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The observation that concepts from quantum information has generated many alternative 
indicators of quantum phase transitions hints that quantum phase transitions possess 
operational significance with respect to the processing of quantum information. Yet, studies 
on whether such transitions lead to quantum phases that differ in their capacity to process 
information remain limited. Here we show that there exist quantum phase transitions that 
cause a distinct qualitative change in our ability to simulate certain quantum systems under 
perturbation of an external field by local operations and classical communication. In particular, 
we show that in certain quantum phases of the XY model, adiabatic perturbations of the 
external magnetic field can be simulated by local spin operations, whereas the resulting effect 
within other phases results in coherent non-local interactions. We discuss the potential 
implications to adiabatic quantum computation, where a computational advantage exists only 
when adiabatic perturbation results in coherent multi-body interactions. 
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The study of quantum phase transitions has greatly benefited 
from developments in quantum information theory1,2. We 
know, for example, that the extremum points of entangle-

ment and other related correlations coincide with phase transition 
points3–7, and that different phases may feature differing fidelity 
between neighbouring states8–13. These observations have helped 
pioneer many alternative indicators of phase transitions, allowing 
the tools of quantum information science to be harnessed in the 
analysis of quantum many-body systems1,2. The reverse, however, 
remains understudied. If the concepts of quantum information 
processing have such relevance to the study of quantum phase tran-
sitions, one would expect that systems undergoing quantum phase 
transition would also exhibit different operational properties from 
the perspective of information processing. Yet, there remains little 
insight on how such relations are applied to quantum information 
and computation.

In this paper, we demonstrate using the XY model that different 
quantum phases have distinct operational significance with respect 
to quantum information processing. We reveal that the differential 
local convertibility of ground states undergoes distinct qualitative 
change at points of phase transition. By differential local convert-
ibility of ground states, we refer to the following (Fig. 1): a given 
physical system with an adjustable external parameter g is par-
titioned into two parties, Alice and Bob. Each party is limited to 
local operations on their subsystems (which we call A and B) and 
classical inter-party communication, i.e., local operations and clas-
sical communication (LOCC). The question is: can the effect on 
the ground state caused by adiabatic perturbation of g be achieved 

through LOCC by Alice and Bob? Differential local convertibility 
of ground states is significant. Should LOCC operations between 
Alice and Bob be capable of simulating a particular physical process, 
then such a process is of limited computational power, that is, it is 
incapable of generating any quantum coherence between A and B. 
We make use of the most powerful notion of differential local con-
vertibility, that of LOCC operations together with assisted entangle-
ment14,15. Given some infinitesimal ∆, let |G(g)〉AB and |G(g + ∆)〉AB 
be the ground states of the given system when the external param-
eter is set to be g and g + ∆, respectively. The necessary and sufficient 
conditions for local conversion between |G(g)〉AB and |G(g + ∆)〉AB 
is given by Sα(g)≥Sα(g + ∆) for all α, where 
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is the Rényi entropy with parameter α, ρA(g) is the reduced den-
sity matrix of |G(g)〉AB with respect to Alice’s subsystem and {λi} are 
the eigenvalues of ρA(g) in decreasing order16–18. Thus, if the Rényi 
entropies of two states intercept for some α, they cannot convert 
to each other by LOCC even in the presence of ancillary entangle-
ment19. In the ∆→0 +  limit, we may instead examine the sign of 
∂gSα(g) for all α. If ∂gSα(g) does not change sign, the effect of an 
infinitesimal increase of g results in global shift in Sα(g), with no 
intersection between Sα(g + ∆) and Sα(g). Otherwise, an intersection 
must exist.

Results
Transverse field Ising model. Before we consider the general XY 
model, we highlight key ideas on the transverse Ising model, which 
has the Hamiltonian 
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where σ k, for k = x,y,z, are the usual Pauli matrices, and periodic 
boundary conditions are assumed. The transverse Ising model is one 
of the simplest models that has a phase transition, therefore it often 
serves as a test bed for applying new ideas and methods to quantum 
phase transitions. Osterloh et al.3 have previously shown that the 
derivative of the concurrence is a indicator of the phase transition. 
Nielsen et al.4 have also studied concurrence between two spins at 
zero or finite temperature Recently, the Ising chain with frustration 
has been realized in the experiment20.

