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Resolving mixed mechanisms of protein
subdiffusion at the T cell plasma membrane
Yonatan Golan1 & Eilon Sherman1

The plasma membrane is a complex medium where transmembrane proteins diffuse and

interact to facilitate cell function. Membrane protein mobility is affected by multiple

mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our

ability to distinguish them in intact cells. Here we characterize the mobility and organization

of a short transmembrane protein at the plasma membrane of live T cells, using single particle

tracking and photoactivated-localization microscopy. Protein mobility is highly hetero-

geneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual

trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of

low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium

and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak

confinement and are more evenly distributed. This study presents a methodological approach

to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples

and complex media such as cell membranes.
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T
he plasma membrane (PM) of cells is a diverse, multi-
component complex medium through which the cell
interacts with its surroundings. Proteins at the PM diffuse

and interact to facilitate a wide range of cellular functions,
including sensing and signalling1. Specifically, T cells probe the
surface of antigen-presenting cells (APCs) for cognate antigens to
trigger an adaptive immune response. Antigen recognition is
achieved by highly specific T-cell antigen receptors (TCRs) and
leads to the rapid development of a complex interface between the
cells—the immune synapse. T-cell activation results in dramatic
macroscopic rearrangement of protein distribution at the
immune synapse2,3. However, much remains to be learned
about the microscopic properties of the PM and protein mobility
within4.

According to the Nicholson–Singer model, the PM can be
regarded as a complex fluid, in which transmembrane proteins
diffuse laterally5. The random motion of particles in a purely
viscous and homogeneous fluid is known as Brownian motion
and is characterized in two dimensions by:

Dr2ðtÞ
� �

¼
Z1
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r2 tð ÞP r; tð Þd2r ¼ 4Dt ð1Þ

where the left-hand side is the mean squared displacement (MSD)
of the particle from its origin, P(r,t) is the probability distribution
function (PDF; or propagator) of the diffusion process, D is the
diffusion constant and t is time. The MSD is typically measured
in two ways. The first, as an average across an ensemble of
particles (eMSD):
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where ~ri tð Þ is the location of particle i at time t and N is the
number of particles in the ensemble. The second method,
as a function of gap time for a single particle (tMSD):
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where T is the number of frames in the trajectory, t is the time
gap measured in frames and Dt is the measurement time step.
One can further take the mean of the tMSD functions of multiple
trajectories to obtain an average tMSD of the ensemble:

Dr2 tð Þ
� �

time

D E
ens
¼ 1

N

XN

i¼1

Dr2 tð Þ
� �

time;i ð4Þ

The ensemble and mean time averages converge to the same value
for large N and t for an ergodic system.

Complex media may lead to sublinearity of the MSD as a
function of time6–9, that is,

Dr2ðtÞ
� �

¼ Kata; ð5Þ
where 0rao1. Such a motion is said to be subdiffusive. Ka is the
generalized diffusion coefficient with dimensions of [m2s� a].
Note should be taken that the mean of the tMSD functions in
equation (4) is an arithmetic mean. In contrast, a geometric mean
provides an accurate estimator for the mean value of the power a
(ref. 10):

Dr2 tð Þ
� �

time

D E
ens
¼

YN
i¼1

Dr2 tð Þ
� �

time;i

 !1=N

¼ exp
XN

i¼1

log Dr2 tð Þ
� �

time;i

� � !
ð6Þ

The geometric mean is mathematically smaller or equal to the
arithmetic mean. Because of the differences in averaging, the
resultant Ka values for the time averaged measurements in
equation (6) are biased to be smaller than the Ka values of the
ensemble averages in equation (2).

