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Enhanced dihydropyridine receptor calcium
channel activity restores muscle strength in
JP45/CASQ1 double knockout mice
Barbara Mosca1, Osvaldo Delbono2, Maria Laura Messi2, Leda Bergamelli1, Zhong-Min Wang2,

Mirko Vukcevic3, Ruben Lopez3, Susan Treves1,3, Miyuki Nishi4, Hiroshi Takeshima4, Cecilia Paolini5,

Marta Martini6, Giorgio Rispoli6, Feliciano Protasi5 & Francesco Zorzato1,3

Muscle strength declines with age in part due to a decline of Ca2þ release from sarcoplasmic

reticulum calcium stores. Skeletal muscle dihydropyridine receptors (Cav1.1) initiate muscle

contraction by activating ryanodine receptors in the sarcoplasmic reticulum. Cav1.1 channel

activity is enhanced by a retrograde stimulatory signal delivered by the ryanodine receptor.

JP45 is a membrane protein interacting with Cav1.1 and the sarcoplasmic reticulum Ca2þ

storage protein calsequestrin (CASQ1). Here we show that JP45 and CASQ1 strengthen

skeletal muscle contraction by modulating Cav1.1 channel activity. Using muscle fibres from

JP45 and CASQ1 double knockout mice, we demonstrate that Ca2þ transients evoked by

tetanic stimulation are the result of massive Ca2þ influx due to enhanced Cav1.1 channel

activity, which restores muscle strength in JP45/CASQ1 double knockout mice. We envision

that JP45 and CASQ1 may be candidate targets for the development of new therapeutic

strategies against decay of skeletal muscle strength caused by a decrease in sarcoplasmic

reticulum Ca2þ content.
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A
ctivation of skeletal muscle contraction is initiated by the
propagation of the action potential deep into the muscle
fibre by means of the transverse tubular system (T

system)1–3. T-tubule depolarization causes massive release of
Ca2þ from the sarcoplasmic reticulum (SR) throughout the
entire length of the muscle fibre by a process called excitation-
contraction coupling1,2. Loss of muscle function has been
recognized as a debilitating and life-threatening condition not
only in the elderly, but also in cachexia in cancer patients and in
all those clinical conditions associated with prolonged bed rest4,5.
The decay of muscle strength is caused by several factors,
including a decrease of releasable calcium from the skeletal
muscle SR calcium store6,7.

EC coupling is operated by a macromolecular complex
comprising the a1-subunit of the voltage-dependent L-type
Ca2þ channel (dihydropyridine receptor, DHPR, Cav1.1), the
ryanodine receptor (RyR) and calsequestrin (CASQ1)8, in the
contact region between the T system and the SR membrane3.
Cav1.1 acts as a voltage sensor and generates orthograde signals
that cause opening of the RyR whereby Ca2þ is released from the
SR into the myoplasm, leading to activation of the contractile
proteins1. Analysis of voltage-dependent calcium currents in
RyR1 knockout (KO) muscle cells was fundamental to clarify the
signalling mechanisms between the RyR and Cav1.1. It is now
accepted that the RyR1 not only receives an orthograde signal
from Cav1.1, but also generates a retrograde signal which is
important for the activation of Cav1.1 channel activity9,10. The
mechanism by which the retrograde Ca2þ current enhancement
is modulated and its exact physiological role remain elusive.

Although calcium influx across the sarcolemma is thought to be
non relevant for muscle contraction11, it has been proposed that
it may have a role in replenishing the SR during sustained muscle
contractions12. Two different modes of calcium influx in skeletal
muscle have been described: (i) calcium influx via Cav1.1
associated with prolonged membrane depolarization is referred
to as excitation-coupled calcium entry (ECCE)10, (ii) calcium
influx via STIM1 and OraI1 stimulated by internal store depletion
is referred to as store-operated calcium entry (SOCE)13–15.
However, the analysis of macroscopic calcium currents in adult
muscle fibres recorded under voltage clamp condition16 suggests
that both voltage-dependent calcium release and/or SR calcium
depletion are not sufficient to activate inward calcium currents
and thus challenged the physiological relevance of ECCE and
SOCE in adult mammalian fibres. Nevertheless, calcium influx in
muscle cells deserves further investigation, because of the
potential impact of calcium influx in determining releasable SR
calcium content17, a crucial factor for proper sustained muscle
force development 6,7,18.

