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A peptide derived from laminin-c3 reversibly
impairs spermatogenesis in rats
Linlin Su1, Dolores D. Mruk1, Pearl P.Y. Lie1, Bruno Silvestrini2 & C. Yan Cheng1

Cellular events that occur across the seminiferous epithelium in the mammalian testis during

spermatogenesis are tightly coordinated by biologically active peptides released from laminin

chains. Laminin-g3 domain IV is released at the apical ectoplasmic specialization during

spermiation and mediates restructuring of the blood–testis barrier, which facilitates the transit

of preleptotene spermatocytes. Here we determine the biologically active domain in laminin-

g3 domain IV, which we designate F5 peptide, and show that the overexpression of this

domain, or the use of a synthetic F5 peptide, in Sertoli cells with an established functional

blood–testis barrier reversibly perturbs blood–testis barrier integrity in vitro and in the rat

testis in vivo. This effect is mediated via changes in protein distribution at the Sertoli and

Sertoli–germ–cell cell interface and by phosphorylation of focal adhesion kinase at Tyr407. The

consequences are perturbed organization of actin filaments in Sertoli cells, disruption of the

blood–testis barrier and spermatid loss. The impairment of spermatogenesis suggests that

this laminin peptide fragment may serve as a contraceptive in male rats.
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D
uring the seminiferous epithelial cycle of spermatogenesis
in the mammalian testis, multiple cellular events take
place across the seminiferous epithelium, which include

spermatogonial self-renewal via mitosis, meiosis, spermiogenesis
and spermiation, which are supported by Sertoli cells1–9.
Although these cellular events are tightly coordinated and
regulated, the underlying regulatory mechanisms remain
unknown. A recent report has shown that fragments of
laminin-b3 and -g3 chains that are expressed by elongating/
elongated spermatids and are components of the a6b1-integrin/
laminin-a3b3g3 adhesion protein complex at the apical
ectoplasmic specialization (ES)10,11, a testis-specific actin-based
adherens junction12,13, are likely generated at spermiation via the
action of metalloprotease-214 as the result of apical ES disruption/
degeneration at the luminal edge of the tubule acting as
biologically active, autocrine peptides to induce blood–testis
barrier (BTB) restructuring to facilitate the transit of preleptotene
spermatocytes across the BTB15. In short, these two cellular
events, namely spermiation and BTB restructuring, which occur
at the opposite ends of the seminiferous epithelium, are
coordinated by biologically active laminin fragments. This
observation prompted us to hypothesize the presence of an
apical ES–BTB functional axis15, which coordinates cellular
events that occur at different cellular compartments in the
seminiferous epithelium12. Studies from other epithelia have also
demonstrated that laminin fragments are biologically active,
capable of altering cellular function, including cell movement and
cell adhesion13,16–19. In addition, the concept of an apical ES–BTB
functional axis is supported by recent studies using the phthalate-

induced Sertoli cell injury model20–22. Moreover, we have recently
shown that activated FAK, p-FAK-Tyr407, appears to be a crucial
signalling molecule that serves as a ‘molecular switch’ in this axis
via its restrictive spatiotemporal expression at the apical ES and
the BTB to regulate this functional axis23.

We report herein the identification of the biologically active
domain residing in the laminin-g3 chain. Overexpression of this
domain in Sertoli cells was found to perturb the Sertoli cell tight
junction (TJ)-barrier function in vitro, and the use of a synthetic
peptide based on this domain also perturbed BTB function
reversibly both in vitro and in vivo. The peptide induced germ cell
loss from the testis, thereby impairing spermatogenesis. We also
identified a mechanism by which this peptide might exert its
effects, which involves phosphorylation of FAK-Tyr407.

Results
Laminin fragments regulate Sertoli cell TJ function. Studies
in vitro were performed with a Sertoli cell culture system by using
primary Sertoli cells with negligible Leydig and germ cell
contamination as earlier described24, which also formed a
functional TJ-permeability barrier with ultrastructures of TJ,
basal ES, gap junction and desmosome when examined under
electron microscopy25–27 that mimicked the BTB in vivo2. This
system is widely used by investigators in the field to study BTB
function and its regulation28–30. In short, DNA constructs
corresponding to the entire or portions of domain IV of the
laminin-g3 chain were cloned into the pCIneo mammalian
expression vector (Fig. 1a–c), which were used to transfect Sertoli
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Figure 1 | Preparation of laminin-c3 domain IV cDNA constructs to assess their biological activity. (a) Schematic drawing illustrating different functional

domains of laminin-g3 chain. Laminin-g3 domain IV (DIV, in red) was selected based on earlier studies that this domain is biologically active in regulating

BTB dynamics15, and it was further divided into five fragments of F1–F5 as shown in b to assess their effects on BTB function. (c) cDNA-deduced amino-acid

sequence of laminin-g3 DIV (GenBank accession code XM_231139) is shown, illustrating the sequences of F1 (blue boxed area), F2 (orange boxed area), F3

(purple boxed area), F4 (pink coloured text) and F5 (green coloured text). (d) RT-PCR illustrating the expression of laminin-g3 DIV and the five different

fragments (see a) in Sertoli cells after transfection with corresponding vectors versus pCIneo alone for 3 days. Cells transfected with pCIneo alone served as a

negative control since Sertoli cells per se did not express laminin-g3 chains, which are exclusively expressed by elongating/elongated spermatids10. S-16 served as

an internal PCR control. Identity of the PCR product was confirmed by direct nucleotide sequencing at GeneWiz Inc (South Plainfield, NJ). M, DNA markers; bp,

base-pair. (e) Changes in the Sertoli cell TJ-permeability barrier function following transient expression of different fragments of laminin-g3 DIV versus DIV