Several mechanisms may give rise to subdiffusive motion.
These are often described by related mathematical models,
including11–13: (a) Diffusion of tracer particles in a viscoelastic
medium statistically results in anti-persistent motion and can be
described using the fractional Brownian motion (fBM) model14;
(b) Tracer particles may experience trapping by specific
interactions with other particles or objects in the medium. The
particles may exhibit trapping events with a heavy-tailed waiting
time distribution. Such motion can be described using the
continuous time random walk (CTRW) model15; (c) Tracer
particles diffusing in obstructed or labyrinth-like environments
demonstrate movement in a fractal-like space with a dimension df

smaller than the real space dimension. Such movement is
modelled by a random walk on a fractal (RWF)16; (d) Tracers
diffusing in a confined environment due to non-permeable
physical boundaries demonstrate normal diffusion within the
boundaries at short timescales, appear to be subdiffusive in
intermediate timescales, and will saturate to a flat MSD at long
timescales. In the case of permeable boundaries, the MSD will
regain normal diffusion at long timescales17.

A set of tests has been proposed to determine the dominating
mechanism underlying an observed subdiffusive process11,18.
Naturally, multiple mechanisms of subdiffusion may act
simultaneously, which may dramatically complicate the analysis.
For instance, cases of mixed mechanisms have been demonstrated
and modelled by a combination of CTRW and RWF
processes19,20. Moreover, particle mobility may be also
complicated by static heterogeneity (for example, particle
polydispersity) or spatial inhomogeneity of the medium.
Effective or unified models have been developed to address
heterogeneity in single particle tracking (SPT) results21–26.
However, cases of mixed underlying mechanisms of
subdiffusion or of static heterogeneity remain poorly
understood as it is often unclear how to distinguish between
the underlying mechanisms.

Here we characterize the mobility and organization of a
short transmembrane protein at the PM of live T cells, using
SPT27 and photoactivated-localization microscopy (PALM).
This transmembrane segment shows highly heterogeneous
subdiffusive mobility consistent with ergodic underlying
mechanisms. We use a segmentation approach combined with
multiple statistical tests11,28–30 to discriminate and characterize
subdiffusive behaviour, including fractal-like and weak
confinement. This method is able to resolve simultaneous
mixed subdiffusion mechanisms acting on cell membranes.

Results
SPT of a short transmembrane protein. The tracers we use are
part of the human immunodeficiency virus envelope glycoprotein
gp41, whose assembly at the PM is critical for viral budding31.
Our construct consists of the transmembrane domain of gp41
with a mutation that inhibits its binding to cholesterol32 and thus,
to cholesterol-enriched domains at the PM. The gp41 constructs
are tagged with a fluorescent protein (PAGFP), which is
specifically labelled with a primary antibody stained with the
fluorescent dye Alexa Fluor 594 (AF594). Using total internal
reflection (TIRF) microscopy, we visualize and localize protein-
containing particles with a resolution of B25 nm at a frame rate
of 85 fps (Supplementary Fig. 1a). Importantly, our constructs
could be imaged for relatively long durations (Supplementary
Fig. 1b) at a high signal-to-background ratio using either AF594
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fluorescence for SPT or PAGFP photoactivated emission in
PALM mode33 (see ‘Methods’ section). Figure 1a shows a
representative frame of an imaged live T cell as it adheres to a
functional TCR-stimulating coverslip. The coverslip is coated
with an aCD3e antibody that crosslinks the TCRs and leads to
robust cell activation and spreading. The bright spots are particles
highlighted by AF594 at the PM of the cell. The inset shows
the bright field image of the cell. Imaging of cells over 59 s
(5,000 frames) yields movies in which particles move across
the cell footprint. Next, we use a tracking algorithm (modified
from refs 34,35) to track single particles for durations of up to
5,000 frames before fluorescence photobleaching of the sample.
Trajectories shorter than 50 frames are discarded in the analysis
to increase the robustness of the data. Figure 1b,c shows a
representative cell with trajectories coloured by the values of
their individual subdiffusive power a. A wide range of particle
mobility is detected. Figure 1d,e shows a PALM image of a
representative cell.