Calcium influx in skeletal muscle is affected by drugs19,20 and
by accessory proteins such as junctophyllin and mitsugumin-29,
two proteins localized in the membrane compartment
which form the junction between T tubules and SR12,21. T
tubules-SR junction membranes encompasses also JP45, a
developmentally regulated 45-kDa transmembrane protein
that interacts via its luminal carboxy-terminal domain with
CASQ1, the major calcium storage protein of SR, and with its
amino terminal domain with Cav1.122. Ablation of calsequestrin
1 in skeletal muscle fibres results in a decrease of total calcium
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Figure 1 | Ca2þ transients and Mn2þ quenching in FDB fibres from single and DKO mice. FDB fibres were loaded with the fast low-affinity Ca2þ dye

Mag-Fluo-4AM 21,22. (a) Ca2þ transients were triggered by supramaximal field stimulation with single pulses of 0.5ms duration. Continuous lines: Ca2þ

transients recordings in an external solution containing 1.8mM CaCl2. Overall ANOVA P-valueo0.0001; multicomparison Dunnet’s ANOVA post test

shows difference between of the peak calcium values: WT versus DKO Po0.01, WT versus JP45 KO Po0.01; WT versus CASQ1 KO Po0.01; dotted grey

lines: Ca2þ transients recordings in an external solution containing 100 mM La3þ . Overall ANOVA P-valueo0.0001; multicomparison Dunnet’s ANOVA

post test shows difference between of the peak calcium values: WT versus DKO Po0.01, WT versus JP45 KO Po0.01, WT versus CASQ1 KO Po0.01.

(b) Recording of Ca2þ transients upon stimulation with repetitive pulses at 100Hz for 300ms duration. Black and grey lines show recordings in the

presence of 1.8mM Ca2þ and 100mM La3þ in the external solution, respectively. In the presence of La3þ , the overall ANOVA P-value iso0.0001;

multicomparison Dunnet’s ANOVA post test shows differences: WT versus DKO Po0.01, WT versus JP45 KO Po 0.05, WT versus CASQ1 KO P o0.01.

(c) Mn2þ quenching of Fura-2 fluorescence. Black lines: Mn2þ influx was triggered by repetitive pulses at 100Hz (arrow) for 300ms duration. Overall

ANOVA P-valueo0.0001; multicomparison Dunnet’s ANOVA post test shows differences: WT versus DKO Po0.01. Dotted grey lines: Mn2þ quenching

recordings in the presence of 50mM nifedipine in the external solution.
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release from the SR, which leads to impaired muscle perfor-
mance and contractile activation23–26. Chronic depletion of JP45
induces a decrease of muscle strength in 3-month-old JP45 KO
mice27. The decay in strength is apparently not linked to atrophy,
but to defects in the EC-coupling machinery caused by alteration
of the functional expression of DHPR Cav1.1 in the T-tubular
network.

In the present study, we tested the hypothesis that the skeletal
muscle Cav1.1 channel activity is not only regulated by the RyR,
but additionally by the JP45/CASQ1 complex. We generated
double JP45 and CASQ1 KO (DKO) and compared their Cav1.1-
mediated Ca2þ signals to those observed in WT and each single
JP45 and CASQ1 KO mice. Our results show that in DKO mice,
tetanic stimulation of skeletal muscle fibres causes massive Ca2þ

influx due to enhanced Cav1.1 channel activity and this Ca2þ

influx restores muscle strength. By using this animal model, we
have unveiled a signalling pathway which may be an important
target for drugs against the loss of skeletal muscle strength caused
by decrease of the SR calcium content.

Results
Calcium transient in flexor digitorum brevis fibres. We com-
pared Ca2þ homoeostasis in WT, single JP45 and CSQ1 KO and
DKO using the ratiometric Ca2þ indicator Indo-1 and found that
the resting calcium concentration was increased in DKO
1.15±0.23* (n¼ 48) fibres compared with WT (0.92±0.10,
n¼ 40), JP45 null (1.03±0.18, n¼ 42) and CASQ1 null
(0.95±0.11) fibres (F405/F480 indo-1 ratio values are mean±s.d.;
*WT versus DKO Po0.001 two tailed Mann–Whitney). In the
presence of 1.8mM Ca2þ in the extracellular solution, the peak
intracellular Ca2þ transients measured with the low-affinity
calcium indicator MagFluo4 were 1.009±0.18 (n¼ 47),
0.67±0.16 (n¼ 49), 0.80±0.25 (n¼ 40) and 0.82±0.25 (n¼ 47)
for WT, DKO, JP45 KO and CASQ1 KO, respectively (DF/Fo
values are expressed as mean± s.d., Fig. 1 top panels). The sig-
nificant decrease of the peak Ca2þ transient in DKO fibres is not
due to a lower membrane density of RyRs (Supplementary
Fig. S1). The half-time of the decay of the Ca2þ transients in
flexor digitorum brevis (FDB) fibres from DKO mice was sig-
nificantly slower compared with WT (3.7±0.7, n¼ 47 and
4.8±1.9ms, n¼ 49 in WT and DKO fibres, respectively. Analysis

of variance (ANOVA) P-valueso0.0001; multicomparison Dun-
net’s post test WT versus DKO Po0.01).