(positive control) and pCIneo alone (negative control) on day 3 for 24h by quantifying transepithelial electrical resistance (TER) across the Sertoli cell epithelium

in bicameral units (n¼ 3). This experiment was repeated three times using different batches of Sertoli cells which yielded similar results. *Po0.05; **Po0.01.
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cells that had been cultured alone for 3 days (Fig. 1d) with an
established functional TJ-permeability barrier (Fig. 1e) with a
transfection efficiency of B15–20% (see Supplementary
Methods). As Sertoli cells do not express laminin-g3 chain nor
its fragments because laminin-g3 is a spermatid protein at the
apical ES in the rat testis10,15, expression of laminin-g3 DIV and
the corresponding fragments F1–F5 in these Sertoli cell cultures
(Fig. 1d) thus illustrate transient overexpression of these genes
when cells were harvested 48 h after transfection for RT-PCR
using primers specific to these genes (Supplementary Table S1). It
was noted that besides laminin-g3 DIV, which was earlier shown
to be biologically active and to disrupt Sertoli cell TJ-barrier
function15, only F2 and F5 were capable of perturbing the Sertoli
cell BTB function, but the F5 fragment was more potent in
perturbing the TJ-barrier (Fig. 1e), illustrating the biologically
active domain is residing in F5, perhaps also in part in F2 (see
Fig. 1b,c). Attempts were made to further define the biologically
active domain residing in the overlapping F2 and F5 fragments by
preparing three additional cDNA constructs designated F6, F7
and F8 (see Supplementary Fig. S1); however, overexpression of
these constructs in Sertoli cells showed that they were biologically
inactive, incapable of perturbing the Sertoli cell TJ-barrier func-
tion or of reducing the expression of TJ- (for example, occludin)
and/or basal ES- (for example, N-cadherin, b-catenin) proteins at
the Sertoli cell BTB (Supplementary Fig. S1a–e), indicating
stretches of sequences in these two overlapping fragments are
crucial to confer biological activity and to perturb the Sertoli cell
TJ-barrier.

Laminin-c3 fragments regulate protein expression at the BTB.
The biological effects of F2 and F5 fragments and the laminin-g3
DIV versus control and other non-active fragments as noted
in Fig. 1 were further assessed by their ability to modulate
the steady-state levels of TJ- (for example, occludin, JAM-A),
TJ-regulatory- (for example, FAK, p-FAK-Tyr407) and basal ES-
(for example, N-cadherin, b-catenin) proteins at the Sertoli cell
BTB on day 3 after transfection (that is, day 6 after cell plating)
(Fig. 2a,b). The steady-state protein levels of occludin, JAM-A
and p-FAK-Tyr407, but not FAK, N-cadherin and b-catenin were
found to be significantly reduced in Sertoli cell epithelium fol-
lowing overexpression of F5 peptide and laminin-g3 DIV
(Fig. 3a). The finding that the expression of p-FAK-Tyr407 was
downregulated by these fragments was significant as p-FAK-
Tyr407 is a crucial BTB regulatory protein23. F2 fragment was also
active, but its biological effect in disrupting Sertoli cell BTB
protein expression was considerably lower versus F5 (Fig. 2a,b),
consistent with data shown in Fig. 1e. Similarly, F6, F7 and F8
also had no apparent effects in perturbing the steady-state level of
occludin in the Sertoli cell epithelium (Supplementary Fig. S1e).

Overexpression of F5 fragment affects protein distribution.
Sertoli cells cultured alone for 3 days with an established TJ-
permeability barrier were transfected with F5/pCIneo plasmid
DNA versus pCIneo vector alone (control). Twenty-four hours
thereafter, transfection mixture was removed and cells were
cultured for an additional 2 days before being subjected to dual-
labeled immunofluorescence analysis using corresponding anti-
bodies (see Supplementary Table S2). In control cells, basal ES
proteins N-cadherin (green) and b-catenin (red), and TJ proteins
occludin (red) and ZO-1 (green) were co-localized mostly at the
Sertoli cell–cell interface (Fig. 2c,d). In cells transfected with the
F5 fragment, the localization of both N-cadherin and b-catenin
became disorganized, as both proteins seemed to move away from
the cell surface and into cell cytosol (Fig. 2c). However, we found
a considerable loss of occludin and ZO-1 at the Sertoli cell–cell
interface (Fig. 2d), consistent with a reduction in the steady-state

level of occludin in these cells (see Fig. 2d,b). Overexpression of
F5 peptide fragment also caused a loss in the co-localization of
adhesion protein complexes N-cadherin/b-catenin and occludin/
ZO-1 (Fig. 2c,d). These findings (Fig. 2) support results shown
in Fig. 1e, illustrating that the disruption of the Sertoli cell
TJ-barrier following F5 peptide overexpression in Sertoli cells is
mediated by changes in protein distribution at the Sertoli cell–cell
interface.