Protein mobility is heterogeneous and ergodic-like. We next
aim to study the mobility of individual particles and their
underlying subdiffusion mechanisms. However, we notice a large
fraction of immobile trajectories that may originate from non-
specific antibody staining, background or completely immobile
particles. These trajectories may complicate our understanding of
the system due to their dominating abundance relative to the rest
of the mobile trajectories. Thus, we start our analysis by removing
completely immobile trajectories. Previous studies achieved this
by placing a threshold on the diffusion coefficient22, or on the
radius of gyration Rg of the trajectory21, which is calculated as:

R2
g ¼

1
N

XN

i¼1

~ri� ~rh ið Þ2 ð7Þ

where~ri is the coordinate at time step i out of N total time steps.
We consider the case of an immobile particle in which the course
of the apparent trajectory is governed solely by the localization
error of the system36,37. In two dimensions, a particle located at
the origin would result in localizations distributed normally with
mean 0 and variance s2. In such a case, R2

g and the mean step size
h|Dr|i are 2s2 and s

ffiffiffi
p
p

, respectively (see ‘Methods’ section).
Thus, the ratio Rg= Drj jh i ¼

ffiffiffiffiffiffiffiffi
2=p

p
is a constant independent of

the localization error. Therefore, we use here both Rg and h|Dr|i
of the trajectory to robustly remove immobile particles. We
validate our approach by comparing two controls (immobile gold
beads and gp41 proteins in a fixed sample) and compare their
results to data acquired in live cells (Fig. 2a). The normalized ratioffiffiffiffiffiffiffiffi

p=2
p

Rg= Drj jh i of the controls serves to set a threshold for
robustly excluding immobile particles (66% of all detected
particles in the live cells; see ‘Methods’ section).

We now turn to the characterization of the mobile particles
through their time and ensemble MSDs (Fig. 2b). From the MSDs we
calculate a, which is the slope of the curve in logarithmic scale, and
Ka, which is its value at t¼ 1. We find that on average, the mobility
of particles is subdiffusive (at¼ 0.72±0.04; ae¼ 0.75±0.01). As
expected from the differences between the arithmetic and
geometric averaging, we obtain Ka,t¼ 1.09(1)� 10� 13 m2 s� a,
which is smaller than Ka,e¼ 3.4(1)� 10� 13 m2 s� a. To account
for this difference, we simulate MSDs with comparable characteristics
to the experimental data and find similar differences in Ka values
between the arithmetic and geometric means (Supplementary Fig. 2).
The small difference in the experimental a values of the time and
ensemble averages (being significantly different from 1.0) are
consistent with ergodic underlying mechanisms of subdiffusion.
We suggest later in the discussion that this small difference is due to
weak confinement of the particles. Furthermore, our data shows high
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Figure 1 | Single particle imaging and tracking in live T cells. (a) A representative video frame showing gp41 constructs tagged with AF594 at the PM of a

live, activated Jurkat T cell as it spreads on an aCD3e-coated coverslip that stimulates the TCR. Scale bar, 2mm. Inset: a bright field image of the cell at �40

magnification. Scale bar, 10mm. (b) A representative spatial map of gp41 trajectories on the cell membrane. Trajectories longer than 50 frames (B0.6 s)

are shown and coloured by their individual subdiffusive power a. Particles not assigned to long enough trajectories are marked in grey and highlight the

cell footprint. (c) Enlarged area of spatial map in b. (d) PALM image of PAGFP-tagged gp41 constructs in a representative fixed T cell. Scale bar, 2 mm.

(e) Enlarged area of PALM image marked in d. Scale bar, 1mm.
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heterogeneity of a values from 0 to B1.5, and of Ka values, which
span over B4 orders of magnitude (Fig. 2c,d).

Resolving heterogeneity by trajectory segmentation. Closer
examination of single particle trajectories reveals heterogeneity on
the individual trajectory level (dynamic heterogeneity; Fig. 3) and
on the ensemble level (static heterogeneity) (Fig. 2c,d). Figure 3a
shows representative trajectories that display dynamic alterations
in the diffusion state of the tracer particle (highlighted by arrows).
Previous studies have shown or suggested such dynamic
heterogeneity in the motion of transmembrane proteins in
which particles can alternate their mobility state during their
motion21,38,39.

