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 Surface probes such as scanning tunnelling microscopy have detected complex electronic 

patterns at the nanoscale in many high-temperature superconductors. In cuprates, the pattern 

formation is associated with the pseudogap phase, a precursor to the high-temperature 

superconducting state. Rotational symmetry breaking of the host crystal in the form of 

electronic nematicity has recently been proposed as a unifying theme of the pseudogap phase. 

However, the fundamental physics governing the nanoscale pattern formation has not yet been 

identifed. Here we introduce a new set of methods for analysing strongly correlated electronic 

systems, including the effects of both disorder and broken symmetry. We use universal cluster 

properties extracted from scanning tunnelling microscopy studies of cuprate superconductors 

to identify the fundamental physics controlling the complex pattern formation. Because of 

a delicate balance between disorder, interactions, and material anisotropy, we fi nd that the 

electron nematic is fractal in nature, and that it extends throughout the bulk of the material.         
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 W
hereas lanthanum-based cuprate superconductors show 
striking evidence of electronic liquid crystal phases 
in the pseudogap regime 1 , the issue is less clear in the 

higher transition temperature compounds Yba 2 Cu 3 O 6    +     x   (YBCO) 
and Bi 2 Sr 2 CaCu 2 O 8    +      δ    (BSCCO). Recent experiments on YBCO 
report an electron nematic in the pseudogap regime, detected via 
Nernst eff ect 2 , transport 3 , and neutron scattering 4 , and evidence of 
time-reversal symmetry breaking detected via neutron scattering 5  
and the Kerr eff ect 6 . Th e detection via scanning tunnelling micros-
copy (STM) of a glass of unidirectional domains in BSCCO 7 – 9  and 
in Ca 2    −     x  Na  x  CuO 2 Cl 2  and Bi 2 Sr 2 Dy  x  Ca 1    −     x  Cu 2 O 8    +      δ    (Dy-Bi2212) 10  
has now been followed by the dramatic demonstration of a large 
(>40   nm) electron nematic domain at the surface of BSCCO 11 . 

 However, it is not known whether such structures extend into 
the bulk of the system, or whether they are merely surface eff ects 
in the Bi-based compounds. Because such electronic liquid crystals 
have been proposed as a unifying theme of the pseudogap phase 12,11  
(a precursor to the superconducting phase), it is important to 
understand to what extent they infl uence bulk properties such as 
superconductivity. In addition, the issue of how to classify broken 
symmetry states, in the presence of disorder in strongly correlated 
electronic matter, is important but poorly understood. 

 Here we introduce new methods for analysing strongly corre-
lated electronic systems including the eff ects of both disorder and 
broken symmetry. We use universal cluster techniques to show that 
the quantitative geometrical properties displayed at the surface of 
Dy-Bi2212 (ref.   10) indicate that the electron nematic, while not 
necessarily long-range ordered, possesses large clusters throughout 
the bulk of the material, with important implications for the coexist-
ing superconductivity.  

 Results  
  Defi ning the model   .   Th e physics of the orientational degree of 
freedom of the electron nematic in the cuprates in the presence 
of quenched disorder maps to a disordered Ising model 13 . When 
an electron nematic forms, there is a preferred orientation to the 
electronic degrees of freedom, leading to rotational symmetry 
breaking of the host crystal. We consider Cu – O planes that are  C  4  
symmetric, with an incipient electron nematic that breaks the local 
rotational symmetry of the host crystal from  C  4  to  C  2 , leading to 
two possible nematic orientations. We coarse grain the system, and 
defi ne a local nematic order parameter by   σ      =        ±    1, corresponding 
to the two allowed orientations. Th e tendency for neighbouring 
nematic regions to align is modelled as a ferromagnetic nearest-
neighbour interaction. 

 Material disorder (such as dopants) competes with the ferromag-
netic coupling between local nematic directors. We consider a general 
model encompassing both disorder in the coupling strengths, as well 
as random fi eld disorder that couples linearly to the nematic director.

 

H J J J J h hij
ij

i j
ij

ij i j
i

i= (1 ) (1 ) ( )|| ||

||

− + − + − +
〈 〉 〈 〉⊥

⊥ ⊥∑ ∑ ∑d s s d s s ssi .

 

 Here  J  ||  sets the overall strength of the in-plane ferromagnetic cou-
pling between nearest-neighbour Ising nematic variables, and  J      �      
represents the overall coupling strength between Ising variables in 
neighbouring planes. Th e ratio  J      �      /  J  ||  is set by the anisotropy of the 
material. Th e order parameter  n     =    (1 /  N ) Σ   i    σ    i   describes the degree of 
orientational order in the system. 