FAK Y407E blocks F5 peptide-induced TJ disruption. Phos-
phorylation of FAK at Tyr407 (p-FAK-Tyr407) is known to reg-
ulate BTB dynamics by increasing the tightness of the Sertoli cell
TJ-permeability barrier23. As shown in Fig. 2a, overexpression of
the F5 fragment in Sertoli cells that perturbed the TJ-barrier
function (see Fig. 1e) downregulated the expression of p-FAK-
Tyr407. Overexpression of a phosphomimetic mutant FAK
Y407E, however, promoted the Sertoli cell TJ-barrier, making it
‘tighter’, and its co-expression with F5 fragment (F5/pCIneo) was
capable of blocking the F5-induced TJ-barrier disruption
(Fig. 3a), illustrating p-FAK-Tyr407 is a crucial signalling mole-
cule downstream of the biologically active laminin fragment in
the apical ES–BTB axis. Studies by dual-labeled immuno-
fluorescence analysis also demonstrated that co-expression of FAK
Y407E mutant prevented the F5 fragment-mediated mis-distribution
of occludin and ZO-1 at the Sertoli cell–cell interface (Fig. 3b),
thereby illustrating p-FAK-Tyr407 is an important signalling partner
of the laminin fragment in regulating the apical ES–BTB axis.

F5 peptide perturbs Sertoli cell TJ function in vitro. We next
added a synthetic peptide corresponding to the first 50 amino
acids of F5 fragment designated F5 peptide (Fig. 4a) to Sertoli
cells cultured on bicameral units on day 3 when a functional TJ-
barrier was established (Fig. 4b). We found that the presence of
the synthetic F5 peptide perturbed the Sertoli cell TJ-barrier
(Fig. 4b). This disruptive effect was reversible, as its removal by
washing Sertoli cells with F12/DMEM without the synthetic
peptide allowed the disrupted TJ-barrier to be ‘resealed’ (Fig. 4b).
However, the 22-amino acid myotubularin-related protein 2
(MTMR2) had no apparent effects on the TJ-barrier, similar to
the PBS control (Fig. 4b), consistent with an earlier report31.

F5 peptide reversibly disrupts BTB integrity in vivo. To validate
whether the findings shown in Fig. 4a,b are physiologically rele-
vant, we sought to examine the effects of the synthetic F5 peptide
on the BTB integrity in vivo by treating rats with increasing doses
of the synthetic F5 peptide via intratesticular injection. In control
rat testes (Fig. 4c), administration of fluorescein isothiocyanate
(FITC)-inulin (green fluorescence) to rats at the jugular vein was
found to be excluded from entering the adluminal compartment
of the epithelium, consistent with the presence of a functional
BTB located near the basement membrane (Fig. 4c). However,
when rats were treated with CdCl2, which perturbs BTB integ-
rity32–34, a FITC signal was readily detected in the entire
seminiferous epithelium beyond the BTB, including the tubule
lumen by day 5 (Fig. 4c). However, in rats treated with the F5
peptide at doses of 80 mg per testis (low-dose, B10 mM) or 320
(high-dose, B40mM), BTB integrity was compromised dose-
dependently over the next 4 weeks (Fig. 4c), even though this
damage was not as severe as the CdCl2-induced irreversible BTB
disruption. More importantly, the disrupted BTB induced by the
synthetic F5 peptide was ‘resealed’ after 4 weeks in both the low-
and high-dose groups (Fig. 4c). Findings shown in Fig. 4c were
further analysed semi-quantitatively by comparing the distance
travelled by FITC-inulin beyond the BTB near the basement
membrane (DFITC) versus the radius of the seminiferous tubule
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(DSTr) (Fig. 4d). These findings also confirm results shown in
Figs 1e and 2c,d and Fig. 4b. When lysates from these rat
testes were used for immunoblot analysis to quantify changes
in the steady-state levels of TJ (for example, occludin, JAM-A),
TJ-regulatory (for example, FAK and p-FAK-Tyr407) and basal
ES (for example, N-cadherin, b-catenin) proteins, a dose-
dependent downregulation on the expression of the TJ- and TJ-
regulatory proteins, but not the basal ES proteins, was noted
(Fig. 4e,f). For instance, a transient downregulation of p-FAK-
Tyr407 was noted (Fig. 4e,f), consistent with findings in vitro
shown in Fig. 2a,b).

Synthetic F5 peptide impairs spermatogenesis in rats. To test
whether local administration of the peptide that perturbed the BTB
in vivo would affect the status of spermatogenesis in the semi-
niferous epithelium, synthetic F5 peptide at doses of 80mg per
testis (low-dose, 10 mM) or 320 mg per testis (high-dose, 40 mM)
was administered via intratesticular injection, and histological
analysis was performed following hematoxylin and eosin staining
using cross-sections of paraffin-embedded testes (Fig. 5a–e).
Although this treatment did not elicit statistically significant
changes in testis weight over the 16-week experiment period as
cell adhesion was affected in only B40% of the tubules examined
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Figure 2 | Laminin-c3 fragments affect protein expression and localization at the Sertoli cell BTB. (a) On day 3, Sertoli cells with a functional BTB were

transfected with different expression vectors for 24 h and terminated 48h thereafter for immunoblotting, illustrating changes in the levels of integral

membrane proteins (for example, occludin, JAM-A, N-cadherin), adaptor protein (for example, b-catenin) and regulatory proteins (for example, FAK,

p-FAK-Tyr407). (b) Bar graphs summarize results shown in a. Each bar is a mean±s.d. of n¼ 5 experiments, and data were normalized against actin. The

protein levels in cells transfected with pCIneo alone were arbitrarily set at 1, against which one-way analysis of variance and Dunnett’s test were performed.

