�ENmÞ ð2Þ

where i is the sublattice index and r the position where the
spectrum is taken. As the LDOS is determined not only by the
energy but also by the wave functions, the edge spectrum is
sensitive to the states in the bulk up to distances comparable to
their spatial extent, xB2

ffiffiffiffi
N

p
lB. Because of the large degeneracy of

the bulk states, they make an important contribution to the LDOS
near the edge, so that the position of the peak in the LDOS is still

very close to that in the bulk. Therefore, counter-intuitively, in
this case the proximity to the edge appears not as a shift in the
peak energy but as a redistribution of spectral weight from lower
to higher energies. As a result, the amplitude of low-index peaks
decreases faster than that of higher index peaks, even though the
bending of high-index LLs is stronger (due to the greater spatial
extent of the higher LL states). This hierarchical spectral weight
redistribution, observed in both experimental and simulated data
shown in Fig. 3, is characteristic to bending of LLs near a sharp
edge. Its presence makes it possible to distinguish experimentally
between broadening due to edge disorder—which would affect all
peaks equally—and level bending.

Splitting of the N¼ 0 LL. Another notable feature of the data is
the split N¼ 0 peak and its persistence all the way to the edge,
even while the others are smeared out. The splitting of the N¼ 0
peak, most prominently seen in the bulk spectrum, was previously
observed for graphene samples on graphite27,31–33 and was
attributed to a gap at the DP caused by substrate-induced
breaking of the sublattice symmetry27. This broken symmetry is
directly imaged in Fig. 1e,f as an intensity imbalance between the
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Figure 2 | Evolution of LLs with distance from the edge. (a) LL spectroscopy at B¼4T and T¼4.4 K in the bulk and at the positions marked in Fig. 1c.

The energy origin is taken at the Fermi level. The dashed line indicates the bulk Dirac point energy. (b) LL maps showing the evolution of the spectra

with distance from the edge. The colour scale encodes the magnitude of the measured differential conductance. (c) Simulated local DOS for the case in a,

including broadening due to electron–electron interactions obtained in ref. 31. (d) Simulated LL maps for the same parameters as in (b).
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two sublattices. Its observation is consistent with the Bernal
stacking between the monolayer graphene and the graphite
substrate, which leads to a staggered potential on the A and B
sublattices, and shifts the energies of the N¼ 0 LL in the K and K0

valleys in opposite directions. At first, it may seem surprising that
the sublattice symmetry of the graphene layer can be broken by
the substrate in spite of the absence of tunnelling between them.
However, recalling that the broken symmetry is due to the
electrostatic potential of the commensurate substrate, which
decays much slower than the tunnelling probability, this scenario
is consistent with the data.

Theory. For a quantitative comparison between theory and
experiment, we simulate the spatial evolution of the LDOS close
to a zigzag edge, including the level broadening due to the finite
quasi-particle lifetime31. We use the low-energy continuum Dirac
model5–7 to obtain LL energies, wave functions and the LDOS by
solving numerically two Dirac equations in magnetic field (one
per each valley), supplemented by the boundary condition
appropriate for the zigzag edge. In addition, we introduce
splitting between N¼ 0 Landau sublevels by imposing different
potentials ±D on the two graphene sublattices. Furthermore, to
account for the asymmetry of the split N¼ 0 LL observed in the
experiment, we assume that the tunnelling matrix element into
the two sublattices is different. This could arise from the
asymmetric coupling of two sublattices to the graphite
substrate, consistent with the observed sublattice asymmetry
observed in the topography maps. We found that taking pA¼ 2pB
(here pA(B) is the squared matrix element for tunnelling into A(B)

sublattice) gives the best agreement with experiment. Comparing
with the measured LDOS in Figs 2 and 3, we find that this
simple model captures the main experimental features, including
the evolution of the LL peak heights with distance from the
edge (Fig. 2c,d) and the spectral weight redistribution (Fig. 3b,c).
Consistent with the experimental data, the deviations from
the bulk DOS appear only withinB2.5 lB of the edge as a redistri-
bution of intensity without shifting the positions of the LL peaks.
Another notable feature, also consistent with experiment, is the
persistence of the strong double peak at the DP all the way to the
edge, even while the others are smeared out. Tellingly, as the state
at the DP persist in only one valley, the amplitude of one of the
peaks in the N¼ 0 doublet decreases for distances between 2.5 lB
and 1 lB away from the edge.