 Material disorder can disrupt the coupling between local nematic 
directors. Th ere are two broad classes of disorder that present them-
selves at the order parameter level: local energy density disorder 
(which includes random  T   c   disorder), and random fi eld disorder 14 . 
Local energy density disorder may arise in the form of, for example, 
random bond disorder, in which the strength of the ferromagnetic 
coupling varies from coarse-grained site to coarse-grained site in 

(1)(1)

the system. In addition, the local amplitude of the nematic order 
parameter can vary spatially 11 , an eff ect that may be subsumed into 
randomness in the bond strengths in an order parameter descrip-
tion. Local energy density disorder has other microscopic realiza-
tions, including site dilution, but all types of non-frustrating local 
energy density disorder belong to the same universality class as 
random bond disorder 14,15 . Frustrating disorder occurs when there 
are variations in the  ‘ sign ’  of J, in which case fi xed points associated 
with spin glass behaviour can arise. While not forbidden to occur, 
we have not included this extension of  equation 1  because it is 
physically unlikely in the present system. In  equation 1 ,  d Jij

||
   rep-

resents in-plane bond disorder in the coupling strength, and  d Jij
⊥   

represents bond disorder in the interplane coupling strength. 
 Th e other class of disorder, random fi eld disorder, arises because 

any local pattern of disorder (such as dopant atoms) breaks rota-
tional symmetry, thus favouring one or the other orientation of the 
nematic director in that region. Th is type of disorder couples lin-
early to the nematic director. Th e random fi eld  h   i   is chosen from a 
gaussian probability distribution centred about zero, with width  Δ , 
which we call  ‘ random fi eld strength ’ . 

 Th e fi eld  h    =    h  int      +    h  ext  represents an orienting fi eld that breaks 
rotational symmetry. Th e external contribution  h  ext  may be achieved 
by the application of, for example, magnetic fi elds, uniaxial pres-
sure, high currents, or other symmetry-breaking external perturba-
tions 13,16 . In the material considered here, data was taken in the 
absence of applied fi elds,  h  ext     =    0. Another source of fi nite  h  may be 
internal crystal eff ects  h  int , such as the chains in YBCO may present. 
Such issues do not arise in Dy-Bi2212, and so we set  h  int     =    0.   

  Continuous phase transitions and power-law scaling   .   Th e equi-
librium behaviour of the model in  equation 1  is shown in  Fig. 1 . 
Solid regions denote the ordered nematic phase, from two dimen-
sions (2D, yellow region) to three dimensions (3D, orange region). 
Solid black lines represent continuous phase transitions in which 
the nematic order parameter rises continuously from zero on enter-
ing the ordered phase. Th e blue arrow on each phase transition line 
points to the solid green circle representing the  ‘ fi xed point ’  that 
determines the universal properties (such as the power-law scaling 
behaviour discussed below) of that entire phase transition line. 

 When the system is at a continuous phase transition (solid 
black lines in  Fig. 1 ), its correlation length is infi nite, and certain 
physical properties display power law behaviour, with characteris-
tic  ‘ critical exponents ’  that are determined by the fi xed point con-
trolling that phase transition. As the system moves away from the 
critical point, the correlation length decreases, and the power law 
behaviour (also known as scaling) is only observed for length scales 
below the correlation length. Th erefore, one measure of proxim-
ity to a continuous phase transition is the number of decades 
of power-law scaling observed in the physical quantities of the 
system. We show below that certain STM properties of Dy-Bi2212 
display power-law scaling, consistent with the system being near 
a critical point associated with a continuous phase transition, that 
is, that the physical system is near one of the black phase transition 
lines in  Fig. 1 .   

  Mapping unidirectional domains to Ising variables   .    Figure 2a  shows 
scanning tunnelling microscopy data on Bi 2 Sr 2 Dy 0.2 Ca 0.8 Cu 2 O 8    +      δ    
(Dy-Bi2212) from  Supplementary Fig. S3  of ref.   10, reported as an 
 ‘ R-map, ’  where at each position  

�
r   ,  R r V I r V I r V( , ) = ( , )/ ( , )
� � �

+ −    is the 
ratio of the tunnelling current at positive voltage to that at negative 
voltage 10,17,18 . On the basis of the  ‘ R-map ’ , the presence of local, uni-
directional domains of width 4 a  o  were noted 10 , corresponding to 
the distance between  ‘ legs ’  of the 4 a  o -wide ladders, where  a  o  is the 
Cu – Cu distance within the Cu – O planes. Th ere is also a coexisting 
local density wave near  a  o ,  corresponding to the distance between 
 ‘ rungs ’  on the ladders. 
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  Figure 2b  shows our mapping of this dataset to Ising variables. To 
eff ect the mapping, we have done the following. In any given region, 
we take a local spatial Fourier transform (FT) of the R-map, and then 
focus on k-space intensity near 2 π  /  a  o . Th ere are two  ‘ fl avours ’  to the 
unidirectional domains, either oriented along the  a  axis, or along the 
 b  axis. We assign a local Ising variable based on the relative weight of 
the 2  π   /  a  o  peak in the  a  direction to that in the  b  direction. Th e quan-
titative geometric properties of the clusters thus derived below are 
insensitive to changes in details such as the size of the FT window, 
the Ising lattice spacing, and the threshhold for which a cluster is 
counted as   σ      =        +    1 or   σ      =        −    1. To eff ect the mapping, we use the full 
fi eld of view of  Supplementary Fig. S3  of ref.   10. We use a rolling 
square FT window, of size 1.42   nm × 1.42   nm, which corresponds to 
16 × 16 pixels in the original fi gure. We sum the integrated inten-
sity about the two peaks at  Q      ±     x      =    (    ±    2 π  /  a  o ,0), and subtract the inte-
grated intensity about the two peaks at  Q      ±     y      =    (0,    ±    2  π   /  a  o ) using a 
square integration window of size 1.325    Å  × 1.325    Å  centred about 
the  Q      ±     x   and  Q      ±     y     . If the result of the subtraction is positive (that 
is,  Q   x   is dominant), we assign an Ising variable   σ      =        +    1, coloured 
orange in  Fig. 2b , and if it is negative (that is,  Q   y   is dominant), we 
assign an Ising variable   σ      =        −    1, coloured blue in  Fig. 2b . Th e dis-
tance between centres of FT windows is 4 pixels    =    3.56    Å , which 
defi nes the Ising lattice spacing in  Fig. 2b . Although the Ising lattice 
spacing of panel (b) may appear small, the Ising variable at each 
site is derived by incorporating information from the surrounding 
16 Ising lattice sites. 