To better understand the underlying mechanisms of sub-
diffusion and to resolve possible dynamic heterogeneity, we
perform segmentation of individual trajectories into separate
parts that correspond to different mobility states {si}. For
convenience, we order the states in this set in an ascending
order according to their mobility characteristics (that is, state
iþ 1 is more mobile than state i). Note that this ordering assumes
no restriction on the possible transition of a particle from one
state to any other state.

Multiple approaches have been suggested for segmentation
of particle trajectories, often by the identification of
transitions between states26,40. Trajectory segments with similar
characteristics are then assigned to the same state. These
segments can be grouped together into subpopulations for
further study of their underlying mechanism. Since there are
generally no ‘closed-form’ guidelines for performing optimal
segmentation, we use two complementary approaches that
highlight different aspects of the data, as explained below.

The first method is a variational Bayesian treatment of a
hidden Markov model (vbSPT)25. Briefly, this method uses a

maximum-evidence criterion to determine the underlying
parameters and the number of diffusive states from the
observed data. This method can robustly resolve multiple
underlying diffusion states from a large number of short
trajectories. However, it assumes only pure Brownian motion
for each state.

As a second segmentation approach, we adapt concepts used in
‘First passage time’ or ‘escape radius’ statistics19,41,42, and
introduce a modified method that we term ‘consecutive escape
radii’ (CER). Through this method, we measure the particle’s
ability to travel a given distance in a given time. For each time
point in the trajectory, we test if the particle exceeds a distance
Rsi;siþ 1

th during its next nsi;siþ 1
th time steps. The writing si,siþ 1

above a variable of interest denotes the threshold value for
discriminating between states i and iþ 1 in the ordered set of
states {si}. Figure 3b demonstrates this segmentation method for
three states {s1,s2,s3} and thus two sets of thresholds R1;2

th ;R2;3
th

� �
and n1;2

th ; n2;3
th

� �
. We show the three different cases for a given

time point in a trajectory, classified by their mobility from left to
right as s1, s2 and s3.

For correct segmentation, one needs a measure to assess the
performance of specific segmentation parameters (for example,
the set of thresholds {Rth} and {nth}) according to their predictive
power. For this, we turn to the property of Gaussianity of
step-size distributions. Random walks originating from a distinct
process effectively yield a Gaussian distribution of step sizes. The
Gaussian distribution appears after many steps of the random
walk by virtue of the central limit theorem43, regardless of the
original distribution of step sizes of the underlying process.
However, the step-size distribution of our measured trajectories
results in a highly non-Gaussian distribution, as evident from the
deviation of the step-size distribution (blue circles) from the best
Gaussian fit (red line) in Fig. 3c. Step-size distributions of SPT
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Figure 2 | High heterogeneity of subdiffusive motion at the ensemble level. (a) Distribution of the radius of gyration normalized by the mean step size

for gp41 proteins marked with AF594 in live cells (green squares), gp41 proteins in fixed cells (blue circles) and fixed 40 nm gold beads (orange triangles).

The two vertical lines indicate the values up to which 95 and 99% of the particles in the fixed cells reside—that is, the threshold values for 5 and 1%

particles falsely considered as mobile (false positives). (b) A log–log plot of the MSD with respect to time for all mobile trajectories. Shown are tMSDs

for single trajectories (red lines) (only 10% of data is shown for clarity), eMSD (blue circles) and the average of the individual tMSDs (blue triangles).

