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 From astronomy to cell biology, the manner in which light propagates in turbid media has been 

of central importance for many decades. However, light propagation near the point-of-entry in 

turbid media has never been analytically described, until now. Here we report a straightforward 

and accurate method that overcomes this longstanding, unsolved problem in radiative transport. 

Our theory properly treats anisotropic photon scattering events and takes the specifi c form 

of the phase function into account. As a result, our method correctly predicts the spatially 

dependent diffuse refl ectance of light near the point-of-entry for any arbitrary phase function. 

We demonstrate that the theory is in excellent agreement with both experimental results and 

Monte Carlo simulations for several commonly used phase functions.         
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 R
ecent advances in optical spectroscopy of human epithelium, 
high-resolution imaging and early cancer detection demand 
an accurate description of light propagation near the point 

where light enters the tissue 1 – 8 . However, an analytical method 
capable of describing the propagation of photons near their point-
of-entry (POE) in turbid media has eluded researchers in diverse 
fi elds for generations 9 – 12 . Propagation of electrons in semiconduc-
tors 13 , anisotropic light diff usion in liquid crystals 14  and coher-
ent backscattering 15  are only a few examples that can benefi t from 
such a method. Th e most accurate treatment of such problems, 
when interference can be neglected, uses the radiative transport 
equation, 
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where  L ( r ,  s ) is the radiance of light at position  r  travelling in the 
direction of unit vector  s ,  S ( r ,  s ) describes the distribution of internal 
sources, and   μ    a   and   μ    s   are the absorption and scattering coeffi  cients 
of the medium, respectively. Th e unity normalized function  p ( s ,  s  ′ ) 
is the phase function of the medium, which describes the angular 
distribution for a single scattering event (here,  s  ′  is the incoming 
and  s  the outgoing direction of scatter) 9 . 

 Unfortunately, no analytical solution to this equation has been 
discovered for practical scenarios. A frequently used numerical 
method is the Monte Carlo (MC) simulation. Th e MC simulation 
gives accurate results but does not provide any physical insight and 
oft en requires excessive computational time. Recent GPU-based 
MC methods signifi cantly reduce computational time 16 – 19 , thus 
extending the utility of the MC simulations to practical applications, 
but inverse problems with a large number of parameters will greatly 
benefi t from the analytical approach provided here. In the absence 
of suitable numerical methods, the most widely used approach is 
to obtain an approximate solution using the diff usion approxima-
tion (DA) to the radiative transport equation. Th e DA works best 
when scattering is isotropic or near isotropic 20 . It is not sensitive 
to the particular form of the phase function, reducing phase func-
tion information to a single parameter,  g     =     ∫  p ( s  ·  s  ′ ) ( s  ·  s  ′ ) d s  ′ , called 
the average cosine of the phase function or the anisotropy factor, 
which in turn is incorporated into the reduced scattering coeffi  -
cient,  ′ = −m ms s g( )1   . Hence,  ′ms    becomes the only parameter in the 
DA to describe scattering. Although the DA can provide analytical 
solutions in some cases, it does not provide accurate results for the 
critically important region near the POE. 

 Th is limitation of the DA has been a major impediment, par-
ticularly for light scattering in biological media. Many investigators 
have attempted to amend the DA by solving the radiative trans-
port equation by using more complicated phase functions 21 – 23 . 
One such approach, called the   δ      −     P  1  approximation, is to solve the 
equation for the delta-Eddington phase function, which results in 
some improvements for characterizing forward scattering media 24 . 
Another approach is to decompose the phase function into a series 
of Legendre polynomials and to construct a system of radiative 
transport equations corresponding to each Legendre term. Because 
it becomes very cumbersome to solve the system of partial diff er-
ential equations as the number of Legendre terms increases, the  P  3  
approximation uses only the 0th through 3rd terms in the Legen-
dre series 25 . Both approximations are substantial improvements 
over the DA because they take the phase function into account and 
broaden the parameter space with which the approximation can be 
used 26,27 . However, until now, no proposed analytical method has 
addressed the important regime of light scattering near the POE (for 
example, at source – detector separations less than  1/ ′ms  ) well enough 
to be widely used as common practice. 