 It should be noted that there are many possible ways to relate the 
local nematic order to specifi c observable quantities in the material, 
and the choice of which to use is more of a practical question than 
one of the fundamental physics of nematics. For example, diff er-
ent techniques have been used in ref.   11 to extract a nematic order 
parameter associated with symmetry breaking within the crystal 
unit cell. Our method focusses on nematicity associated with the 
 a  o  periodicity itself and has the advantage that it does not depend 
sensitively on the phase of the complex Fourier transform. For 
example, it is not necessary with our method to have detailed infor-
mation about the exact location of each atom, but the tradeoff  is 
that we cannot say anything about the degree of nematicity within 
each unit cell.   

  Cluster techniques and extraction of exponents   .   Th e extracted 
cluster maps are reminiscent of cluster patterns observed in 
numerical studies of  equation 1 , consistent with the idea of 

 mapping disordered electron nematics 13  to disordered Ising 
models. We apply quantitative cluster analysis methods 19 – 23  
from the statistical mechanics of disordered systems to identify 
the fundamental physics controlling the pattern formation. We 
track the  ‘ geometric clusters ’  defi ned as connected sets of near-
est-neighbour domains in which the Ising variables are oriented 
in the same direction. Th e statistics of the shapes and sizes of 
these geometric clusters can be quantifi ed, and used to identify 
the cause of the complex pattern formation. In particular, we have 
discovered that quantitative measures of the cluster shapes as well 
as the distribution of cluster sizes reveal power-law behaviour 
over multiple decades. 

 Several quantitative properties can be extracted from the spa-
tial confi guration of the clusters in  Fig. 2 , each described in more 
detail below:   τ   characterizes the distribution of cluster sizes 20  and 
the spin – spin correlation function yields the combination  d     −    2    +      η   ||  
(refs   24,25), where  d  is the dimension of the phenomenon being 
studied and   η   ||  is the  ‘ anomalous dimension ’  at the surface of the 
material. In addition, we defi ne below an eff ective ratio of the hull 
fractal dimension 25,26  to the volume fractal dimension 25,26  of the 
clusters,  d   h    *   /  d   v    *  . Near continuous phase transitions, these physical 
properties display scaling behaviour with exponents that assume 
universal values set by the corresponding fi xed point, allowing us to 
distinguish which of the fi xed points (solid green circles in  Fig. 1 ) is 
responsible for the observed pattern formation. 

 Th e exponent   τ   characterizes the distribution of cluster sizes. 
 Figure 2b  shows the geometric clusters identifi ed from Dy-Bi2212. 
 Figure 3a  shows the cluster size distribution, a histogram of clus-
ter sizes. Th e results are noisier at larger cluster sizes, owing to 
the fi nite fi eld of view.  Figure 3b  shows the same distribution with 
logarithmic binning, a standard technique for analysing power law 
behaviour 27 . Near a critical point, the cluster size distribution  D ( A ) 
is of the form  D ( A ) ∝  A      −  τ  , where  A  is the size of a cluster. Using a 
straightforward fi t to this form, we fi nd   τ      =    1.71    ±    0.07. Th ere is one 
large spanning cluster, represented by the last point in  Fig. 3b , which 
is excluded from the fi t. Not including the spanning cluster, 2.5 dec-
ades of scaling are evident. In this case, the spanning cluster also lies 
near the regime of scaling. If the spanning cluster is also included, 
the data display 4 decades of scaling. However, a larger fi eld of view 
is necessary to determine whether the spanning cluster is truly in 
the regime of scaling. 

 Cluster volumes and surfaces (hulls) become fractal near cer-
tain critical points, in the sense that the volume  V  and hull  H  scale 
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               Figure 1    |         Equilibrium phase diagrams and fi xed points. ( a ) Random fi eld Ising models. ( b ) Random bond Ising models. Solid regions denote the ordered 

nematic phase, from 2D (yellow region) to 3D (orange region). Blue arrows represent how effective model parameters change with increasing coarse 

graining. Phase transitions are denoted by solid black lines. The corresponding critical exponents are determined by the fi xed points to which the blue 

arrows point, denoted by solid green circles. The blue square in ( a ) denotes the approximate location of the incipient electron nematic in Dy-Bi2212. While 

it is not long-range ordered, large planar nematic clusters are present throughout the bulk.  
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like a fractional power of the length scale of the cluster. Using, for 
example, the radius of gyration  R  (ref.   25 as a measure of the length 
scale of a cluster, this implies  V Rdv∝    and  H R

dh∝   . Combining the 
two relations to eliminate  R , one obtains  H V

dh dv∝ /
  . Because STM 

is a surface probe, the available information is the observed area  
A Rdv∝ *

   and the observed perimeter  P Rdh∝ *
   of each cluster, and 

therefore  P Adh dv∝ */ *
  . For a 2D model, the observed fractal dimen-

sions are the true fractal dimensions of the model,  d dv v
* =    and  

d dh h
* =   , and therefore  P A Adh dv dh dv∝ ∝*/ * /   . When comparing with a 