(c,d) Distributions of c Ka and d a values for single trajectories. Both mobile and immobile trajectories (red and grey bars, respectively) are shown.
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data are often non-Gaussian, which may arise from tracer or
environmental heterogeneity21,24,44–46. Step sizes may be
inherently non-Gaussian in cases of fluctuating environments
on similar timescales as the random walk itself 46. Still, at long
timescales even such cases would appear as Gaussian44,46. Thus,
regardless of the method by which we segment trajectories,
we expect that the detected distribution of step sizes should be
divided into multiple Gaussian components, each representing a
separate underlying random-walk process. Therefore, an efficient
segmentation process can be evaluated based on the extent of
data it is able to account for using a minimal number of such
components. Note that in vbSPT, the maximum evidence
criterion does not consider the statistics of the step-size
distribution for the robustness of the state.

With this consideration, we scan a large range of threshold
sets {Rth} and {nth} for the CER method. We then test for each
set the extent of step-size Gaussianity and mixing of the
resulting subpopulations recovered by the segmentation process.
Specifically, we fit a finite mixture of k Gaussian components to
each subpopulation, assumed by a model with an arbitrary
number of subpopulations k:

Pj D~rð Þ ¼
Xk

i¼1

a j
i

1
2ps2

i
e
� Dr2

2s2
i ð8Þ

where Pj D~rÞð is the step-size distribution for subpopulation j, a j
i is

the weight of each Gaussian component i in subpopulation j and
s2

i is the variance of each Gaussian component. Thus, a i
j is a

matrix element describing the weight of the ith Gaussian
component of the jth subpopulation. According to our model,
we require that

Pk
i¼1 a j

i ¼ 1 and that 0 � a j
i � 1. We also

constrain each si to be constant over all k subpopulation fits since
we assume that the underlying Gaussian components are constant

and only their weights in each subpopulation (a j 0

i s) are changing.
This assumption is justified since we identify each Gaussian
component with a corresponding, distinguishable physical
mechanism. The segmentation efficiency is measured by
minimization of the off-diagonal a j

i 6¼ j ¼ 0. Thus, an ideal

segmentation would result in aj
i¼j ¼ 1 and aj

i 6¼ j ¼ 0 for all i,j
(see ‘Methods’ section and Supplementary Fig. 5 for examples and
further details).

It is a priori unclear how many states are present in the data (or
moreover, if states can be regarded as discrete in the first place).
Yet, any segmentation effort needs a model with a certain number
of states to account for. Thus, we consider models that grow in
their number of states, and thus in their complexity. These
competing models should be compared according to their ability
to account for the data. However, simpler models with the same
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Figure 3 | Heterogeneity of subdiffusive motion at single trajectory level. (a) Representative trajectories exhibiting dynamically changing diffusive

modes. The denser areas are ones where the particles dwell for longer durations. Pointed out in blue, green and red arrows are areas which are highly

dense, moderately dense and relatively spread out. These observations suggest the need for segmentation of transient mobility states. Scale bar, 1 mm.

(b) A schematic representation of the CER segmentation process for a model of three mobility states. Blue and green dashed circles and blue and green

dots are the escape radii thresholds Rs1 ;s2

th and Rs2 ;s3

th and the time steps thresholds ns1 ;s2

th and ns2 ;s3

th , which distinguish between states 1,2 and 2,3, respectively.

In this example, we chose ns1 ;s2

th ¼ 9 and ns2 ;s3

th ¼ 11. The leftmost example shows a case where the particle did not escape from Rs1 ;s2

th in ns1 ;s2

th time steps and

thus the tested time point is classified as s1, and accordingly, the middle and rightmost examples are classified as s2 and s3. (c) Step-size distribution of

6,410 mobile trajectories 50–5,000 time steps long from 30 cells. The best Gaussian fit is presented as a red line. (d) Step-size distribution of segmented

populations of three states, separated by their high, medium and low mobility (red, green and blue circles, respectively). Solid lines are best Gaussian fits of

the segmented subpopulations. (e) The representative trajectories from a after segmentation. Segments are coloured blue, green and red according to their

mobility states s1,s2,s3. Scale bar, 1mm.
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predictive power are superior to more complex ones due to
Occam’s razor. States that converge to similar underlying
mechanisms and mobility characteristics may be assumed
redundant and thus, make the suggested model more robust.
Hence, a useful approach is to start with a low number of states,
and then increase their number until redundancy of one of the
states is achieved. Note that this redundancy can be inferred only
after a thorough characterization of the mobility states and their
underlying mechanisms.