*Po0.05; **Po0.01. (c) Overexpression of F5 peptide in Sertoli cells caused considerable re-distribution of basal ES proteins at the BTB: b-catenin (red)

and N-cadherin (green) at the Sertoli cell–cell interface, moving away from cell surface and into cell cytosol on day 3 after transfection. Overexpression of

F5 peptide also changed localization and/or distribution of TJ proteins at the BTB: occludin (red) and ZO-1 (green) at the Sertoli cell–cell interface. Co-

localized proteins appeared as ‘orange’ in merged images. Nuclei were visualized by 40,6-diamidino-2-phenylindole (DAPI) (blue). Scale bar¼ 10mm in c

and d, which applies to all images in both panels.
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(Fig. 5f,g), possibly the result of limited access of the F5 peptide to
all tubules via local administration, histological analysis of these
testes revealed the synthetic F5 peptide caused germ cell depletion
from the epithelium, mostly elongated, elongating or round
spermatids and some late spermatocytes in treatment versus
control groups (Fig. 5a–g; Supplementary Fig. S2). This disruptive
effect on germ cell adhesion was detectable 3 days after treatment
in the high-dose group, and the progressive damage in the

seminiferous epithelium in both groups was clearly visible
(Fig. 5b–e) and quantifiable (Fig. 5f,g), illustrating the scope of
damage in the epithelium following synthetic F5 peptide
administration. For instance, the tubule diameter was reduced by
B40% (Fig. 5f,g) in B40% of the tubules randomly scored,
consistent with the observations shown in Fig. 5a–e. The dis-
ruptive effects of the F5 peptide on the status of spermatogenesis
were reversible, as spermatogenesis gradually rebounded 16 weeks
after treatment in the low-dose group (Supplementary Fig. S2). In
a second control group, in which rats were treated with MTMR2
peptide at 50mM (200 mg peptide/testis) (see Supplementary
Methods), no alterations on the status of spermatogenesis were
noted at 1-, 4- and 8-week post treatment, consistent with an
earlier report31, illustrating the specificity of the F5 peptide in
disrupting spermatogenesis.

F5 peptide affects protein localization in the testis. Findings
shown in Figs 3–5 thus illustrate that the synthetic F5 peptide is
capable of inducing BTB disruption and germ cell loss in vivo
after its intratesticular administration. We next used immuno-
histochemistry to assess changes in the localization of TJ proteins,
such as occludin, at the BTB in the seminiferous epithelium
(Fig. 6). Occludin was selected as a BTB marker protein because
this integral membrane protein is abundantly found in the rat
testis and its expression is restricted to the BTB9. Furthermore, its
knockout in mice (occludin� /� ) led to infertility by 36–60 week
of age in which tubules were devoid of all spermatocytes and
spermatids35,36 (but rats remained fertile by 6- to 10- week of age
when other TJ proteins, such as claudin-3 and JAM-A, apparently
could supersede and transiently maintain the BTB integrity). In
normal (control) rat testes, occludin was detected near the basal
compartment of the epithelium, closely localized to the basement
membrane, consistent with its localization at the BTB in
seminiferous tubules (Fig. 6). However, by 1-week in both the
low-and high-dose F5 peptide-treated groups, the expression of
occludin was downregulated (Fig. 6), consistent with immuno-
blotting data shown in Fig. 4e when the BTB was transiently
disrupted at this time (Fig. 4c,d). However, by 4-week in both F5
peptide-treated groups, the expression of occludin had reboun-
ded, consistent with immunoblotting data shown in Fig. 4e.
Interestingly, it was still found near the basement membrane, but
was ‘diffusely’ localized, surrounding the base of the tubule
(Fig. 6). In some seminiferous tubules in rats from the low- and
more tubules in the high-dose groups by 4-week, occludin was
found to be very intensely localized at the BTB in tubules that
were completely devoid of germ cells (Fig. 6), analogous to the
Sertoli cell-only syndrome.

For basal ES proteins N-cadherin and b-catenin at the
BTB12,37, both proteins were found to co-localize at the BTB in
control rat testes, forming a ‘belt-like’ ultrastructure surrounding
the base of the entire seminiferous tubule (Supplementary Fig.
S3A–E). However, in testes obtained from rats at 4 weeks in either
the low- or the high-dose synthetic F5 peptide-treated group,
although these two basal ES proteins remained co-localized at the
BTB even when tubules were shrunk by B40% and the BTB was
disrupted (see also Figs 4 and 5), both N-cadherin and b-catenin
were found to be mis-localized, analogous to occludin shown in
Fig. 6 and also data shown in Fig. 2c,d regarding their mis-
localization, as these proteins were no longer confined to the BTB
in the seminiferous epithelium, instead, they were mis-localized,
associated with apical junctions, and abnormally distributed
(Supplementary Fig. S3).