Enhanced ECCE in FDB fibres from DKO mice. The slower
decay of the calcium transients in FBD fibres from DKO mice is
not due to a decrease of calcium uptake in to the SR by the Ca2þ

pump because we did not observe a reduction of the SERCA1 and
SERCA2 expression in DKO mice (Supplementary Fig. S1). The
increase of the half-time of the decay of the calcium transient is
rather linked to an influx of extracellular Ca2þ , as in the presence
of La3þ , a non-specific calcium channel blocker10, the difference
in the half-time for the decay of calcium transient between WT
and DKO fibres disappears (3.1±0.7 and 3.3±1.1ms for WT
and DKO, respectively). The effect of La3þ was much more
evident upon stimulation of FDB fibres with repetitive action
potentials. In the presence of La3þ , the Ca2þ transient
amplitude of tetanic stimulation was highest in WT fibres
(1.31±0.28; n¼ 37) compared with that of DKO (0.62±0.14*,
n¼ 34), JP45 KO (1.05±0.30y, n¼ 26) and CASQ1
(0.70±0.15*n¼ 24) (DF/Fo values are mean± s.d., *Po0.01,
yPo0.05, (multicomparison Dunnet’s ANOVA post test, Fig. 1).
In CASQ1 null fibres, the summation of Ca2þ transient peaks
was dramatically different compared with WT, JP45 null and
DKO fibres. After the few initial peaks, which display an
amplitude 50% lower compared with WT, the fused Ca2þ

transients in CASQ1 KO fibres rapidly decayed to basal levels.
This event reflects depletion of Ca2þ stores due to the ablation of
the Ca2þ storage protein23–25. However, at variance with CASQ1
null fibres, the double KO (DKO) fibres exhibit a sustained Ca2þ

transient which persisted for the entire duration of the repetitive
stimulation in the presence of calcium in the extracellular
solution (Fig. 1 middle panels, arrow Ca2þ ).

Depolarization of DKO fibres causes massive Ca2þ influx. The
sustained calcium transients evoked by tetanic stimulation in
DKO fibres is caused by massive Ca2þ influx, as in the presence
of 100mM La3þ in the external solution (Fig. 1 middle panel,
arrow La3þ ), the Ca2þ transient curve overlapped with that of
CASQ1 KO fibres. These data unambiguously demonstrate that
ablation of JP45 in a CASQ1 null background unveils a robust
Ca2þ influx component coupled to membrane depolarization.
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Figure 2 | Expression of calcium entry proteins in fast and slow muscles from DKO mice. (a) Real-time reverse transcription (RT) PCR from soleus and

EDL of wild-type and DKO mice. Real-time RT PCR was carried out as previously described41. Briefly, total RNA was extracted using TRIzol reagent

from Soleus or EDL muscles after frozen tissue homogenization, and Cav1.2, TRPC3, OraI1 and STIM1 gene expression was evaluated by quantitative

real-time PCR. Boxes represent the mean (±s.e.m.) fold change compared with values obtained from WT for each gene of interest. Gene expression levels

were normalized to the expression of the Tata box-binding protein (TBP) and desmin, whose expression was equal between wild-type and KO animals.

Pooled data are results carried out on muscles from 5 to 7 different mice. (b) Expression of D29 Cav1.1 isoform mRNA in EDL and Soleus from 1-month-old

WT and DKO mice. The expression of neonatal D29 Cav1.1 isoforms allele (lower band) is present in mRNA from C2C12 myotubes. The D29 Cav1.1

isoforms could be absent or below the detection limit of PCR in EDL. Soleus displays a faint band corresponding to the D29 exon Cav1.1 transcript.
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This conclusion is also supported by fura-2 manganese quenching
experiments performed in FDB fibres (Fig. 1 lower panels). At an
excitation wavelength of 360 nm, the Ca2þ independent iso-
sbestic wavelength of fura-2, Mn2þ entry quenches fura-2
fluorescence28. We measured the extent of the fluorescence
quenching at the end of a 300-ms-long train of pulses at 100Hz.
We found that manganese quenching of fura-2 fluorescence was
� 0.11±0.039 (n¼ 16), � 0.034±0.021 (n¼ 17), �
0.034±0.011 (n¼ 19), � 0.027±0.019 (n¼ 35) for DKO, WT,
JP45 KO and CASQ1 KO fibres, respectively (DF/Fo values are
mean±s.d.). The threefold increase of fura-2 fluorescence
quenching by Mn2þ in DKO fibres was abolished by the
addition of 50mM nifedipine (Fig. 1 lower panels grey line), a
specific inhibitor of Cav1.110. Skeletal muscle membrane
encompasses several molecules that can mediate calcium influx,
including the neonatal splice variant (D29) of Cav1.129, TRPC315

and OraI1/Stim114, Cav1.2. We investigated the expression levels
of other known calcium influx channels, and we found no
changes both in fast and slow DKO fibres (Fig. 2). Altogether,
these data support the conclusion that the increase of excitation-

coupled Mn2þ entry is mediated by an enhancement of calcium
currents through adult form Cav1.110. The next set of experi-
ments was designed to evaluate the changes in the functional
properties of the Cav1.1.