 Here we introduce a novel approach that results in the fi rst suc-
cessful attempt to analytically describe spatially dependent diff use 
refl ectance near the POE in turbid media with arbitrary phase func-

(1)(1)

tion and absorption. Th e phase function corrected (PFC) DA takes 
advantage of the delta-isotropic phase function, described below, 
to derive a two-part expression for the diff use refl ectance. Th e fi rst 
part is identical to the DA for a pencil beam illumination, whereas 
the second part approximates the changes in refl ectance due to the 
specifi c form of the phase function. Th e resulting predictions are 
shown to be in excellent agreement with experiment and also with 
the MC simulations at all distances, including the critical area near 
POE.  

 Results  
  PFC photon diff usion   .   We consider the problem of calculating the 
refl ectance of light from a semi-infi nite turbid medium with no 
internal sources ( S ( r ,  s )    =    0) illuminated with a narrow collimated 
beam ( Fig. 1 ), an important, general problem oft en treated using 
the DA. 

 Th e radiance in this problem can be divided into three main 
parts as follows: an on-axis part due to the narrow collimated beam; 
a predominately isotropic, phase function-independent part; and an 
anisotropic, phase function-dependent part. Similarly, any arbitrary 
phase function can be expressed as a sum of a delta function, an 
isotropic part and an anisotropic part. We achieve this by expressing 
an arbitrary phase function,  p ( s  ·  s  ′ ), as the sum of the delta-isotropic 
phase function with the same anisotropy factor and a deviation 
term 
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where  p  DI  ( s  ·  s  ′ )    =    [1    −     g     +    2 g  ·   δ   (1    −     s  ·  s  ′ )] / 4  π   is the delta-isotropic 
phase function 28 . Th is decomposition of the phase function enables 
us to separate the radiance into the three analogous parts described 
above. 

 By substituting  equation (2)  into  equation (1)  and using the 
reduced scattering coeffi  cient, we can express  equation (1)  as 

 

s r s r s r s s

s s

⋅∇ = − + ′ + ′

+ ⋅ −

∫∫L L L

p p

a s
s

s

( , ) ( ) ( , ) ( , )

( ) (

m m m
p

m
4

′ ′

′

d

DI ss s r s s⋅[ ]∫∫ ′ ′ ′) ( , )L d
  

Without the second integral on the right-hand side,  equation (3)  
would be the equation of radiative transport for the case of an iso-
tropically scattering medium, which, as mentioned above, can be 
described using the DA. Th us, indeed, it is logical to present the 
radiance  L ( r ,  s ) as the sum of a predominantly isotropic diff use part, 

(2)(2)

(3)(3)
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      Figure 1    |         Semi-infi nite turbid medium geometry. The medium is 

illuminated with a narrow collimated beam. In addition to unscattered 

photons, low-angle-scattered photons are also shown. Any point along the 

beam can be a source of a single large-angle turn, which is followed by low-

angle-scattered photons propagating towards the surface. The large angle 

turn is described by the phase function, providing PFC. Here  r z1
2 2= +r   .  
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 L   d   ( r ,  s ), a phase function-dependent part,  L   p   ( r ,  s ), and an on-axis 
part due to the narrow collimated beam,  L   c   ( r ,  s ). 