F5 peptide exerts its effects via p-FAK-Tyr407. A recent report
has shown that p-FAK-Tyr407 promotes adhesion at the apical ES
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and the BTB via its restrictive spatiotemporal expression during
the epithelial cycle23. During the F5 peptide-induced BTB
disruption, a mis-localization of p-FAK-Tyr407 and its

downregulation at the BTB were detected, in which p-FAK-
Tyr407 no longer tightly associated with the BTB, instead it was
diffusing away from the site of the BTB in the seminiferous
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epithelium and its expression was downregulated in some tubules
(Fig. 7a,b). Interestingly, the expression of p-FAK-Tyr407 was
almost abolished at the BTB in CdCl2-treated rats when the BTB
was badly damaged (Fig. 7c; Fig. 4c). Prominent changes in the
localization of p-FAK-Tyr407 at the apical ES were initially
detected at 3 days in the F5 peptide-treated rats, where p-FAK-
Tyr407 no longer restricted to the concave side of the elongating
spermatid heads. Instead, p-FAK-Tyr407 was found to engulf both
the concave and convex sides of the spermatid heads (Fig. 7). By 1
and 2 weeks, p-FAK-Tyr407 staining at the apical ES considerably
diminished, becoming almost non-detectable in most elongating
spermatids and many of these spermatids lost their polarity with
their heads pointing randomly to all directions instead of towards the
basement membrane (see ‘white’ arrowheads in Fig. 7) as seen in
control rats. By 4 weeks, virtually no elongating/elongated spermatids
were found in the affected tubules; instead, p-FAK-Tyr407 was found
in vesicular structures (Fig. 7), which appeared to be cytoplasmic
droplets as reported23. These findings thus illustrate that the F5
peptide mediated its effects by downregulating and/or redistributing
p-FAK-Tyr407 in the seminiferous epithelium along the apical ES-
BTB axis, which in turn, perturbed cell adhesion at the apical ES and
the BTB, leading to germ cell loss (Fig. 5a,b, Supplementary Fig. S2)
and BTB disruption (Fig. 4).

F5 peptide perturbs cell adhesion via F-actin organization. It
was recently shown that p-FAK-Tyr407 mediated its effects via
Arp-3 of the Arp-2/3-N-WASP complex, modulating branched
actin polymerization, causing F-actin reorganization in Sertoli
cells, thereby regulating cell adhesion at the BTB in the rat
testis23. As overexpression of the F5 fragment in the Sertoli cell
epithelium (Fig. 2a,b) or administration of F5 peptide into the
testis (Fig. 4e,f) also downregulated and/or induced mis-locali-
zation of p-FAK-Tyr407 (Fig. 7), we next investigated changes in
the distribution of actin filament bundles in the seminiferous
epithelium by staining F-actin using phalloidin-FITC. Although
the total actin determined by immunoblotting in both treatment
groups versus controls were similar (see Fig. 4e), significant
changes in the distribution and/or localization of F-actin at the
apical ES and the BTB in the seminiferous epithelium following
F5 peptide treatment were detected (Fig. 8). Specifically, actin
filaments (that is, F-actin) were no longer tightly packed at the
BTB, but they were mis-localized, moving away from the Sertoli
cell–cell interface at the BTB (Fig. 8). Because of the peptide-
induced depletion of elongated/elongating spermatids from the
epithelium, F-actin at the apical ES site was also mis-localized
(Fig. 8). These changes in F-actin organization thus contribute to
an alteration of occludin localization at the BTB (see Fig. 6),
destabilizing cell adhesion at the Sertoli–Sertoli cell interface,

leading to BTB disruption (Fig. 4c–e), and premature release of
spermatids (Fig. 5a–e, Supplementary Fig. S2) from the epithelium.

Discussion
Herein, we have identified the biologically active domain in
laminin-g3 DIV of the laminin-g3 chain from laminin-333
residing at the apical ES, which is comprised of a stretch of 50
amino-acid residues designated F5 peptide, and a synthetic F5
peptide was found to be capable of reversibly perturbing the BTB
in vivo, leading to germ cell exfoliation from the seminiferous
epithelium of adult rat testes. These effects were found to be
mediated by perturbing the restrictive spatiotemporal expression
and/or localization of p-FAK-Tyr407, which, in turn, affects
the distribution of F-actin at the apical and basal ES in the
epithelium. These findings illustrate that a disruption of the apical
ES-BTB-basement membrane functional axis can be a novel
approach to disrupt spermatogenesis. Other studies in the field
also support the concept that biologically active collagen
fragments can be used to manipulate the TJ-permeability barrier
function in blood–tissue barriers13,38. For instance, although a
20 kDa fragment derived from collagen XVIII, known as
endostatin, was ineffective per se to modulate the TJ-
permeability barrier of retinal microvascular endothelial cells
(RMEC), it was found to induce a significant increase of occludin
expression at the RMEC TJ barrier39. Furthermore, endostatin
was capable of blocking the vascular endothelial growth factor-
mediated TJ-barrier disruption in RMEC by altering the
phosphorylation status of occludin at the blood–retinal barrier39

via an activation of ERK1/ERK2 and p38 MAPK40. In the testis,
collagens such as collagen a3(IV) chains are abundant at the
basement membrane, which is a modified form of the
extracellular matrix2,38. In addition, other studies have also
illustrated that a degradation of laminin 332 by plasmin41 was
found to impair keratinocyte adhesion and the assembly of
basement membrane at the dermal–epidermal junction. Also, a
deletion of collagen XVIII (in Col18a1� /� mice) or an
overexpression of its endostatin domain) was found to accelerate
or delay cutaneous wound healing, respectively42. Collectively,
these data thus indicate unequivocally that collagen and/or
laminin fragments, some of these are biologically active peptides,
can be generated during in vivo cellular processing to modulate
diversified cellular functions. In short, F5 peptide generated at the
apical ES during spermiation via cleavage of the laminin-g3 chain
by MMP2 near the apical region of the Sertoli cell epithelium can
exert its effects near the basal region of the epithelium to induce
BTB restructuring, mediated by changes in the expression and/or
localization of p-FAK-Tyr407, to be followed by F-actin
distribution and/or localization. Even though the synthetic F5