Increase of Cav1.1 channel activity in DKO fibres. The T-tub-
ular system is the membrane compartment richest in Cav1.130

and high-resolution electron microscopy shows that volume and
surface of the T-tubular system in FDB fibres from 1-month-old
DKO and WT mice is not different (Supplementary Fig. S2).
Thus, the threefold increase of excitation-coupled Mn2þ entry is
not fully explained by changes of T-tubular membrane extensions
or by a small increase of the Cav1.1 membrane density
(Supplementary Fig. S1), but rather could be consistent with a
modification of the channel activity of Cav1.1. To examine this
possibility, we investigated the capacitive and Ca2þ currents of
Cav1.1 in FDB fibres from DKO and WT mice by using the
whole-cell configuration of the patch-clamp technique. Intact
FDB fibres from DKO mice show 10mV shift to more negative
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Figure 3 | Voltage dependence of charge movements and Ca2þ currents. (a) Charge movement–membrane potential relationship for WT (n¼ 13) and

DKO (n¼ 15) muscle fibres. Values are mean±s.e.m. error bars show s.e.m. (b) Normalized values to maximal charge movement. Values are mean±s.e.m.

error bars show s.e.m. (c–d) Representative charge movement traces recorded in FDB fibres voltage-clamped in the whole-cell configuration of the patch

clamp. Holding potential: � 80mV. Command pulses of 25ms duration evoked currents from � 80 to 80mV. Selected traces correspond to the steepest

part of the curve. Notice the larger amplitude and 10mV shift of the curve toward more negative potentials in DKO compared with WTmice. (e) Calcium

current–membrane voltage relationship. Command pulses of 400ms duration evoked currents from �80 to 80mV. Notice the larger current amplitude for

DKO (n¼ 19) compared with WT (n¼ 29) mice. Values are mean±s.e.m. (f–g) Representative calcium currents recorded at the indicated membrane

voltages. Fitting curves, their respective equations and best fitting parameter values are described in Tables 1 and 2.
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potential of the half maximal gating charge, and small nonsigni-
ficant increase (15%) in maximal gating charge, compared with
control (Fig. 3b and Table 1). The small increase of maximal
gating charges do not account for the B45% increase of in peak
Ca2þ current density, which was found in DKO FDB fibres
(Fig. 3e). Half-maximal Ca2þ currents in wild-type (WT) and
DKO mice were observed at very similar membrane potentials
(Table 2). These results demonstrate that enhanced calcium influx
is accounted for an increase of the Cav1.1 channel activity.

Skeletal muscle performance is restored in DKO mice. To
investigate physiological relevance of the enhanced Cav1.1
channel activity in DKO mice, we measured in vivo muscle
performance by assessing spontaneous motor activity (Fig. 4a).
Three weeks of training improved skeletal muscle performance in
both WT and KO mice, however, the total running distance in
JP45 null and CASQ1 null mice was B40 km lower compared
with WT and DKO mice (139.7±2.90 km, 118.1±2.35 km versus
175.3±2.96 km, 175.5±4.23 km, respectively). The enhanced
Cav1.1 channel activity restored muscle performance in DKO
mice despite a low degree of atrophy of fast fibres (Supplementary
Fig. S3), and may be a signature of improved muscle strength31

mediated by massive Ca2þ influx via Cav1.110. To investigate
this, we studied the mechanical properties of intact extensor
digitorum longus (EDL) (Fig. 4b). EDL from WT and DKO were
stimulated with a train of tetani at 0.27Hz. The onset maximal
tetanic force normalized per muscle cross-sectional area of EDL
from WT and DKO were not significantly different (327.86±
117.53mN versus 364.64±76.22mN, respectively; mean±s.d.
n¼ 9), whereas the time course of force development of EDL
from DKO was dramatically different compared to those of WT.
In DKO mice, the first train of repetitive pulses of 350ms
duration at 100Hz caused an initial increase of isometric force
and then rapidly decayed to B20% of the onset value at the end
of the repetitive pulses stimulation (Fig. 4b, arrow middle panel
‘first’). The reduction of force development during trains of action