 Aft er substitution for  L ( r ,  s ) in  equation (3) , we seek an 
expression for  L   c   ( r ,  s ), which satisfi es the boundary condition 
for a narrow collimated beam and a portion of  equation (3) ,  
s r s r s⋅∇ = − + ′L Lc a s c( , ) ( ) ( , )m m   . Note that this portion is described 
by  ′ms   rather than   μ    s   and specifi cally accounts for low-angle-scat-
tered photons 20  (see  Fig. 1  for illustration). Th e boundary condition 
corresponding to a narrow collimated beam entering a semi-infi nite 
medium is  L Pz=

− −= − ⋅0 0
2 12 1( ) ( ) ( )p r d r d s ẑ    for inward directions 

( s z⋅ >˘ 0  ), where  P  0  is the power of the incoming beam,   ρ   and  z  are 
the cylindrical coordinates and ẑ  is a unit vector along the  z  axis. 
Th is gives 29   L P zc a s( , ) ( ) ( ) ( )exp[ ( ) ]r s s z= − ⋅ − + ′− −

0
2 12 1p r d r d m mˆ

 and the boundary conditions  Ld z= =
0

0   and  Lp z=
=

0
0   for  ˆs z⋅ > 0 . 

 Th e transport  equation (3)  can then be written as a system of 
two equations for the remaining parts of the radiance  L   d   ( r ,  s ) and 
 L   p   ( r ,  s ). It is natural then to distribute the two remaining  L   c   ( r ,  s ) 
dependent terms so that the isotropic, phase function-independent 

term  
′ ∫∫

m
p
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4

( , )r s s′ ′d    is combined with the equation for the pre-

dominately isotropic  L   d   ( r ,  s ) and the anisotropic, phase function-
dependent term   μ    s    ∫  ∫ [ p ( s  ·  s  ′ )    −     p  DI  ( s  ·  s  ′ )] L   c   ( r ,  s  ′ )d s  ′  is combined 
with the equation for the anisotropic  L   p   ( r ,  s ). 

 Th e fi rst equation, 
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leads to the standard DA and the second equation, 
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retains all of the phase function-dependent terms. Here we use 
  μ    s    ∫  ∫ [ p ( s  ·  s  ′ )    −     p  DI  ( s  ·  s  ′ )]  L   d   ( r ,  s  ′ ) d s  ′     =    0 and neglect the integral term 
  μ    s    ∫  ∫ [ p ( s  ·  s  ′ )    −    (2   π )     −    1  g  ·   δ   (1    −     s  ·  s  ′ )]  L   p   ( r ,  s  ′ ) d s  ′ . (Th e justifi cation 
for the treatment of these two integrals appears in the Methods 
section.) 

  Equation (4)  exactly matches the equation of radiative transport 
for a turbid medium with an isotropic phase function, illuminated 
with a narrow collimated beam, and has been solved by a standard 
DA procedure. Th is results in the radially dependent diff use refl ect-
ance  R   d   (  ρ  ) presented in Farrell  et al.,  30  
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where  m m m meff = + ′[ ( )] /3 1 2
a a s    is the eff ective attenuation coeffi  cient, 

 zb a s= + ′2 3/[ ( )]m m    is the coordinate of the extrapolated bound-

ary condition,  r z1
2 2= +r   ,  r z zb2

2 22= + +r ( )    and   ρ   is the exit 
radius measured from the POE in the surface plane of the semi-
infi nite medium ( Fig. 1 ). 

  Equation (5)  describes the PFC and is also integrable. Th e solu-
tion gives the PFC term,  R   p   (  ρ  ), for the radially dependent refl ect-
ance, obtained by projecting  L   p   ( r ,  s ) on the surface of the medium 
and integrating over the emerging solid angle 
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  Physical nature of PFC   .   Th e physical nature of the PFC in  equa-
tion (7)  can be qualitatively understood if we notice that  z     +     r  1  is 

(4)(4)

(5)(5)

(6)(6)