3D model, we make the reasonable assumption that, at the surface, 
one is observing a 2D cross-section of a 3D cluster. In this case, the 
observed fractal dimensions are related to the true fractal dimen-
sions of the model by geometric factors,  d dv v

* = 2 /3   and  d dh h
* = /2  , 

yielding  P A Adh dv dh dv∝ ∝* / * 3 /4    (see Methods). Using a straightfor-
ward fi t over the 2.5 decades of power-law scaling of  P Adh dv∝ * / *

   gives 
an eff ective fractal dimension ratio of  d dh v

* */ = 0.78 0.01±   , excluding 
the spanning cluster. It is evident from  Fig. 3c  that the spanning 
cluster is also near the scaling regime for this measure. Th is extrac-
tion of the exponent  d dh v

* */    can be considered quite reliable because 
multiple decades of scaling are observed. 

 Within the Ising description, the spin – spin correlation func-
tion of the Ising pseudospin variables is  G ( r )    =     〈  S ( r ) S (0) 〉     −     
〈  S ( r ) 〉  〈  S (0) 〉  ∝ | r |     −    ( d     −    2    +        η    ) . When measured for two points on the 
surface of a material,  G ( r ) ∝ | r |     −    ( d     −    2    +        η    ||) . In the fi eld of view avail-
able, we have averaged over all sites to obtain the spin – spin correla-
tion function plotted in  Fig. 3d . For this measure, scaling is expected 
at long distances, whereas the correlation function at short distances 

can be dominated by nonuniversal eff ects such as the spanning clus-
ter in this case. We therefore exclude the fi rst three points in  Fig. 3d , 
whereupon a straightforward fi t yields  d     −    2    +      η   ||     =    0.8    ±    0.3. How-
ever, with less than one decade of scaling, this measure is less reli-
able than our values for  d dh v

* */    and   τ  . Larger fi elds of view will enable 
a more reliable determination of this quantity.   

  Fixed points of the model   .   Having extracted quantitative measures 
of the critical exponents that are available from geometric clusters, 
we are now in a position to decide which of the candidate fi xed 
points of  Fig. 1  (if any) is controlling the observed pattern forma-
tion and is therefore responsible for the observed power laws. We 
begin by reviewing the fi xed points, then compare observations 
with theory. Th e equilibrium phase diagrams and corresponding 
fi xed points of the random bond and random fi eld Ising models are 
shown in  Fig. 1 . In the fi gure, solid black lines denote phase transi-
tions between an ordered electron nematic and a disordered phase. 
Th e exponents of each phase transition line are set by the fi xed point 
(solid green circle) to which the blue arrow points. In the clean limit 
of zero random fi eld strength and no bond disorder, the model has 
a fi nite-temperature continuous phase transition from a disordered 
phase to an ordered electron nematic, that is, with long-range orien-
tational order  〈  n  〉  ≠ 0. Th e universal properties of that transition are 
controlled by the fi xed point labelled C-2D in strictly 2D systems, 
and controlled by the C-3D fi xed point in layered or 3D systems. 

 In 2D, long-range orientational order is forbidden at any fi nite 
random fi eld strength ( Fig. 1a ), and universal properties near this 
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        Figure 2    |         Mapping of Ising nematic domains from tunnelling asymmetry maps in Dy-Bi2212. ( a ) A subset of  Supplementary Fig. S3  of ref.   10 of STM 

on Dy-Bi2212, showing the R-map taken at 0.15   V a function of position  
�
r   , where  R r V I r V I r V( , )= ( , )/ ( , )

� � �
+ −    is the ratio of the tunnelling current at positive 

voltage to that at negative voltage 10,17,18 . In the colour scale, brighter corresponds to larger R. (Reproduced with permission from AAAS.) ( b ) Ising 

domains derived from peaks at  Q   x   and  Q   y  . Notice the large, percolating cluster (orange), with isolated fl ipped domains inside (blue). ( c ) The image from 

( a ), masked by the Ising map ( b ) so as to show only the  ‘ blue ’  domains. ( d ) The same image, masked by the Ising map ( b ) so as to show only the  ‘ orange ’  

domains. The sample has superconducting transition temperature  T   c   ~ 45   K, and data were taken at  T     =    4.2 (ref.   10).  
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limit are set by the RF-2D fi xed point. In 3D, electron nematic order 
is allowed below the critical disorder strength of the random fi eld,  
Δc

D T J3 ( = 0) = 2.27 �   (ref.  19 ). In strongly layered systems, the critical 
disorder strength is fi nite, but signifi cantly reduced from the cor-
responding value in 3D systems 28 . Transitions in 3D and layered 
systems are controlled by the RF-3D fi xed point. Because the criti-
cal region is large in the random fi eld Ising model, it is possible to 
observe the scaling in a broad range of parameters near the critical 
point 29 . For example, two decades of scaling appear in the avalanche 
size distribution of the nonequilibrium 3D RFIM even at a disorder 
strength of  Δ     =    4 J , which is 85 %  larger than the nonequilibrium critical 
disorder strength  Δc

D J3 = 2.16    (ref.  29 ). 
 In contrast with random fi eld models, weak random bond dis-

order ( Fig. 1b ) does not forbid nematic order in 2D. Furthermore, 
random bond disorder is irrelevant in the renormalization group 
sense in 2D, and the phase transition is therefore governed by clean 
Ising model exponents set by the C-2D fi xed point. In layered and 
3D systems, the phase transition of the random bond model is con-
trolled by the disordered fi xed point, which we have labelled RB-3D, 
also known in the literature as  ‘ R ’  15 . In the presence of both random 
bond and random fi eld disorder, the universality class is that of the 
random fi eld model.   