potentials is most likely indicative of poor calcium buffering
capacity of SR caused by the ablation of CASQ1, as a similar
inability to sustain muscle contraction has been observed in
muscles from CASQ1 KO mice24 but not in the EDL muscles
from JP45 KO mice27, which have a normal CASQ1 expression
level. Ablation of JP45 in a CASQ1 KO background has a
remarkable effect on the peak tension after repetitive tetanic
trains at 0.27Hz. We observed that in the EDL from the DKO
mice the isometric tension developed at the end of the last pulse
of the train increased up to 300% of the initial value while a
modest decrease was evident in WT mice (Fig. 4b arrow middle
panel ‘last’; lower panels). On the basis of the data reported in
Figs. 1 and 3, we reasoned that the ablation of JP45 in the CASQ1
KO background supports a strong calcium influx component
mediated by Cav1.1 channel activity which leads to (i)
accumulation of intracellular calcium and to (ii) the impro-
vement of the peak force development after trains of tetanic
stimulation. We tested this possibility by examining the effect of
La3þ on the dynamics of force development of EDL from DKO
mice during trains of tetani. As expected incubation of EDL with
an external solution containing 100 mM La3þ blocked calcium
influx, and the increase of isometric force at the end of each train
of pulses at 100Hz in DKO and had no effect on WT muscles
(Fig. 4b, lower panels). The effect of La3þ in muscles from DKO
mice was reversed by re-exposing EDLs to a bathing solution
containing 1.8mM CaCl2 (Fig. 5).

Discussion
Here we investigated the role of the JP45/CASQ1 complex on the
modulation of Cav1.1 function by analysing the functional
properties of skeletal muscle fibres from JP45/CASQ1 DKO
mice. Our results show that in DKO mice, calcium transients
induced by repetitive action potential are supported by massive
calcium influx from the extracellular environment. The massive
increase of calcium influx is consistent with an enhancement of
the Cav1.1 channel activity because: (1) it is inhibited by
nifedipine, a blocker of Cav1.1; (2) it does not correlate with an
increase in the expression of other know calcium influx channels
such as OraI1, TRPC3 and the neonatal isoform of Cav1.1; (3) is
associated with a 45% increase of the Cav1.1 peak calcium current
density in intact single FDB fibres. This massive calcium influx
via Cav1.1 restores the development of in vitro muscle force of
EDL from DKO mice. The maintenance of muscle force in vitro is
paralleled by the recovery of muscle performance of DKO mice
in vivo. The characterization of the JP45/CASQ1 DKO animal
model supports the conclusion that JP45/CASQ1 complex may be
a genetically encoded modulator of the Cav1.1 channel activity.

The Cav1.1 complex has a dual function: it acts as (i) voltage
sensor which activates, via a mechanical coupling, the RyR, and as
(ii) a slow activating voltage-dependent calcium channel. Calcium
influx via Cav1.1 channel activity was considered not important
for skeletal muscle EC coupling, as it was shown that skeletal
muscles can contract for hours in extracellular medium contain-
ing very low (sub nM) calcium concentrations11. The idea that
skeletal muscle EC coupling is independent from the influx of
extracellular calcium was confirmed later by pharmacological and
genetic manipulation of Cav1.1 function32–35. However, in
evaluating the functional significance of the Cav1.1 channel
activity, one can not dismiss results showing that the influx of
extracellular calcium in involved in the development of muscle
contraction in amphibian and mammalian muscle fibres36,37.
This apparent discrepancy might be ascribed to different
experimental models and conditions that were used to probe
the importance of Cav1.1 channel activity in EC coupling. In this
study we exploited the JP45/CASQ1 DKO mouse model to

Table 1 | Best-fitting parameters describing the voltage-
dependence of charge movement.

Qmax (nC lF� 1) VQ1/2 (mV) K

WT (n¼ 13) 30±8 � 14±2.2 16±1.5
DKO 35±11 � 24±1.7 14±1.9
(n¼ 15) (P¼0.724) (P¼0.001) (P¼0.426)

Data points were fitted to a Boltzmann equation of the form:
Qon¼Qmax/[1þ exp(VQ1/2�Vm)/K], where Qmax is the maximum charge, Vm is the
membrane potential, VQ1/2 is the charge movement half-activation potential and K is the
steepness of the curve as described in ref. 27. The number of FDB fibres from three to four mice
is between parentheses. Results are expressed as the mean±s.e.m. Statistical significance was
assessed using Student’s t-test. The a-level was set at P¼0.05.

Table 2 | Best-fitting parameters describing the voltage-
dependence of calcium current.