Figure 4 | Laminin F5 peptide reversibly perturbs BTB function in vitro and in vitro. (a) Amino-acid residues (green) of the synthetic F5-peptide based

on laminin-g3 DIV. Numerals in ‘black’ denote the sequence of laminin-g3 chain (see Fig. 1a–c). (b) Effects of the synthetic F5-peptide on the Sertoli cell TJ-

permeability barrier. Peptide at 50mgml� 1 (B10mM) was added on day 3 (‘green’ arrow), which was either included in the daily replacement medium

(‘green’) (n¼ 3) or removed by washing on day 4 (‘pink’ arrow) in medium without peptide (‘pink’) versus PBS control. When F5 peptide was removed, the

disrupted TJ barrier was ‘resealed’, illustrating the disruptive effect was reversible. Each data point is a mean±s.d. of n¼ 3 of a representative experiment,

and this experiment was repeated three times which yielded similar results. **Po0.01. (c) BTB integrity assay was performed to assess the ability of an

intact BTB to block the movement of FITC-inulin across the BTB from the basal compartment near the basement membrane (annotated by ‘white’ dotted

line) to the adluminal compartment. Results of the BTB integrity assay are shown in normal testes (control) versus rats treated with CdCl2 and different

peptide treatment groups: 80mg per testis (or B10mM) and 320mg per testis (B40mM). Scale bar¼ 150mm in c, which also applies to all remaining

micrographs. (d) Histograms summarizing the data based on findings shown in c by comparing the distance of FITC-inulin diffused into the epithelium

(DFITC) (annotated by the ‘white bracket’) versus the radius of a seminiferous tubule (DSTr) (average of the longest and shortest axes for sections of oval-

shaped tubules) (n¼ 200 tubules from testes of three rats in each group). **Po0.01; ns, not significantly different. (e) Immunoblot analysis of different

target proteins at the BTB in adult rat testes at different time points after peptide administration. (f) Histograms summarizing data shown in e with n¼ 3

rats for each time point. *Po0.05; **Po0.01.
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peptide disrupts the BTB integrity in vivo, the possibility of
developing antisperm antibodies in these rats is unlikely because
virtually all the advanced germ cells, such as post-meiotic
spermatids, were depleted from the epithelium at the time of
BTB disruption, and the disrupted BTB was ‘resealed’ when
spermatogenesis re-initiated.

As laminin chains at the apical ES are restricted to elongating/
elongated spermatids, a question arises regarding the signalling
mechanism(s) by which laminin fragment(s) perturbs cell
adhesion at the apical and basal ES, as these biological fragments
are found outside the Sertoli cell in the seminiferous epithelium
in vivo. Thus, is this an ‘outside–in’ signalling analogous to
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terminated at specified time points at 3 days and 1, 2 or 4 weeks thereafter. (b–e) Representative photographs of paraffin sections of testes stained with

hematoxylin and eosin from rats treated with the synthetic F5 peptide at either 80 or 320mg per testis. Vehicle control is shown in a. Morphometric

changes (for example, shrinkage of tubule, and % of damaged seminiferous tubules (ST) manifested by germ cell exfoliation—annotated by asterisks in

tubules) of the tubules (n¼ 200 tubules from three rat testes) are summarized in the bar graphs shown in f and g. Bar¼ 150mm in a, and the micrographs

on the left panels in b–e, which applies to the micrographs on the right panels b–e. Bar¼ 50mm in micrograph encircled in ‘blue’, which applies to all

micrographs encircled in ‘blue’ and ‘green’ in a–e. The ‘blue’ and ‘green’ encircled micrographs are magnified images of the corresponding boxed areas of
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biologically active collagen fragments that were found to induce
integrin clustering in other cell epithelia38,43? Our earlier studies
have shown that besides laminin-g3 chain, laminin-b3 chain also
possesses biological activity in its domain I15. Thus, we prepared
two cDNA constructs based on domain I of laminin-b3 chain that
did or did not contain the signal peptide for their transient
expression in Sertoli cells in vitro (Supplementary Fig. S4) and to
test their effects on the Sertoli cell TJ-permeability barrier
function (Supplementary Fig. S5). Interestingly, both constructs
were capable of perturbing the Sertoli cell TJ-barrier function by
downregulating occludin expression, illustrating these biologically
active fragments were active by inducing either ‘outside–in’ or
‘inside–out’ signalling (Supplementary Fig. S5). However, more
work is needed to define the detailed molecular mechanism by
which laminin fragments, such as F5 fragment, exert their effects

via the ‘outside–in’ or the "inside-out" signalling, including the
identification of the involved receptor(s) in Sertoli cells.

It is noted that overexpression of F5 peptide in Sertoli cells with
an established functional TJ barrier or direct administration of
synthetic F5 peptide into the rat testis were both found to perturb
cell adhesion at the Sertoli cell BTB, perturbing Sertoli cell TJ-
permeability barrier function in vitro and in vivo, as well as
spermatid adhesion at the apical ES in vivo. However, the efficacy
of overexpression was limited to B20% (see Supplementary
Methods), whereas the efficacy via local administration of F5
peptide in the testis was at B40%. Thus, an improved delivery
methodology remains to be developed, such as involving the use
of protein transduction domain44,45, genetic engineered F5
peptide into an follicle stimulating hormone (FSH) mutant46, or
nanoparticle-based F5-petide47,48.