The local carrier density and sign can be obtained from the LL
spectra by measuring the separation25 between the Fermi energy
(E¼ 0) and the DP (ED), which is identified with the centre of the
two N¼ 0 peaks. Far from the edge, the sample is hole doped,
ED40, with carrier density nB3� 1010 cm� 2. From the position
dependence of the LL spectrum and ED, we obtain in Fig. 3d the
evolution of the local carrier density with distance from the edge.
We note that the density remains practically unchanged upon
approaching the edge to within B1.0 lB, showing absence of edge
reconstruction as expected for an edge with an atomically sharp
confining potential.

Discussion
The agreement with this theory breaks down right on the edge,
where the spectrum consists of three broad peaks seemingly
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Figure 3 | Spectral weight redistribution near the sample edge. (a) Measured LL spectra at B¼4T showing the evolution of the peak heights with

distance from the edge on the electron side at the positions marked in Fig. 1c. (b) Simulated local DOS for the case in panel a, including broadening due to

electron–electron interactions obtained in ref. 31. The local DOS is averaged over the two sublattices. Although the peaks corresponding to bulk LLs
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discussed in the text. (c) Spectral weight redistribution near the edge for both the experimental data (symbols) and the theory (solid lines) shows that the
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unrelated to the bulk LLs (Fig. 4a). At the same time, atomic-
resolution STM topography indicates a transition from honey-
comb to triangular structure within BlB of the edge. We note
the appearance, in the first few rows from the edge, of a stripe
pattern that has the periodicity of the lattice consistent with the
triangular structure seen further away (Fig. 4c). Similar striped
structures were reported in STM topography measurements of
graphite edges34. The spectroscopic and topographic features
reported here are qualitatively similar to zero-field density-
functional calculations of the charge distribution near a pure
zigzag edge of graphene35. Both exhibit a transition from a
triangular structure with a stripe-like pattern near the edge to a
honeycomb structure further away. Remarkably, the calculation
reveals the presence of three low-energy flat bands, which
produce three peaks in the edge DOS similar to the ones observed
here. The highest energy peak is produced by the flat band
that emerges from the bulk p electrons and is localized at the
edge, whereas the two lower-energy peaks arise from the dangling
bonds. Although these simulations exhibit a striking overall
similarity to the data, the predicted energy of the peaks exceeds
the measured energy by about a factor of two. To address this
discrepancy, future work would require taking into account
an edge that is not perfectly zigzag, the graphite substrate,
the possibility of adsorbed atoms and the presence of the
magnetic field.

In summary, this work shows that when the screening plane is
very close to 2DES as in the case of graphene on graphite, the QH
edge states display the characteristics of confinement by an
atomically sharp edge. The absence of edge-state reconstruction
demonstrated here indicates that graphene is a suitable system for
realizing one-dimensional chiral Luttinger liquid states and for
probing their universal properties as a projection of the under-
lying QH state. The findings reported here, together with the
techniques available to control the local density and the screening
geometry in graphene, guarantee that edge softness and its
undesirable reconstruction could be overcome in future experi-
ments by using a combination of gating across a tunable gap in
suspended samples and side gates36, or by using a thin boron
nitride crystal as a spacer between graphene and the backgate37.
This new type of unreconstructed edge states will provide a test-
bed for the theoretical ideas and can open new avenues for
exploring the physics of the one-dimensional QH channels.

Methods
Sample preparation and characterization. STM tips were mechanically cut from
Pt-Ir wire. The tunnelling conductance dI/dV was measured using lock-in detec-
tion at 340Hz. A magnetic field, 4 T, was applied perpendicular to the sample
surface. Typical tunnelling junctions were set with 300mV sample bias voltage and
20 pA tunnelling current. The samples were obtained from highly oriented pyrolitic
graphite cleaved in air and immediately transferred to the STM. In addition to
removing surface contamination, this methods often leave graphene flakes on the
graphite surface, which are decoupled or weakly coupled to the substrate. The
graphene flakes are characterized with topography followed by finite-field spec-
troscopy in search of a well-defined and pronounced single sequence of LLs,
indicating decoupling from the substrate31. Coupling between layers, even when
very weak, gives rise to additional peaks whose position reflects the degree of
coupling27,31,32.
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