Gmax (nS/nF) V1/2 (mV) Vr (mV) z

WT (n¼ 29) 90±8 4.7±2.5 62±3.1 3.9±0.6
DKO 132±12 3.8±1.9 64±4.4 4.0±0.8
(n¼ 29) (P¼0.005) (P¼0.775) (P¼0.712) (P¼0.921)

Data points were fitted to the following equation: ICa¼Gmax (V�Vm)/{1þ exp[zF(V1/2�V)/
RT]}, where Gmax is the maximum conductance, V is the membrane potential, Vr is the reversal
potential, V1/2 is the half-activation potential, z is the effective valence, F is the Faraday constant,
R is the gas constant and T is the absolute temperature (296K) as described in ref. 43. The
number of FDB fibres from three to four mice is between parentheses. Results are expressed as
the mean±s.e.m. Statistical significance was assessed using Student’s t-test. The a-level was
set at P¼0.05.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2496 ARTICLE

NATURE COMMUNICATIONS | 4:1541 | DOI: 10.1038/ncomms2496 | www.nature.com/naturecommunications 5

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


investigate to role of Cav1.1 channel activity during EC coupling
and its modulation by JP45/CASQ1 complex. Although we are
aware that the JP45/CASQ1 KO mouse model may not
recapitulate the physiological setting present in mammalian
muscle fibres expressing normal levels of both JP45 and CASQ1,
our data provide a strong case as to the potential physiological
significance of the Cav1.1 channel activity during EC coupling, at
least in mutant muscle fibres. The robust calcium influx via
Cav1.1 channel activity which was observed during repetitive
action potential in JP45/CASQ1 DKO mice results in better
contractile function in vitro and, most importantly, in vivo. Such

an effect on muscle contractile function could reflect (i) an
indirect global adaptive cellular response to the chronic ablation
of two important SR proteins, or (ii) result from the lack of
specific regulatory mechanism operated by the JP45/CASQ1
complex on the Cav1.1 channel activity. Although we cannot
exclude any of the two possibilities, we are confident that our
results clearly indicate the physiological importance of the dual
activity of Cav1.1 during EC coupling of the DKO muscle fibres.
In this mouse model Cav1.1 clearly operates not only as the
voltage sensor that activates RyR (Fig. 2), (ii) but also as calcium
influx channel which contribute to maintain an adequate level of
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Figure 4 | Skeletal muscle performance of WTand DKO mice. (a) In vivo evaluation of muscle strength. Spontaneous activity in 4–6 week-old WT, DKO,

JP45 KO and CASQ1 KO mice individually housed in cages equipped with a running wheel. Data points are expressed as mean±s.e.m.; n¼ 10 to 13 mice.

Overall ANOVA P-valueo0.0001; multicomparison Dunnet’s ANOVA post test shows difference: WTversus DKO P40.05; WTversus JP45 KO Po0.05;

WT versus CASQ1 KO Po0.01. (b) Evaluation of tetanic force of intact EDL. Top and middle row of panels: EDLs were triggered by field stimulation in

bathing solution containing 1.8mM CaCl2 with a train of repetitive pulses (100Hz, 350ms duration) at 0.27Hz (left panels). Time course of force

development of the first and last tetani of the trace displayed in the left panels (middle and right panels). Lower row of panels: after repetitive train

stimulation the EDL muscles from control (left panel) and DKO (right panel) mice were incubated for 10min in a bathing solution containing 100mM La3þ

and were then stimulated with repetitive trains of pulses at 0.27Hz. Data point represents the force developed at the end of 350ms duration repetitive

pulse stimulation (values are mean ±s.d. n¼8, * Po0.05 Mann–Whitney). The increase the force developed at the end of tetanic stimulation in EDL from

KO mice was abolished by 100mM La3þa blocker of the calcium influx into muscle fibres (compare DKO Ca2þ versus DKO La3þ ).
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releasable SR calcium content during sustained muscle activity
evoked by tetanic stimulation (Fig. 3). These data imply that the
JP45/CASQ1 complex modulate Cav1.1 channel activity also in
normal fibres, in particular, it may operate in those conditions
which causes a deficit SR calcium load.

On the basis of these data we propose that JP45/CASQ1
complex is genetically encoded modulator of the Cav1.1. channel
activity, and that it constitutes a potential target to devise novel
therapeutic strategies against the decline of skeletal muscle
strength linked to decreased SR calcium content6,7,12.

Methods
Generation JP45 CASQ1 DKO mice. JP45 KO was obtained as described by
Delbono et al.27. CASQ1 KO mice were obtained as described by Paolini et al.26.
DKO mice were generated by crossing to each other established JP45 KO and
CASQ1 KO lines backcrossed in C57BL6J (Supplementary Fig. S4).