(7)(7)

the distance a photon would travel through the turbid medium to 
the detector if it undergoes just a single scattering event, fi rst trav-
elling in the collimated beam to the depth  z , then scattering at the 
angle cos     −    1  (    −     z  /  r  1 ) and fi nally travelling distance  r  1  to the detec-
tor ( Fig. 1     ). Moreover, the phase function in the integral  p  (    −     z  /  r  1 ) 
represents the probability of scattering at an angle cos     −    1  (    −     z  /  r  1 ). 
However, note that the attenuation (the exponential in  equation 
(7) ) has a characteristic inverse scattering length of  ′ms  . Th e reduced 
scattering coeffi  cient  ′ms   characterizes the attenuation of light due 
to diff use scattering, that is, only diff usely scattered photons are 
removed from the  z     +     r  1  path; unscattered and low-angle-scattered 
photons remain. If we were considering only unscattered photons, 
the attenuation factor would have the scattering coeffi  cient   μ    s   in the 
exponent, instead of the reduced scattering coeffi  cient  ′ms  . Th e  z     +     r  1  
path is not the actual path of real photons, but rather the virtual 
path of quasi-ballistic photons, which are described by  equation 
(7) . Th e contribution of the term describing this behaviour can be 
positive or negative as it depends on the diff erence of the contri-
butions of the actual phase function and the delta-isotropic phase 
function. Physically, the PFC term accounts for the contribution of 
these photons, which have undergone multiple low-angle scattering 
events plus a single large-angle scattering event along the  z     +     r  1  path. 
Th at single large-angle turn is described by the phase function, thus 
providing the PFC. An illustration of this scattering behaviour is 
shown in  Figure 1 .   

  Comparison with the MC and existing approximations   .   To check 
the accuracy of PFC we compared the refl ectance calculated by the 
MC simulation, which is considered to be the gold standard, to the 
refl ectance calculated using PFC, that is, the sum of the standard 
DA term,  equation (6) , and the PFC term,  equation (7) . Th e MC 
program used was validated against a well-accepted code 31 . Follow-
ing the procedure described in Liu and Ramanujam 32 , we obtained 
the 95 %  confi dence interval of all the MC simulations presented. 
Th e margin of error is within 1 %  of the mean for  rm′ <s 0 1.    and 
within 2 %  for the full range. We include results for two phase func-
tions commonly used in turbid media: the Henyey  –  Greenstein 
(H – G) phase function 33   p  HG  ( s  ·  s  ′ )    =    [(1    −     g  2 ) / 4  π  ] / [1    +     g  2     −    2 g  
( s  ·  s  ′ )] 3 / 2  and the  ‘ Mie ’  phase function, which can be described using 
the Mie theory 34 . Th e Mie phase function was calculated for a Gaus-
sian size distribution with a s.d. of 10 %  and a mean size chosen such 
that the resulting phase function had the desired anisotropy factor, 
 g . Th e results are presented in  Figures 2 and 3 . 

  Figure 2a  shows the sensitivity of PFC to the particular choice 
of phase function. Although the DA strongly disagrees with the 
results of the MC simulations, especially in the vicinity of the source 
( rm′ <s 0 1.   ), PFC shows excellent agreement for both the H – G and 
Mie phase functions. As an example, a comparison is presented 
for  g     =    0.95, although for other values of the anisotropy factor  g  the 
agreement is equally good. Importantly, both the H – G and Mie 
phase functions used in these simulations have identical anisot-
ropy factors, yet, show marked diff erences at small source – detector 
separations. As demonstrated in  Figure 2a , these phase function-
dependent changes in refl ectance are well characterized by PFC. 
Comparison between PFC and recent attempts to improve the DA 
is shown in  Figure 2b , together with a plot of the percentage error 
between the approximations and MC simulation. Th e PFC diff u-
sion theory shows signifi cantly improved agreement with the MC 
simulations over both the   δ      −     P  1  and  P  3  approximations. For the 
case of the Mie phase function, PFC shows similar results, although 
the comparison of   δ      −     P  1  and  P  3  approximations with the MC simu-
lations demonstrate improvement compared with Henyey – Green-
stein phase function close to the POE ( Supplementary Fig. S1 ). 