The transverse Ising model features two different quantum 
phases, separated by a critical point at g = 1. When g < 1, the system 
resides in the ferromagnetic (symmetric) phase. It is ordered, with 
non-zero order parameter 〈σ x〉, that breaks the phase flip symmetry 
Πi i

zs . When g > 1, the system resides in the symmetric paramag-
netic (symmetry broken) phase, such that 〈σ x〉 = 0.

There is systematic qualitative difference in the computational 
power afforded by perturbation of g within these two differing 
phases. In the paramagnetic phase, ∂gSα(g) is negative for all α, 
hence increasing the external magnetic field that can be simulated 
by LOCC. In the ferromagnetic phase, ∂gSα(g) changes signs for 
certain α. Thus, the ground states are not locally convertible, and 
perturbing the magnetic field in either direction results in funda-
mentally non-local quantum effects.

This result is afforded by the study of how Rényi entropy within 
the system behaves. From equation (1), we see that Rényi entropy 
contains all knowledge of {λi}21. For large α, la

i  vanishes when λi is  
small, and larger eigenvalues dominate. In the limit where α→,  
all but the largest eigenvalue λ1 may be neglected such that 
S∞ −= 2 1log l . In contrast, for small values of α, smaller eigenval-
ues become as important as their larger counterparts. In the α→0 +   
limit, the Rényi entropy approaches to the logarithm of the rank  
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Figure 1 | Differential local convertibility illustration. Alice and Bob 
control the two bipartitions of a physical system whose ground state 
depends on a Hamiltonian that can be varied via some external parameter 
g. In one phase (a), the conversion from one ground state |G(g)〉 to another 
|G(g + ∆)〉 requires a quantum channel between Alice and Bob, that is, 
coherent interactions between the two partitions are required. We say 
that this phase has no local convertibility. After phase transition (b), Alice 
and Bob are able to convert |G(g)〉 to |G(g + ∆)〉 via only local operations 
and classical communications, and local convertibility becomes possible. 
If ∆→0, local convertibility becomes differential local convertibility. This 
implies that it is impossible to completely simulate the adiabatic evolution 
of the ground state with respect to g by LOCC in one quantum phase and 
possible in the other phase.
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for the reduced density matrix, that is, the number of non-zero 
eigenvalues.

This observation motivates study of the eigenvalue spectrum. 
In systems of finite size (Fig. 2a), the largest eigenvalue monot-
onically increases while the second monotonically decreases for 
all g. All the other eigenvalues λk exhibit a maximum at some 
point gk. From the scaling analysis (Fig. 2b and c), we see that as  
we increase the size of the system, gk→1 for all k. Thus, in the 
thermodynamic limit, λk exhibits a maximum at the critical point 
of g = 1 for all k≥3. Knowledge of this behaviour gives intuition to 
our claim.

In the ferromagnetic phase, that is, 0 < g < 1, ∂gSα(g) takes on  
different signs for different α. When α→0 + , Sα tends to the loga-
rithm of the effective rank. From Fig. 2, we see that all but the two 
largest eigenvalues increase with g, resulting in an increase of effec-
tive rank. Thus ∂gSα(g) > 0 for small α. In contrast, when α→, 
Sa l→ − 2 1log . As λ1 increases with g (Fig. 2), ∂gSα(g) < 0 for large α. 
Therefore, there is no differential local convertibility in the ordered 
phase.

In the paramagnetic phase, that is, g > 1, calculation yields that 
∂gSα(g) is negative for both limiting cases considered above by simi-
lar reasoning. However, the intermediate α between these two limits 
cannot be analysed in a simple way. The detail and formal proof of 
the result can be found in the ‘Method’ section, where it is shown 
that ∂gSα(g) still remains negative for all α > 0. Thus, differential 
local convertibility exists in this phase.