Morphology. Immunohistochemistry of EDL and Soleus was carried out as
described by Delbono et al.38. EDL and soleus muscles were embedded in OCT,
snap-frozen in isopentane, cryosectioned at the mid-belly region (10mm) and
mounted on coverslips for immunostaining. For staining mounted sections were air
dried, treated with PBS containing 1% bovine serum albumin (BSA) and 2% horse
serum for 30min and incubated overnight at 4–8 �C with a PBS solution containing
0.01% Triton X100, 1% BSA, 2% horse serum, 0.5% mgml� 1 anti-mouse slow
myosin heavy chain (MAB 1628, Millipore, Billerica, MA), 2mgml� 1 anti rat a-
laminin (MAB1914, Millipore). Sections were then washed with PBS for 15min four
times, and incubated at room temperature for 40min with a PBS containing Alexa
Fluor 488 anti-mouse IgG Ab (2mgml� 1) and Cy3 anti rat IgG Ab (0.5 mgml� 1).
After incubating in the secondary Ab, sections were washed with PBS for 15min
four times, dehydrated with ethanol and mounted using a glycerol medium.
Fluorescence images were imaged using a Leica DM5000B fluorescence microscope
and analysed with Analysis software package from Soft Imaging System, Muenster,
Germany. Image analysis of muscle sections was performed in four steps: (1)
determination of the muscle fibre boundaries, (2) determination of the muscle fibre
cross-sectional area, (3) calculation of the per cent of muscle fibres positive for anti
MHC I Ab and (4) determination of the per cent of muscle fibres negative for anti
MHC I Ab staining. The muscle fibre cross-sectional area was determined using the
minimal ‘Feret’s diameter’ (the minimum distance of parallel tangents at opposing
borders of the muscle fibre). High-resolution electron microscopy was carried out as
described by Paolini et al.26 Volume and surface of the transverse tubule (TT)

network (see Table in Supplementary. Fig. 4) were determined using the well-
established stereology point and intersection counting techniques39,40 in EM
micrographs taken at � 14,000 of magnification. (a) Measurement of relative fibre
volume occupied by TT. After covering the images with an orthogonal array of dots
at a spacing of 0.20mm, the ratio between numbers of dots falling in the TT lumen
and the total number of dots covering the whole image represent the relative volume
of fibre occupied by the TT. (b) Measurement of TT surface area to volume. The
images were covered with two sets of grid lines separated by a distance of 0.24 mm
and intersecting at right angles. The frequency of intersections between the
membrane of interest (TT profiles) and the grid lines was counted. The ratio of TT
surface area to volume was obtained from the formula C/2dP test, where C is the
number of intersections, d is the spacing between the grid lines, and P test is the
number of grid intersections in the test area.

Gene expression analysis. Expression of neonatal D29 isoform of Cav1.1 was
detected by semiquantitative RT-PCR41. Total RNA was extracted from
homogenized mouse muscle tissues EDL and SOL, and cultured C2C12 myotubes
using TRIzol reagent. Eight hundred nanograms of RNA were first reverse
transcribed into cDNA; the Cav1.1 cDNA was amplified by PCR using primers29,
which span exons 27–34: forward 50-AGTCGGAGCAGATGAACCAC-30 and
reverse 50-ATGGCCTTGAACTCATCCAG-30 . The PCR amplification conditions
were 95 �C for 5min, followed by 37 cycles of 94 �C for 40 s, 51 �C for 40 s and
70 �C for 1min, followed by a 5-min extension at 72 �C. The RT-PCR products
encoding the adult and neonatal(Cav1.1D29) isoforms are 790-bp long (upper
band) and (lower band) 733 bp long, respectively.

Analysis of total SR and muscle strength assessment. Total SR membranes
were prepared22 starting from a 20% skeletal muscle total homogenate; this was
sedimented at 3,000gmax for 10min and the resulting supernatant was centrifuged
at 15,000gmax for 20min to remove the myofibrillar protein components. The
15,000gmax supernatant was then centrifuged for 60min at 100,000gmax to isolate
the total SR (microsomal) pellet. SDS-polyacrylamide electrophoresis and western
blot of total SR proteins were carried out as described by Anderson et al.22 Blots
were probed with a polyclonal primary Ab followed by peroxidase-conjugated
secondary antibodies. The immunopositive bands were visualized by
chemiluminescence using the Super Signal West Dura kit from Thermo Scientific.
Densitometry of the immunopositive bands was carried out by using BioRad
GelDoc 2000. [3H]-PN200-110 and [3H]-Ryanodine binding was carried out
according to Anderson et al.42 Briefly, total SR membranes were incubated for 1 h
in the dark in a solution containing 50mM Tris–HCl pH 7.5, 10mM CaCl2 plus
protease inhibitor cocktail (ROCHE cat. no. 05892953001), 0.05–5 nM PN200-100
and (þ )-[5-methyl-3H]. The samples were then filtered through Whatman glass
microfibre GF/B filters by Millipore manifold filtering apparatus, rinsed three times
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Figure 5 | Tetanic contraction of EDL from WT and JP45/CASQ1 double KO mice. EDL from wild-type and DKO were first incubated in a Tyrode’s