  Which fi xed point is the system nearest?      We track the geometric 
clusters defi ned as connected sets of nearest-neighbour domains 
in which the Ising variables are oriented in the same direction. 
Although power law behaviour is generically associated with a 
continuous phase transition, the geometric clusters do not always 
display power law behaviour at the continuous Ising nematic to dis-
ordered phase transition 30 . Th e geometric clusters do exhibit power 
law behaviour at the percolation fi xed points 25  (both P-2D and 
P-3D), at the random fi eld fi xed points 19,31  (both RF-2D and RF-3D), 
and at the 2D clean Ising fi xed point (C-2D) 32 . At the other fi xed 
points, including the 3D clean Ising fi xed point (C-3D) 32  and the 3D 
random bond fi xed point (RB-3D) 15 , the geometric clusters do not 
display power law behaviour 30 . Rather, it is the  ‘ Fortuin-Kasteleyn ’  
(FK) clusters that exhibit power law behaviour at the C-3D and 

RB-3D fi xed points. FK clusters are related to the geometric clusters 
we study here by assigning a temperature-dependent probability 
of breaking each bond in the geometric cluster. Th e new (smaller) 
connected clusters thus generated are the FK clusters. We focus on 
the geometric clusters, because they can be directly extracted from 
the data without need of further ansatzes, and it is the geometric 
clusters themselves that exhibit power law behaviour in the data. 

 At the 3D clean Ising fi xed point (C-3D) 32  and the 3D random 
bond fi xed point (RB-3D) 15 , the geometric clusters do not display 
power law behaviour 30 . Rather, they display power law behaviour 
at the temperature at which minority spin clusters fi rst percolate, 
 T   p  , which is less than the temperature  T   c   at which the nematic-to-
disordered phase transition takes place,  T   p      <     T   c   (ref.   32). In these 
cases, the power law behaviour of the geometric clusters is con-
trolled not by the phase transition at  T   c  , but by the 3D percola-
tion fi xed point, P-3D. Because the geometric clusters that we track 
do not exhibit power law behaviour at the C-3D and RB-3D fi xed 
points, these two fi xed points cannot be the cause of the observed 
power law cluster size distribution, and so they are excluded from 
the comparison in  Fig. 4 . 

 Th e 3D percolation fi xed point can also be ruled out as the cause 
of the power law behaviour, whether as merely an uncorrelated per-
colation phenomenon, or at  T   p      <     T   c   in the 3D clean and random 
bond Ising cases. In the uncorrelated case, the percolation thresh-
hold is  p   c      =    0.311 in 3D. Near this ratio of  ‘ vertical ’  to  ‘ horizontal ’  
nematic patches, there would be a detectable net nematicity in the 
system, which has not been observed in bulk measurements. Th ere-
fore, we can rule out P-3D in the uncorrelated case. In the correlated 
cases of the 3D clean and random bond Ising models, although clus-
ters do exhibit power law behaviour (controlled by the P-3D fi xed 
point) at  T   p      <     T   c     , this happens deep in the ordered phase. We can 
thus rule out these cases as well, because bulk experiments to date 
have not shown the material to possess a 3D-ordered nematic phase. 
Th erefore, we also exclude P-3D from the comparison in  Fig. 4 . 

 Th e percolation threshold on a square lattice is  p   c      =    0.59. If the 
power law behaviour were due to an uncorrelated purely geomet-
ric percolation phenomenon occurring independently within each 

2.5a

c d

b

2.0

1.5

Lo
g 1

0D
(A

)

Lo
g 1

0G
(r

)
Lo

g 1
0D

(A
)

Log10A

Lo
g 1

0
pe

rim
et

er

Log10area

Log10A

Log10r

1.0

0.5

0.0

4.0

0

0

–4

–3

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0.5 1.00.0 1.5

0.0

–2

–1

1

1

2

2

3 4

0 1 2 3 4

0 1 2 3 4

3.5

3.0

2.5

3.0

1.5

1.0

0.5

        Figure 3    |         Cluster size distribution and critical exponents. ( a ) Raw cluster size distribution. ( b ) Cluster size distribution after logarithmic binning 27 , used 

to calculate the critical exponent   τ  . ( c ) The effective fractal dimension ratio,  d   h    *   /  d   v    *  , relates the perimeter of clusters to their area. Logarithmic binning has 

been used. ( d ) Logarithmically binned data for calculating the critical exponent  d    −     2     +     η    ||  .  
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plane, then one would expect there to be, on average, an equal 
number of  ‘ vertical ’  and  ‘ horizontal ’  nematic patches, correspond-
ing to a percolation density of  p     =    0.5. While this is not equal to the 
percolation threshold of  p   c      =    0.59 at P-2D, it is close enough that we 
cannot a priori rule out P-2D as the source of the power law behav-
iour, and we include it in  Fig. 4 . Th ere remain only four fi xed points 
to consider: C-2D, P-2D, RF-2D and RF-3D. Exponents character-
izing these fi xed points are charted in  Fig. 4 , and compared with the 
observations in Dy-Bi2212. 