These results indicate that at the critical point, there is a distinct 
change in the nature of the ground state. Before the critical point, a 
small perturbation of the external magnetic field results in a change 
of the ground state that cannot be implemented without two-body 
quantum gates. In contrast, after phase transition, any such pertur-
bation may be simulated completely by LOCC.

XY model. We generalize our analysis to the XY model, with  
Hamiltonian 

H g
i

i
x

i
x

i
y

i
y

i
z= 1

2
(1 ) 1

2
(1 ) ,1 1− + + − +



∑ + +g s s g s s s

for different fixed values of γ > 0. The transverse Ising model thus 
corresponds to the the special case for this general class of models, 
in which γ = 1. For γ≠1, there exists additional structure of interest in 
phase space beyond the breaking of phase flip symmetry at g = 1. In 
particular, there exists a circle, g2 + γ2 = 1, on which the ground state 
is fully separable. The functional form of ground state correlations 
and entanglement are known to differ substantially on either side 
of the circle22–24, which motivates the perspective that the circle is 
a boundary between two differing phases. Indeed, such a division 
already exists from the perspective of an entanglement phase dia-
gram, where different ‘phases’ are characterized by the presence and 
absence of parallel entanglement25.

Analysis of local convertibility reveals that from the perspective 
of computational power under adiabatic evolution we may indeed 
divide the system into three separate phases (Fig. 3). While the dis-
ordered paramagnetic phase remains locally convertible, the local 
convertibility of the ferromagnetic phase now depends on whether 
g2 + γ2 > 1. In particular, for each fixed γ > 0, the system is only locally 
non-convertible when g > 1 2−g . We summarize these results in a 
‘local-convertibility phase-diagram’, where the ferromagnetic region 
is now divided into components defined by their differential local 
convertibility.

Different partitions. Numerical evidence strongly suggests that 
our results are not limited to a particular choice of bipartition. We 
examine the differential local convertibility when both systems 
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Figure 2 | The largest four eigenvalues and the scaling analysis. (a) The four largest eigenvalues of transverse Ising ground state for N = 10 case.  
The red line represents the largest eigenvalue λ1 and the black line is the second one λ2. Note that we have artificially magnified λ3 (green) and λ4 (blue) 
by ten times for the sake of clarity as each subsequent eigenvalue is approximately one order smaller than its predecessor. (b) The scaling behaviours of 
the maximal points of the third eigenvalue. When N→, the maximum points approach to the critical point with certain acceptable error. The black dots  
are the data and the red curves are the exponential fit of these data. The maximum point for the third eigenvalue g N3 =0.495 ( 10.044) 1.09177× − +exp / .  
(c) The maximum point for the fourth eigenvalue g N4 = 0.082 ( 5.527) 0.9996− × − +exp / . The maximum points of smaller eigenvalues have similar 
behaviour.
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of interest is partitioned in numerous other ways, where the two  
parties may share an unequal distribution of spins (Fig. 4). The 
qualitative properties of ∂gSα remain unchanged. While it is impra
ctical to analyse all 2N possible choices of bipartition, these results 
motivate the conjecture that differential local convertibility is 
independent of our choice of partitions. Should this be true, it has 
strong implications: the computation power of adiabatic evolution 
in different phases are drastic. In one phase, perturbation of the 
external field can be completely simulated by LOCC operations on 
individual spins, with no coherent two-spin interactions. While, in 
other phases, any perturbation in the external field creates coher-
ent interactions between any chosen bipartition of the system.

Discussion
The study of differential local convertibility of the ground state gives 
direct operational significance to phase transitions in the context of 
quantum information processing. For example, adiabatic quantum 
computation (AQC) involves the adiabatic evolution of the ground 
state of some Hamiltonian, which features a parameter that var-
ies with time26,27. This is instantly reminiscent of our study, which 
observes what computational processes are required to simulate the 
adiabatic evolution of the ground state under variance of an external 
parameter in different quantum phases.