solution containing 1.8mM CaCl2. Maximal tetanic force was triggered by field stimulation 28 with a train of repetitive pulses (100Hz of 350ms duration)
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with 5ml of solution containing 200mM choline chloride, 20mM Tris-HCl pH 7.5,
and the radioactivity retained on the filters was determined by liquid scintillation
counting. [3H]-ryanodine binding was carried out by incubating total SR
membranes for 12–16 h at room temperature with 20mM HEPES pH 7.4, 1M
NaCl, 5mM AMP, 20 mM CaCl2, 0.05–10 nM [3H]-ryanodine and protease
inhibitor cocktail (ROCHE cat. no. 05892953001). Membrane bound [3H]-
ryanodine was determined by scintillation counting as described above. Non-
specific binding was evaluated in the presence of 1 mM unlabelled nifedipine and
10mM unlabelled ryanodine, respectively.Curve fitting was performed using Graph
Pad Prism 4 software package. Skeletal muscle performance and mechanical
properties of EDL were analysed as described by Debono et al.27 Briefly, animals
were individually housed in cages equipped with a running wheel carrying a
magnet. Wheel revolutions were registered by a reed sensor connected to an
I-7053D Digital-Input module (Spectra AG, Egg, Switzerland), and the revolution
counters were read by a standard laptop computer via an I-7520 RS-485—to—RS-
232 interface converter (Spectra AG, Egg, Switzerland). Digitized signals were
processed by the ‘mouse running’ software developed at Santhera Pharmaceuticals,
Liestal, Switzerland. To test force in vitro, EDL muscles were dissected and
mounted into a muscle testing set-up (Heidelberg-Scientific Instruments,
Heidelberg, Germany). Muscle force was digitized at 4 kHz using an AD
Instruments converter and stimulated with 15V pulses for 0.5ms. EDL tetanus was
recorded in response to 400ms pulses at 10–120Hz. Specific force was normalized
to the muscle cross-sectional area (CSA)¼wet weight (mg)/length (mm)� 1.06
(density mgmm� 3).

Cell electrophysiology recordings and optical recording. FDB fibres from WT
and DKO mice were enzymatically dissociated, plated and recorded following
published procedures43,44. The composition of the pipette solution was (mM): 140
Cs-aspartate; 5Mg-aspartate2, 10 Cs2EGTA (ethylene glycol-bis(a-aminoethyl
ether)-N,N,N0N0-tetraacetic acid), 10 HEPES (N-[2-hydroxyethyl]piperazine-N0-[2-
ethanesulfonic acid]), pH was adjusted to 7.4 with CsOH. The external solution
contained (mM): 145 TEA (tetraethylammonium hydroxide)-Cl, 10 CaCl2, 10
HEPES and 0.001 tetrodotoxin. Solution pH was adjusted to 7.4 with TEA.OH.
For charge movement recording, calcium current was blocked with the addition of
0.5 Cd2þ plus 0.3 La3þ to the external solution43. Peak Ca2þ currents were
normalized to membrane capacitance and expressed as Amperes per Farad,
whereas intramembrane charge movements were calculated as the integral of
the current in response to depolarizing pulses and expressed per membrane
capacitance as Coulombs per Farad. Fura-2 Mn2þ quenching in intact FDB fibres
was carried out as previoulsy described19,28. Calcium transients were measured by
using the low-affinity fuorescent calcium indicator MagFluo445,46. Briefly, changes
in the [Ca2þ ]i induced by supramaximal field stimulation were monitored in FDB
fibres loaded with Mag-Fluo-4/AM in Tyrode’s buffer. All experiments were
carried out at room temperature (20–22 �C) in the presence of 50 mM N-benzyl-p-
toluenesulfonamide (BTS) (Tocris) to minimize movement artefacts.
Measurements were carried out with a Nikon ECLIPSE TE2000-U inverted
fluorescent microscope equipped with a � 20 magnification objective. Fluorescent
signals were capture by a photomultiplier connected to a Nikon Photometer P101
amplifier. Calcium transients were analysed by ADinstrument Chart5 and Origin.6
programs. Changes in fluorescence were calculated as DF/F¼ (Fmax� Frest)/
(Frest). Resting calcium was measured with Indo1 loaded FDB fibres45.

Statistical analysis. We used GraphPad Prims 4.0 software package to perform
curve fitting and statistical analysis.
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