 Th e material of interest, Dy-Bi2212, is a strongly layered mate-
rial, expected to have weak coupling between planes. In a layered 
system, the measured critical exponents can be observed to  ‘ drift  ’  
from the 2D limit to the 3D limit as observations are extended to 
larger length scales. We do not consider the possibility of a  ‘ drift  ’  
in exponents from the P-2D to the P-3D fi xed point, as an interme-
diate percolation dimension has no physical meaning in a crystal. 
However, it is possible to observe a drift  from the RF-2D fi xed point 
to the RF-3D fi xed point. Th is drift  is controlled by the ratio of the 
interlayer coupling to the in-plane coupling  J   �   /  J  ||  in  equation 1 . 
Th erefore, in  Fig. 4 , we have included the possibility of this drift  in 
exponents from the RF-2D to the RF-3D fi xed point, as indicated by 
the thick lines connecting fi xed point circles in the fi gure.    

 Discussion 
 Our results using published STM data 10  on Dy-Bi2212, a mate-
rial that displays evidence of local electron nematic behaviour 
at the surface 10 , reveal a strong power law behaviour in these 
measures, spanning at least 2.5 decades for both   τ   and  d dh v

* */   , as 
shown in  Fig. 3 . On the basis of these power laws, the extracted 
measures are as follows:   τ      =    1.71    ±    0.07,  d dh v

* */ = 0.78 0.01±   , and 
 d     −    2    +      η   ||     =    0.8    ±    0.3.  Fig. 4  charts a direct comparison between 
our values extracted from data, and the theoretical exponents of 
disordered Ising models that are consistent with power-law scal-
ing in the cluster properties. 

 Th e eff ective fractal dimension ratio,  d dh v
* */   , shows broad varia-

tion among the fi xed points shown in  Fig. 4  and, therefore, it is a 
good way to distinguish among the fi xed points. Th e value of  d dh v

* */    
extracted from experiment falls within the theoretical RFIM values, 
whereas it is inconsistent with the other candidate models. Th e value 
of  d dh v

* */    lies between the 2D and 3D values of the RFIM, consistent 
with the behaviour of a layered system (as expected for Dy-Bi2212), 

indicating that large planar nematic clusters permeate the bulk of 
the system. Ultimately at long length scales, such systems fl ow to 
the universality class of the higher dimension. Our model therefore 
predicts that the measured value of  d dh v

* */    in this material will drift  
towards the 3D random fi eld (RF-3D) exponent as larger fi elds of 
view are measured. 

 Th e value of  d     −    2    +      η   ||  also shows broad variation among the the-
oretical fi xed points considered in  Fig. 4 , and can be a good measure 
for distinguishing among the candidate fi xed points. As with  d dh v

* */   , 
the value of  d     −    2    +      η   ||  extracted from experiment is consistent with 
a layered random fi eld Ising model. It is also consistent with a 2D 
random fi eld Ising model within the error bars, whereas it is incon-
sistent with the other candidate fi xed points. Our model predicts 
that the measured value of  d     −    2    +      η   ||  will drift  closer to the RF-3D 
value with larger fi elds of view. 

 As can be seen from  Fig. 4 , there is a narrow range of values of 
  τ   displayed by the fi xed points of  equation 1 , and therefore this expo-
nent is not a very good way to distinguish among the fi xed points. 
One reason for the narrow range of   τ   is that there is a constraint on 
this exponent: 2    <      τ      <    3 (ref.   33). Our extracted value of   τ      =    1.71    ±    0.07 
is 15 %  lower than the models shown, and, furthermore, it violates 
the above constraint. However, the scaling function of the cluster 
size distribution has a bump in the random fi eld case 29 , as well as 
the clean 2D case, which at small fi elds of view skews the estimate 
of   τ   to lower values than the true value, as observed here as well 
as in numerical simulations 34 . Although 2.5 decades of scaling is 
remarkable, a larger fi eld of view is necessary to get a more accurate 
measure of this exponent because of the form of the scaling func-
tion itself. However, because of the narrow range of   τ   displayed by 
the range of fi xed points available to  equation 1 , it will be diffi  cult to 
distinguish among the various fi xed points based on the value of   τ  , 
even with larger fi elds of view. 

 We thus conclude that the electron nematic in this material 
is fractal 35 , because it is near criticality owing to a competition 
between disorder and interactions. However, because long-range-
ordered electronic nematicity has not been detected in Dy-Bi2212 
via a bulk probe, the material is likely in the disordered phase. It 
is also possible that the material is out of equilibrium 16  owing to 
glassy behaviour induced by disorder, or even that the broken sym-
metry is suffi  ciently weak that it has thus far escaped detection. 
Regardless, the evidence does not point to the bulk of the material 
being in the ordered nematic phase, and it is consistent with the 
bulk of the material being in the disordered phase. Th e quantita-
tive properties studied here indicate that the material must then be 
just on the disordered side, in the regime of intermediate random 
fi eld disorder 28 , where the disorder strength is small within a plane, 
but strong between planes,  J  ||   �   Δ   �   J   �  , as indicated by the blue 
square in  Fig. 1a . Although long-range electron nematic order is not 
present in this regime, the quantitative characteristics of the frac-
tal geometry and other cluster properties studied here indicate that 
the nematic behaviour extends throughout the bulk of the material, 
and clusters within each plane have a long correlation length 28 , with 
potentially important implications for the superconductivity aris-
ing in these materials. 