  Figure 3  presents several scenarios where PFC corrects the major 
defi ciencies of the DA. Scenarios of low  ( / . )m ma s′ = 0 01    and high  
( / )m ma s′ = 1    absorption are shown in  Figure 3a . Th e DA gives sig-

ˆ
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nifi cant errors for  rm′ <s 0 1.   , that is, small distances from the source; 
however, PFC does not suff er from this problem and agrees with the 
MC simulations for all distances. For large source – detector separa-

tions and high absorptions, the amount of light emerging from the 
scattering medium is usually so small that detection is impractical. 
 Figure 3b  shows the eff ects of varying the anisotropy factor  g . PFC 
agrees with the MC simulations for both  g     =    0 and  g     =    0.9, whereas 
the DA is only accurate for anisotropy factor  g     =    0, that is, totally iso-
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        Figure 2    |         Sensitivity to the form of the phase function and comparison 
with other light transport approximations. ( a ) Dimensionless refl ectance 

for the H – G and Mie phase functions with  g     =    0.95 and  m ma s/ ′       =    0.01. Blue 

lines and circles — H – G phase function, red lines and circles — Mie phase 

function, where lines are for PFC diffusion theory and circles are for the MC 

simulations. Black dashed line — the standard DA. ( b ) Comparison of PFC 

diffusion theory with the standard DA, the  P  3  and   δ      −     P  1  approximations and 

MC simulations for the H – G phase function with  g     =    0.95 and  m ma s/ ′      =    0.01. 

The error plot shows the percentage error (( R     −     R  MC ) /  R  MC  × 100 % ), 

between each of the approximations,  R , and MC simulation,  R  MC .  
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      Figure 3    |         Effects of absorption and anisotropy factor  g . Dimensionless 

refl ectance for the PFC diffusion theory compared with the MC simulations 

and the standard diffusion theory (DA) for the case of the H – G phase 

function with different absorptions; ( a ) blue lines and circles —  g     =    0.9 and 

relatively weak absorption ( m ma s/ .′ = 0 01  ), red lines and circles —  g     =    0.9 

and relatively high absorption ( m ma s/ ′ = 1  ). Dashed lines — standard DA, 

solid lines — PFC diffusion theory, circles — MC simulations. Although the 

standard diffusion theory gives signifi cant errors for  rm′ <s 0 1.    the PFC DA 

does not suffer from this problem and agrees with the MC simulations for 

all distances; ( b ) effect of different anisotropy factors  g . Red represents 

 g     =    0 and blue represents  g     =    0.9. The PFC diffusion theory (solid lines) 

agrees with the MC simulations (circles) for all distances, whereas 

the standard diffusion theory (black dashed line) does not have any 

dependence on the anisotropy factor  g . (Note that the standard diffusion 

theory and the PFC diffusion theory curves exactly overlap for  g     =    0.) Inset: 

the separate contributions of the diffuse refl ectance (black line) and PFC 

refl ectance (blue line) and their asymptotic behaviour (dashed lines.)   
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tropic scattering. Percentage errors between theory and the MC for 
 Figure 3  are shown in  Supplementary Figure S2 . Th e inset in  Figure 
3b  depicts the separate contributions of  R   p   (  ρ  ) and  R   d   (  ρ  ) and their 
asymptotic rates of decay for the  g     =    0.9 case. Th e contribution of the 
correction to the refl ectance at  rm′s �1   becomes negligible, result-
ing in an accuracy that is determined by the particular diff usion 
theory model being used. Note that although we have chosen a well-
accepted diff usion theory model to describe isotropic scattering, 
there may be other solutions to this component of the refl ectance. 

 Th e correction is intended to work best near the POE where 
the specifi c form of the phase function has a role, although the 
DA is known to work well for large radii where the specifi c form 
of the phase function does not matter. Th e intermediate regime is 
described less accurately due to the neglected integral term. Th e 
average deviation in this range of  rm′ −s ∼ 0 2 1.    is less than 10 % , 
which is signifi cantly better than the other methods ( Fig. 2b ).   