In summary, we have identified the biologically active domain
of laminin-g3 domain IV, which is highly effective in perturbing
the Sertoli cell TJ-permeability barrier function both in vitro and
in vivo, mediating its effects via p-FAK-Tyr407, affecting the
localization and/or distribution of TJ integral membrane proteins
(for example, occludin) at the site via changes in the organization
and/or distribution of F-actin at the Sertoli–Sertoli and Sertoli–
spermatid adhesion sites. It was found that the administration of
the F5 peptide in the testis that perturbs the apical ES–BTB–
basement axis also leads to germ cell exfoliation and impairs
spermatogenesis. Additional studies are now warranted to
investigate if this peptide can be developed into a male
contraceptive. Several other questions also remain to be addressed
in future studies. For instance, do other epithelial cells, such as
MDCK cells, that establish apical junctions respond to F5 peptide
similar to Sertoli cells? Would the F5 peptide remain in the Sertoli
cell, or be confined in cell cytosol or in membranous compart-
ments if it were overexpressed? If peptide fragments are released
at spermiation at the apical region of the Sertoli cell, they
presumably exert their effects via receptors (such as integrins at
the apical ES in Sertoli cells10) and/or signalling molecules (for
example, p-FAK-Tyr397 or -Tyr407)23 at the apical ES to generate
a signalling cascade that leads to changes in basal junctions at the
BTB. How would administering the peptide basally to Sertoli cells
in vivo have any effect, as receptors would presumably be
concentrated above the BTB? We expect that some of these
questions will be addressed in the near future.

Methods
Animals. Male Sprague–Dawley rats (20-day-old pups; and adult males at B250–
300 g body weight) were purchased from Charles River Laboratories (Kingston,
NY). The use of animals was approved by the Rockefeller University Institutional
Animal Care and Use Committee with Protocol Numbers 09016 and 12506.

Overexpression of laminin fragments or the FAK mutant. Laminin fragments
F1–F8 corresponding to different stretches of sequence of laminin-g3 domain IV
chain (Fig. 1, Supplementary Fig. S1) were cloned into pCIneo mammalian
expression vector (Promega) at sites between XhoI and SalI by using specific pri-
mers (Supplementary Table S1). The authenticity of these clones was confirmed by
direct nucleotide sequencing at Genewiz Inc (South Plainfield, NJ). p-FAK phos-
phomimetic mutant FAK Y407E was generated using a full-length rat FAK clone
prepared in our laboratory by site-directed mutagenesis as earlier described23, and
it was also cloned into the MluI/XbaI sites of the pCIneo vector. Before their use,
plasmid DNA was purified using the HiSpeed Plasmid Midi Kit (Qiagen). On day
3, after a functional Sertoli cell TJ-permeability barrier was established, cells at
0.5� 106 cells cm� 2 in 12-well dishes (with 3-ml F12/DMEM per well) or at
1.2� 106 cells cm� 2 in bicameral units placed in 24-well dishes (with 0.5ml F12/
DMEM each in the apical and basal compartment) were transfected with either 1
or 0.5 mg plasmid DNA by using Effectene Transfection Reagent (Qiagen) at a ratio
of 15ml to 1 mg DNA. Transfection mixture was removed 24 h thereafter and
replaced with fresh F12/DMEM. RNA and protein lysates were obtained from these
cultures 2 and 3 days thereafter, respectively. The TJ-permeability barrier after
transient expression of laminin-g3 domain IV fragments versus pCIneo vector
alone was also assessed by transepithelial electrical resistance (TER) measurement
across the Sertoli cell epithelium as described earlier49.
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Figure 6 | Laminin F5 peptide perturbs occludin distribution at the BTB.

Normal rat testis (control, 0-day), displaying normal distribution of occludin

at the BTB versus rats that received either 80mg (B10mM) or 320mg
(B40 mM) F5 peptide per testis by 1 week and 4 weeks with noticeable

germ cell loss from the tubules. Micrographs on the right panel are the

corresponding magnified images of the boxed area shown on the left panel.

Bar¼ 150mm in the first micrograph on the left panel and scale bar¼ 50mm
in the first micrograph on the right panel, which apply to remaining

micrographs in the same panel.
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Figure 7 | Laminin F5-peptide disrupts BTB and spermatid adhesion via p-FAK-Tyr407. Testes received vehicle (control) at time 0 (a) versus synthetic

F5-peptide at 80mg per testis (B10mM), and terminated at 3 days, and 1, 2 and 4 weeks (b), and positive control where rats were treated with CdCl2 (5mgkg� 1

body weight, intraperitoneal, for 5 days) (c). In control testes, p-FAK-Tyr407 was localized near the basement membrane consistent with its localization at the BTB

(see ‘yellow’ boxed area in the micrograph on the left, which was magnified in the right panel (top) in each row with the relative BTB location annotated by the

‘broken white-line’); p-FAK-Tyr407 was also found in the adluminal compartment, restricted almost exclusively to the concave side of the spermatid head at the

apical ES (see ‘blue’ and ‘green’ boxed areas in the micrograph on the third column, which were magnified in the right panel (bottom) in each row). Following F5

peptide treatment, p-FAK-Tyr407 was downregulated and mis-localized at the BTB, as it no longer restricted to the BTB, but diffused away (see ‘white’ bracket on

the top right panel of each column in treatment groups versus control rats, which was widened over time in treatment groups). p-FAK-Tyr407 was also

downregulated and its localization at the apical ES also shifted from the concave to cover the convex side of the spermatid head by 3-day, and p-FAK-Tyr407 no

longer associated with the apical ES in most elongated spermatids by 1 and 2 weeks, and by 4 weeks as elongated spermatids were not found in most tubules.