 Although long-range-ordered nematicity has not yet been 
observed in bismuth-based copper oxide superconductors, we con-
clude here that large (>400    Å ) nematic clusters persist into the bulk of 
the crystal. Th ese clusters are suffi  ciently larger than the supercon-
ducting coherence length (  ξ   coh  ~ 10    Å ) 36  to support a theory of high-
 temperature superconductivity based on electronic liquid crystals 
such as nematics 12   . In such a theory, the long, straight stripes (or 
ladders) that make up the  ‘ nematogens ’  are favourable for supercon-
ducting pairing 37 . However, in a quasi-1D theory, superconducting 
pairing also leads to a charge density wave (CDW) instability, which 
is a tendency for the pairs to form a density wave along the long 
direction of the stripes or ladders. In a system of long-range-ordered 
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are our results for the spatial characteristics of clusters in Dy-Bi2212 

as reported in  Supplementary Fig. S3  of ref. 10. Solid circles represent 

theoretical values reported in the literature for the fi xed points of  equation 1 , 

summarized in  Supplementary Tables S1-S6 . Red circles represent   τ  , 
green circles represent  d     −    2    +      η   || , and purple circles represent  d dh v

* */   . When 

comparing with 2D models,  d d d dh v h v
* */ = /   , shown by the solid circles. When 

comparing with 3D models, we have assumed that, at the surface, one 

observes a 2D cross-section of a cluster embedded in 3D, which implies  

d d d dh v h v
* */ = 3 /(4 )  . This value is represented by the open purple circle. Thick 

lines connecting symbols represent putative crossover of exponents from 

2D to 3D behaviour in a layered material.  
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stripes, although the superconducting pairing is large, ultimately 
Coulomb repulsion between pairs causes them to crystallize into 
a high-temperature insulator (the CDW state). On the other 
hand, if the stripes fl uctuate enough (either in time or in space), 
the CDW becomes so disrupted by defects that superconductivity 
becomes the true ground state 12 . Within a stripes-based theory of 
high-temperature superconductivity, it is in this sense that long-
range-ordered stripes  ‘ compete ’  with superconductivity. Conversely, 
shorter, disordered stripes such as those discussed here encourage 
pairing to a lesser degree, but are better for phase coherence of 
the superconductivity 8,12,36 . 

 In summary, we have introduced new methods for analysing 
strongly correlated electronic systems including the eff ects of both 
disorder and broken symmetry, using universal cluster techniques 
from the fi eld of disordered statistical mechanics. We have used this 
new method of analysis to show that there is robust power-law scal-
ing of the nematic clusters at the surface of Dy-Bi2212, extending 
over the entire fi eld of view. Th is remarkable property is generically 
associated with critical behaviour. Of the possible models that may 
explain such power law behaviour in the long-range behaviour of a 
discrete nematic, the values are consistent with the material being 
near a phase transition in a layered random fi eld Ising model, in the 
regime of intermediate disorder strength of weak disorder within 
each plane, but strong disorder between planes. In this regime, 
planar nematic clusters large enough to support a stripes-based 
mechanism of high-temperature superconductivity are present 
throughout the bulk of the material, whether or not true long-range 
nematic order is present.   

 Methods  
  Theoretical values of critical exponents   .   Th e cluster critical exponents we require 
to compare with known theoretical results of Ising models are not necessarily 
directly reported in the literature  . However, scaling relations allow us to derive the 
values of the needed exponents from other exponents available in the literature 
(See  Supplementary Tables S1 – S6 ). Th is method was used to derive   τ  ,  d     −    2    +      η  , and 
 d     −    2    +      η    ||  . In all cases,  d   h   is quoted directly from the literature. Because geometric 
clusters do not exhibit power law behaviour at the C-3D and RB-3D fi xed points, 
clusters are not fractal at these fi xed points, and have no well-defi ned  d   h  . 

 To derive   τ  , we use the scaling relation 14    τ      =    (2    −      α  ) / (  β      +      γ  )    +    1    =    (2    −      α  ) /
 (2    −      β     −     α  )    +    1. Th e anomalous dimension   η   is derived through  d     −    2    +      η      =    2  β   /  v  
(ref.   38). Th e surface critical exponent   η    ||   may be derived through  d     −    2    +      η   ||     =    2  β   1  /  v  
(refs   39,40). For 2D models,   η    ||      =      η  , whereas for 3D models,   η    ||   ≠   η  . 

 As discussed in the Results section, cluster volumes and surfaces (hulls) 
become fractal near certain critical points, in the sense that the volume  V  and hull 
 H  scale like a fractional power of the length scale  R  of the cluster,  V Rdv∝    and  
H Rdh∝   . (For  R , one may use, for example, the radius of gyration 25 ). In comparing 
with a surface probe such as STM, the observed eff ective fractal dimensions  dv

*    and  
dh

*   may be extracted from the relation of the observed area A of each cluster to its 

perimeter P as:  P Adh dv∝
* / *

  . For 2D models, a direct comparison can be made, 

and  d d d dh v h v
* */ = /   . 

 Because a surface probe only provides 2D information, when comparing STM 
or any other surface probe to 3D models, we assume that the observation is about 
a 2D cross-section of putative 3D clusters. Th e hull fractal dimension of an object 
embedded in  d -dimensional Euclidian space, when generated by an isotropic 
model, scales as  d   h   ∝ ( d     −    1). For the case of a fractal cluster embedded in 3D 
Euclidian space, the fractal dimension of the cluster hull (that is, its surface) must 
be a number between 2 and 3, 2 ≤  d   h   ≤ 3. For a fractal cluster that is generated in an 
isotropic manner (for example, from an isotropic 3D model with  J   �   →  J  ||  in  equa-
tion 1 ), taking a 2D cross-section of the cluster results in a new surface (the surface 
of the 2D cross-section) with eff ective hull fractal dimension  d dh h

* = /2  , with the 
constraint that  d   h   / 2 must be a number between 1 and 3 / 2. 