  Comparison with the MC simulation within the medium   .   Th ough 
the primary intention of this work is to present a solution to the 
problem of diff use refl ectance near the POE, we note that the cor-
rection also works within the medium. Th e approach presented 
above uses the standard DA to provide the isotropic solution, which 
is then corrected with the PFC. However, the standard DA is not 
particularly accurate in predicting the distribution of light near the 
POE within the medium, even for  g     =    0. Th us, to check the accuracy 
of the correction within the medium, we used the MC simulation 
for both isotropic and anisotropic cases using the H – G phase func-
tion and calculated the phase function-related change in the fl uence 
rate at several depths within the medium. Th e PFC fl uence rate is 
obtained by integrating  L   p   ( r ,  s ) over the entire solid angle 
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where  r r1
2 2= + −( )z z′   . Comparison with the MC simulations 

shows good agreement within the medium including the vicinity 

(8)(8)

of the POE ( Fig. 4 ) at depths of  z s′ ≤m 0 5.   . Accurate treatment of 
larger depths would require including transverse spreading of the 
collimated beam.   

  Comparison with experimental measurements   .   We also com-
pared the refl ectance calculated using PFC with experimental 
measurements performed using the setup shown in  Figure 5a  (see 
Methods for details). A high numerical aperture (NA) objective was 
used in this setup because  equations (6) and (7)  describe a 2  π   col-
lection solid angle, and the MC simulations show the illumination 
NA has virtually no eff ect on the shape of the refl ectance near the 
POE ( Supplementary Fig. S3 ). Th e scattering medium consisted of 
a mixture of an aqueous glycerine solution and  polystyrene micro-
spheres  with a diameter of 0.457    μ m ( Polysciences, Inc. ). Using 
the Mie theory 34  and assuming a Gaussian size distribution of the 
microspheres with a s.d. of 0.011    μ m, as listed by the manufacturer, 
we calculated the reduced scattering coeffi  cient of the scattering 
sample to be  ′ms      =    5.6   mm     −    1  and the anisotropy factor to be  g     =    0.89. 
Th e absorption coeffi  cient of the scattering sample is approximately 
  μ    a      =    0.001   mm     −    1  (see Methods for details). Th e refl ectance signal 
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imaging CCD. ( b ) Experimentally collected spatially resolved refl ectance.  
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measured from the polystyrene microsphere sample is presented in 
 Figure 5b . We note that the measurements were performed tens of 
micrometres from the POE, where the signal strength has signifi cant 
variation. Th is distance is comparable to cellular sizes in biological 
tissue. Th us, measurements of the refl ectance from tissue on this 
scale could be sensitive to alterations in cell architecture associated 
with normal function or early, pre-cancerous changes. 

  Figure 6  shows the experimental refl ectance spectra and a com-
parison with the DA and PFC theories. Although the DA exhibits 
signifi cant deviation from the experiment for distances smaller than 
100    μ m from the POE, PFC shows excellent agreement.    

 Discussion 
 One of the major applications of this theory will be solving the 
inverse problem to obtain optical properties of unknown turbid 
samples, especially on a signifi cantly smaller scale than it can be 
done presently. Fortunately, the same inversion techniques 35,36  that 
have been used with the standard DA to extract  ′ms   and   μ    a   can be 
applied with the PFC, provided that adequate assumptions are made 
regarding the phase function. Aside from higher accuracy near the 
source, PFC also allows for the inversion of parameters of the phase 
function. For example, the anisotropy factor can be measured by 
assuming either Mie or the H – G scattering and using  g  as a free 
parameter in the fi tting to experimental data. Moreover, the entire 
backscattering portion of the phase function can potentially be 
reconstructed. 

 A requirement of the technique is the availability of an accurate 
isotropic solution ( g     =    0). Although this solution is available for dif-
fuse refl ectance, an accurate solution for the fl uence rate near the 
POE is not commonly available. One approach for obtaining the 
fl uence rate within the medium would be to use the MC simula-
tion for isotropic scattering and combine it with PFC to obtain the 
fl uence for arbitrary phase functions. Th is is the approach we used 
for obtaining the results in  Figure 6 . Th us, the result of a single MC 

simulation can be used to obtain solutions for a large array of phase 
functions and anisotropy parameters. It is also likely that PFC could 
be used to describe angular dependences in a similar manner. 