Specifically, AQC involves a system with Hamiltonian (1 − s)H0  
+ sHp, where the ground state of H0 is simple to prepare and the 
ground state of Hp solves a desired computational problem. Comput-
ing the solution then involves a gradual increment of the parameter 
s. By the adiabatic theorem, we arrive at our desired solution pro-
vided the s is varied slowly enough such that the system remains in 
its ground state26,27. We can regard this process of computation from 
the perspective of local convertibility and phase transitions. Should 
the system lie in a phase where local convertibility exists, the incre-
ment of s may be simulated by LOCC. Thus, AQC cannot have any 
computational advantages over classical computation. Only in phases 
where no local convertibility exists can AQC have the potential to 
surpass classical computation. Thus, a quantum phase transition 
could be regarded as an indicator from which AQC becomes useful.

In fact, the spin system studied in this paper is directly relevant to a 
specific AQC algorithm. The problem of ‘2 − SAT on a Ring: Agree and 
Disagree’ features an adiabatic evolution involving the Hamiltonian 
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where s is slowly varied from 0 to 126,27. This is merely a rescaled 
version of the Ising chain studied here, where the phase transition 
occurs at s = 2 3/ . According to the analysis above, the AQC dur-
ing the paramagnetic phase can be simulated by local manipula-
tions or classical computations. For the period of ferromagnetic 
phase, we can do nothing to reduce the adiabatic procedure.

In this paper, we have demonstrated that the computational 
power of adiabatic evolution in the XY model is dependent on 
which quantum phase it resides in. This surprising relation sug-
gests that different quantum phases may not only have different 
physical properties but may also display different computational 
properties. This hints that not only are the tools of quantum infor-
mation useful as alternative signatures of quantum phase transi-
tions, but that the study of quantum phase transitions may also 
offer additional insight into quantum information processing. 
This motivates the study of the quantum phases within artificial 
systems that correspond directly to well-known adiabatic quan-
tum algorithms, which may grant additional insight on how adia-
batic computation relates to the physical properties of system that 
implements the said computation. There is much potential insight 
to be gained in applying the methods of analysis presented here  
to more complex physical systems that features more complex 
quantum transitions.

In addition, differential local convertibility also may possess  
significance beyond information processing. One of the proposed 
indicators of a topological order involves coherent interaction 
between subsystems that scale with the size of the system28,29.  
In our picture, such an indicator could translate to the require-
ment for non-LOCC operations within appropriate chosen bipartite  
systems. Thus, differential local convertibility may serve as an  
additional tool for the analysis of such order.

Methods
Eigenvalue properties. For the transverse field Ising model, the largest eigenvalue 
λ1 monotonically increases while the second λ2 monotonically decreases for all 
g (Fig. 2). In the thermodynamic limit, all the other eigenvalues increase in the 
g < 1 region and decrease in the g > 1 region. Moreover, the eigenvalues other than 
the largest two are much smaller than λ1 and λ2. Therefore, we can average them 
when considering their contribution to the Renyi entropy. Thus, the eigenvalues 
are assumed to be 0.5 + δ, 0.5 − ε, (ε − δ)/(2n − 2), (ε − δ)/(2n − 2),… when g < 1, and 
1 − δ′ − ε′,ε′,δ′/(2n − 2),…, when g > 1, where n is the particle number belonging 
to Alice and certainly Bob has the other N − n particles. Because of some obvious 
reasons such as l l l1 2 3> >  and all these eigenvalues are positive, and so 
on, we can derive the following relations easily: 0 < δ < ε < 0.5, 0 < ∂δ/∂g < ∂ε/∂g, 
0 < δ′ < ε′ < 0.5, ∂δ′/∂g < 0, and ∂ε′/∂g < 0. Then we can prove the main result for each 
phase region. Namely, in the g < 1 phase, ∂gSα is positive for small α but negative 
for large α; and for the g > 1 phase, ∂gSα < 0 for all α.