 Likewise, the volume fractal dimension of an object embedded in  d -dimen-
sional Euclidian space, when generated by an isotropic model, scales as  d   v   ∝  d . 
For a fractal cluster that is generated in an isotropic manner (for example, from 
an isotropic 3D model with  J   �   →  J  ||  in  equation 1 ), taking a 2D cross-section of 
the cluster volume results in a cross-sectional area, with eff ective volume fractal 
dimension  d dv v

* = 2 /3  . One can verify that in the limit of compact clusters, 
 d   v   → 3, and the correct result  dv* 2→    is obtained. Using the eff ective fractal 
dimensions as defi ned above, when comparing with a 3D model, we have that  

P A Adh dv dh dv∝ ∝
* / * 3 /4

  .   

  Theory of surface criticality   .   Ultimately, critical behaviour observed at a surface 
is controlled by the theory of surface critical phenomena. A transition taking place 

only on the surface corresponds directly to the 2D fi xed points we have considered. 
On the other hand, surface criticality can also arise as the bulk orders, giving rise 
to surface critical exponents at the bulk transition 39,40 . In the case of an ordinary 
surface transition, the bulk orders without a pre-existing surface transition, and 
 d     −    2    +      η   ||     =    2.54,2.59 and 0.336 for the clean 41,42 , random bond 43 , and random fi eld 
cases 44 , respectively. Here   η   ||  denotes a correlation function measured solely at the 
surface, applicable to our case. For this reason,  d     −    2    +      η   ||  may be directly compared 
with our value of 0.8    ±    0.3. 

 Th is is consistent with an ordinary surface transition, in which the exponent 
is drift ing from from RF-2D to RF-3D. However, further theoretical develop-
ments are needed to predict the surface exponents corresponding to the cluster 
size distribution exponent   τ   and the fractal dimension of cluster surfaces  d   h   
for the models discussed here, and also to predict the correlation function 
surface critical exponent   η   ||  in the case of extraordinary transitions 45 , where 
the bulk orders at a lower temperature than the surface. However, the presence 
of random fi eld disorder in the system precludes an extraordinary transition in 
this material, because a 2D Ising system cannot order in the presence of random 
fi eld disorder.   

  Harris criterion considerations   .   Th e Harris criterion states that local energy den-
sity disorder (such as random  T   c   disorder and random bond disorder) is irrelevant 
if  dv >2, where the exponents refer to the clean model. If disorder is irrelevant, then 
disorder will reduce the overall transition temperature of the phase transition, 
but the critical exponents associated with the transition remain those of the clean 
model (that is, with no disorder). In the presence of hyperscaling (obeyed by the 
clean and random bond cases),  dv     =    2    −      α   implies that the Harris criterion reduces 
to  α     <    0. In the 3D clean Ising model,   α   ~ 0.1 (ref.   14), and randomness in the local 
energy density is relevant. For the 3D case with weak bond disorder, there is a dis-
ordered fi xed point with new exponents, labelled  ‘ RB-3D ’  in  Fig. 1b . In  Fig. 4  and 
 Supplementary Tables S1-S6 , the 3D random bond Ising model exponents quoted 
are those associated with the fi xed point labelled  ‘ RB-3D ’  in  Fig. 1 , also known 
as  ‘ R ’  in the literature. In layered systems (which interpolate between the 2D and 
3D limits via the coupling ratio  J      �      /  J  ||  from  equation 1 ), increasing dimension is 
relevant, so although the ordered nematic phase occupies less and less of the phase 
diagram as the 2D limit is approached, the critical exponents of the transition 
are those of the 3D model for any fi nite coupling between planes  J   �   /  J  || >0. In the 
2D clean Ising model,   α      =    0 and such randomness is marginal. In the presence of 
weak bond disorder, it has been shown that the 2D system fl ows towards the clean 
model 46,47 . For this reason, the 2D random bond Ising exponents quoted in  Sup-
plementary Tables S1 – S6  are those of the 2D clean Ising model, controlled by the 
fi xed point labelled  ‘ C-2D ’  in  Fig. 1 . 

 The Harris criterion does not apply to random field disorder. However, 
the equilibrium phase diagram and fixed points in two and three dimensions 
are known 24,19  and summarized in  Fig. 1 . In three dimensions, there is a finite 
critical disorder strength, which at zero temperature goes to  Δc

D J3 = 2.27 ||
   19 . 

In strongly layered systems, the critical disorder strength is finite, but sig-
nificantly reduced from the 3D value 28 . Phase transitions in these cases are 
controlled by the fixed point labelled  ‘ RF-3D ’  in  Fig. 1 . In two dimensions, 
the critical disorder strength is zero, and for any finite disorder strength, the 
nematic is forbidden at all temperatures. However, there is an unstable fixed 
point at  T     =    0 and zero disorder,  ‘ RF-2D ’  24 .  Supplementary Table S1  and  Fig. 4  
report values from the literature for this fixed point, as it may affect the scaling 
in some regimes.                                                                                                                                                                                                         
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