 In conclusion, the PFC diff usion theory for light transport in 
turbid media addresses the defi ciencies of the standard diff usion 
theory near the POE by accounting for the specifi c form of the 
phase function. Th e technique accurately predicts the correct scat-
tering behaviour for two frequently used but very diff erent types of 
phase functions, the H – G and Mie theory phase functions ( Fig. 2a ). 
Th e PFC approach results in a substantial improvement over the 
predictions of the   δ      −     P  1  approximation and the  P  3  approximation 
( Fig. 2b ), each of which seeks to improve the performance of the 
DA. PFC also demonstrates excellent agreement with experimental 
results ( Fig. 6 ). 

 We anticipate that this work will be utilized extensively in char-
acterizing photon scattering in turbid media such as human tissue 
and in a variety of other applications.   

 Methods  
  Evaluation of the integral terms   .   To evaluate the fi rst integral term 
  μ    s    ∫  ∫ [ p ( s  ·  s  ′ )    −     p  DI  ( s  ·  s  ′ )]  L   d   ( r ,  s  ′ ) d s  ′ , we use the standard DA expression for  L   d   ( r ,  s ) 

 

Ld d d( , ) [ ( ) ( )]r s r s j r= − ⋅1

4
3

p
f

  
where   φ    d   ( r ) is the fl uence rate and  j r rd

a s
d( )

( )
( )= −

+ ′
∇1

3 m m
f    is the current 

density 37 . By substituting  
1

4
3

p
f[ ( ) ( )]d dr s r− ⋅ j    in the integral, we get

 

m

m
p

s d

s

p p L

p p

( ) ( ) ( , )

( ) ( )

s s s s r s s

s s s s

⋅ − ⋅[ ] =

= ⋅ − ⋅[
∫∫ ′ ′ ′ ′

′ ′

DI

DI

d

4
]]

− ⋅ − ⋅[ ] ⋅

∫∫

∫∫

f

m
p

d

s
dp p

( )

( ) ( ) ( ( ))

r s

s s s s s j r s

d

dDI

′

′ ′ ′ ′3

4   
From here, we see directly that 

 

m
p

f m f
p

s
d

s dp p p p
4 4

( ) ( ) ( )
( )

( ) (s s s s r s r s s s s⋅ − ⋅[ ] = ⋅ − ⋅∫∫ ′ ′ ′ ′DI DId ′′ ′)[ ] =∫∫ ds 0
   

because of the unity normalization of both phase functions. 
 Let us now simplify the integral term  ∫  ∫  p  ( s ,  s  ′ ) ( s  ′  ·  j   d   ( r )) d s  ′  and re-write it 

in a spherical coordinate system ( Fig. 7a ). Th e integral can be expressed as 
  μ    s  | j   d   ( r )| ∫  ∫  p (cos   θ  ) (sin   θ    j   · sin   ϕ   · sin   θ      +    cos   θ   · cos   θ    j  ) sin   θ   d  θ   d  ϕ  , where  ̂j    is the unit 

vector in the direction of vector  j   d   ( r ),   θ      =    cos     −    1  ( s  ·  s  ′ ), and  ˆq j d= ⋅−cos ( )1 j s   . Th e 

part proportional to the sin   θ    j   · sin   ϕ   · sin   θ   is zero as  sinj j
p
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2
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as both phase functions  p ( s  ·  s  ′ ) and  p  DI  ( s  ·  s  ′ ) have the same anisotropy factor  g . 
Th us, indeed   μ    s    ∫  ∫ [ p ( s  ·  s  ′ )    −     p  DI  ( s  ·  s  ′ )]  L   d   ( r ,  s  ′ ) d s  ′     =    0. 