Ferromagnetic phase. In the ferromagnetic phase g < 1, the eigenvalues are 0.5 + δ, 
0. 5 − ε, (ε − δ)/(2n − 2), (ε − δ)/(2n − 2),…. So the Renyi entropy 
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Figure 3 | XY model local convertibility phase diagram. Consideration 
of differential local convertibility separates the XY model in three phases, 
which we label phase 1A, phase 1B and phase 2. We consider differential 
local convertibility for fixed values of γ while g is perturbed. Differential local 
convertibility is featured within both phase 1B and phase 2, but not phase 1A.
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In the thermodynamic limit N→, (ε − δ)/(2n − 2)→ 0.
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 and 0 < ∂δ/∂g < ∂ε/∂g, we can see that the solution of ∂Sα/∂g = 0 

(labelled as α0) always exists in the region g <1 >1∩a , and ∂Sα/∂g will be nega-
tive as long as α > α0. Moreover, we can also see that the smaller g is, the smaller δ 
and ε are, and the smaller (1 + (ε + δ)/(0.5 − ε)) is, and therefore the larger α0 should 
be. This explains why we need to examine larger value of α to find the crossing 
when g is very small.

(7)(7)

(8)(8)

Notice that in the above analysis, we used the N→ condition in the g < 1 
region. We can also find that in Fig. 4 for finite N = 12 there is some small green 
area in the region a <1 <1∩ g . However, in the above analysis of infinite N, this 
area should be totally red. This difference is owing to the finite size effect.

Paramagnetic phase. In the paramagnetic phase, g > 1. The eigenvalues are 
1 − δ′ − ε′,ε′,δ′/(2n − 2),…. The Rényi entropy 
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Figure 4 | The sign distribution of −gSa in Ising model and XY model for different bipartitions. The sign distribution of ∂gSα on the α − g plane for 
different bipartitions on the systems. Panels (a), (b) and (c) correspond to Ising model of size N = 12, where Alice possesses 6,5 and 4 of the spins, 
respectively. ∂gSα is negative in lighter regions and positive in the red regions. Clearly, regardless of choice of bipartition, ∂gSα is always negative for 
g > 1 and takes on both negative and positive values otherwise. Note that for very small g, ∂gSα only becomes negative for very large α and thus appears 
completely positive in the graph above. The existence of negative ∂gSα can be verified by analysis of ∂gSα in the α→ limit. The choice of bipartition affects 
only the shape of the ∂gSα = 0 boundary, which is physically unimportant. Panels (d), (e) and (f) correspond to XY model with fixed g = 3/2, N = 14 and 
L = 7, 6 and 5, respectively. Panels (g), (h) and (i) correspond to XY model with fixed g = 7/4, N = 18 and L = 9, 8 and 7, respectively. Here, the value of L 
represents a bipartition in which L qubits are placed in one bipartition and N − L qubits in the other. The only region in which ∂Sα/∂g takes on both negative 
and positive values is in phase 1A. Note that the transition between phase 1A and 1B occurs at g = 0.5 for g = 3/2 (Point E in Fig. 3) and g = 0.75 for 
g = 7/4 (Point D in Fig. 3).
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where ∂δ′/∂g, ∂ε′/∂g < 0; and ε′/(1 − ε′ − δ′), δ′/(1 − ε′ − δ′)(2n − 2)∈(0,1), as 
λ1 > λ2 > λ3.

So when α > 1, [(…)α − 1 − 1] < 0, {…} > 0, α/(1 − α) < 0. We have ∂Sα/∂g < 0; and 
when 0 < α < 1, [(…)α − 1 − 1] > 0, {…} < 0, α/(1 − α) > 0. We also have ∂Sα/∂g < 0. 
Hence, we can obtain that when g > 1, ∂Sα/∂g < 0 for all α > 0. If we consider the 
full condition for the local convertibility, which includes the generalization of α 
to negative value, it also can be proved easily that the local convertible condition 
∂gSα/α > 0 for all α is satisfied in the g > 1 phase. As for the g < 1 phase, the sign 
changing in the positive α already violates the local convertible condition, so that 
we do not need to consider the negative α part. In fact, generally speaking, for 
the study of differential local convertibility, we can only focus on the positive α 
part, because the derivative of Rényi entropy over the phase transition parameter 
will necessarily generate a common factor α, which will cancel the same α in the 
denominator.

To conclude, In the g > 1 phase ∂Sα/∂g is negative for all α, and in the 
g <1 <1∩a  region it is positive, while in the g <1 >1∩a  region it can be either 
negative or positive with the boundary depending on the solution of equation (4). 
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