In CdCl2-treated rat testes (c), p-FAK-Tyr407 was no longer detectable at the BTB (see ‘open’ white arrowheads), which is the magnified image of the ‘white’

boxed area in the right column in c, and p-FAK-Tyr407 was also considerably diminished. p-FAK-Tyr407 appeared as vesicle-like structures near the tubule lumen in

rats after treatment (and also in CdCl2-treated rats), representing cytoplasmic droplets from p-FAK-Tyr407-positive materials engulfed by Sertoli cells23. Scale

bar¼ 50mm in (a–c), which applies to all micrographs in the first three columns in (a–c); scale bar in the ‘yellow’ boxed micrograph¼ 20mm, which applies to all

‘blue’ and ‘green’ boxed micrographs in a, b; scale bar in the last micrograph in c¼ 80mm. DAPI, 40,6-diamidino-2-phenylindole.
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Figure 8 | Laminin F5 peptide induces spermatid loss via changes in F-actin distribution. Rat testes received synthetic F5 peptide at 80mg per testis

(B10 mM) at time 0, and terminated at 3 days, and 1, 2 and 4 weeks versus control (normal rats). Frozen sections were used to visualize the distribution of

F-actin in the seminiferous epithelium. Relative location of the BTB was annotated by the ‘white’ broken line in the panel stained for cell nuclei with 4’,6-

diamidino-2-phenylindole (DAPI). Actin filaments were most abundant at the BTB and the apical ES at the Sertoli-spermatid interface as shown in a stage

VII and VIII tubule in control rats at time 0. By 3 days, 1, 2 and 4 weeks after F5 peptide treatment, in tubules of stage BVII-VIII, actin filaments were

redistributed, progressively moving away from the BTB site (see the ‘white’ brackets that illustrate the relatively ‘tightly’ packed actin filaments, such as

those found in controls, were ‘unbundled’ and the ‘white’ brackets were widened in treated rat testes). Although F-actin was also restricted to the apical ES

at these time points, actin filaments were no longer tightly restricted to the Sertoli–spermatid interface at the apical ES as seen in control testes (see

‘magnified’ images in the last column of the ‘boxed’ areas in the third column). Moreover, actin filaments were no longer restricted to the elongated

spermatids as shown in control testes, but were also found in early elongating spermatids (see ‘open’ arrowheads). This mis-localization of the F-actin

network at the apical ES no longer supported spermatid adhesion, causing premature ‘spermiation’. Scale bar¼ 50mm in the micrograph in the first column,

which applies to all micrographs in the first three columns, scale bar¼ 20mm in the micrograph in the fourth column, which applies to all micrographs in

this column.
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Treatment of rat testes with synthetic F5 peptide. Adult rats weighing B250–
275 g body weight (n¼B5–6 rats per time point in both treatment and control
groups) received a single dose of the F5 synthetic peptide (relative molecular mass
at 5,630.36) at either 80 mg (B10mM) or 320 mg (B40mM) per testis (testis weight
at B1.6 g, assuming a volume of B1.6ml) via direct intratesticular injection using
a 28-gauge needle in a final injection volume of B200 ml (in 0.9% saline) as
described earlier31,50. These concentrations of synthetic F5 peptide were selected
based on results of the in vitro study in which 50mgml� 1 (B10 mM) was found to
consistently and reversibly perturb the Sertoli cell TJ-permeability barrier. In some
experiments, the right testis received the synthetic F5-peptide and the left testis
received vehicle alone (saline alone without synthetic peptide) to serve as a negative
control. Rats were terminated on day 3, and 1, 2 and 4 weeks thereafter. Rats were
euthanized by CO2 asphyxiation, and testes were removed. In selected experiments,
testes were either fixed in Bouin’s fixative to be used for paraffin embedding and
sectioning for hematoxylin and eosin staining for histological analysis as
described27, or snap-frozen in liquid nitrogen and stored at � 80 1C until used to
obtain frozen sections for immunohistochemistry or immunoblotting. In some
experiments, rats at specified time points were subjected to an in vivo assay to
assess BTB integrity. Selected rats were treated with the 22-amino acid MTMR2
peptide at 200mg per testis (B50mM) and terminated at 1, 4 and 8 weeks for
histological analysis (n¼ 3 rats per time point), and no alterations in the status of
spermatogenesis were noted, consistent with an earlier report31. Thus, these rats
were not used for subsequent BTB integrity assays.

Other Materials and Methods pertinent to this report, such as primary Sertoli
cell cultures, preparation of cDNA constructs to assess ‘inside–out’ and ‘outside–in’
signalling, BTB integrity assay, dual-labeled immunofluorescence analysis,
immunohistochemistry, F-actin staining, immunoblot analysis and statistical
analyses can be found in Supplementary Materials and Methods.
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