 To evaluate the contribution of the second integral term   μ    s    ∫  ∫ [ p ( s  ·  s  ′ )    −    (2  π  )     −    1  g  
·   δ  (1    −     s  ·  s  ′ )]  L   p   ( r ,  s  ′ ) d s  ′ , we calculated the PFC to the radially-dependent refl ect-
ance including this integral. Th en we subtracted  R   p   (  ρ  ) obtained by neglecting this 
integral to calculate  Δ  R   p   (  ρ  ). We then plot  Δ  R   p   (  ρ  ) and could see it is just several 
percent of  R   p   (  ρ  ) for small  rm′s   ( Fig. 7b ). We also included  R   d   (  ρ  ) to show that at 
greater  rm′s   both corrections are neglectable. Th us, neglecting   μ    s    ∫  ∫ [ p ( s  ·  s  ′ )    −    (2   π )     −    1  
g  ·   δ  (1    −     s  ·  s  ′ )]  L   p   ( r ,  s  ′ ) d s  ′  is justifi ed.   

  Experimental setup   .   A schematic of the experimental setup is shown in  Figure 5a . 
Th e setup uses a confocal microscope ( FluoView 1000 ,  Olympus ) with several 
modifi cations. Th e incident 458-nm laser beam is expanded to fi ll the back aperture 
of the objective and passes through a  20 / 80 beamsplitter  ( Chroma ). Th e beam is 
delivered to the scattering sample through a  planar apochromatic oil immersion 
objective  (NA    =    1.32,  × 63 magnifi cation,  Olympus ). Light scattered from the sample 
is collected by the same objective and is refl ected by a beamsplitter towards the im-
aging lens and the imaging  CCD  ( DU-434-FI ,  Andor Technology ). Th e spatial scale 
for imaging the scattering sample is derived by calibrating the CCD with a  counting 
chamber  ( Millipore ), with a single CCD pixel imaged to 0.327    μ m on the sample.   
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    Figure 6    |         Comparison with the experiment. Red circles — experiment, 

the bars on the experimental points show the range of measurements. 

Black dashed line — standard DA, blue dashed line — PFC diffusion theory. 

Inset: expanded view of the critical region near the POE to show the range 

of measurements more clearly. The PFC diffusion theory demonstrates 

excellent agreement with the experiment, whereas the DA deviates 

signifi cantly near the POE.  
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  Scattering sample   .   Th e sample is placed in an imaging chamber assembled 
from a glass slide, four adhesive silicone isolators ( JTR20R-A2-1.0 ,  Grace Bio-
Labs Inc. ), and a No. 1 cover glass. Th e resulting chamber had a 20-mm internal 
diameter and a 4-mm depth. We placed optical gel (LS-3238, Fibre Optic Cen-
tre) on the inside surface of the cover glass. Aft er curing, the optical gel formed 
a layer of  ~ 0.1   mm thickness with a refractive index of 1.388. Th e same refractive 
index of 1.388 at the 458-nm wavelength is achieved in the scattering sample by 
mixing a 66 %  volume fraction of the polystyrene microspheres aqueous solution 
and a 34 %  volume fraction of glycerine 38 . By matching indices we minimize the 
eff ects of specular refl ection and obtain a matched boundary condition at the 
interface. 

 Th e absorption coeffi  cient of the sample can be estimated as a weighted average 
of the absorption coeffi  cients of the glycerine, water and polystyrene in the sample. 
Th e absorption coeffi  cient of water 39  at the wavelength 458   nm is 2.7 × 10     −    5    mm     −    1 . 
Th e absorption coeffi  cient of glycerol 40  is  ~ 0.003   mm     −    1  and the absorption coef-
fi cient of polystyrene 41  is less than 1 × 10     −    5    mm     −    1 . Th us, the absorption coeffi  cient 
of the scattering sample is  ~ 0.001   mm     −    1 .                                                                                                                                                                                                                                                                            
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line — contribution of the PFC term  R   p   (  ρ  ), red line — contribution of the 
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