Next, we consider models with an increasing number of states
from two to four. Our analyses show that the three states model
accounts best for the data and its underlying subdiffusion
mechanisms. We first describe the complete set of statistics for
the three states model and, only then, fully discuss the inadequacy
of the two and four states models at the end of the text. Briefly,
using a three states model, our analysis identifies three distinct
subpopulations, which we term as ‘low’, ‘medium’ and ‘high’
mobilities. In contrast, the two states model misses a subpopula-
tion with the distinct mobility properties of the ‘high’ mobility
state and its unique underlying mechanism. With the four states
model, we find that the ‘high’ mobility subpopulation has the
same characteristics of the ‘high’ mobility subpopulation found
for the three states model. However, the ‘medium’ and ‘low’
mobility states become redundant and separate into three
subpopulations with essentially the same underlying mechanisms
and overlapping mobility characteristics (see ‘Discussion’ section).

Returning to the three states model, Fig. 3d shows the step-size
distributions for each of the subpopulations detected by the CER
method. Each single Gaussian accounts for the majority (495%)
of its fitted data. Figure 3e presents again the representative
trajectories shown in Fig. 3a after segmentation into three
mobility states.

At this point, we would like to clarify the relation between
different terms used in the text that are invoked through our
segmentation and classification processes. Through these
processes, segment subpopulations are uniquely assigned to
specific mobility states. Thus, we will now interchangeably use the
terms ‘mobility states’, ‘mobility subpopulations’ or simply
‘subpopulations’ to describe the segments of common mobility
characteristics (being either ‘low’, ‘medium’ or ‘high’). Moreover,
we note that through the segmentation process, a trajectory of a
single particle may be divided into several segments that match
different mobility states and may thus be assigned to several
segment subpopulations.

Characteristics of the different subpopulations. Once we
segment all trajectories into three subpopulations, we begin
our analyses of each subpopulation to determine its underlying
subdiffusion mechanism. Starting with general characteristics of
the subpopulations, Fig. 4a shows the normalized distributions of
fluorescence intensity of the three subpopulations. This is not a
direct characterization of single particles, but rather of their
segmented trajectories that might belong to different sub-
populations. However, for physically stable particles (that is,
they do not disintegrate or assemble over the typical trajectory
duration (Supplementary Fig. 1c)), we can infer on average the
particle fluorescence intensity distributions from this analysis.
Also, although the fluorescence intensity is not a precise measure
of the number of proteins in individual particles, it can give a
rough estimate of this number. This lack of precision is due to the
possible existence of multiple emitters per tracer. For instance,
single antibodies may carry multiple fluorophores (B3 in our
case; see ‘Methods’ section), multiple antibodies may target
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Figure 4 | Characterization of the three different mobility subpopulations. (a) Normalized distribution of fluorescence intensity per segment for each

mobility subpopulation. The intensity value is taken from the mean of the first 10 time steps of each trajectory segment to minimize photobleaching effects.

The values are given for each localization by the ThunderStorm algorithm64. High, medium and low mobilities are shown in red, green and blue,

respectively. (b) Cluster size distribution calculated from a sample cell imaged by PALM. Data points (red triangles) and results for randomly distributed

points (blue circles) are shown. The calculation was performed on an area of 10� 10 mm in the cell centre. (c) Montage image of trajectory segments from

30 different cells. The centre of mass of all localizations for each cell was used for aligning the different cell images. Colour coding as in a. (d) Radial density

distribution of segment subpopulations with different mobility states. Colour coding as in a.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15851

6 NATURE COMMUNICATIONS | 8:15851 | DOI: 10.1038/ncomms15851 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


an individual protein or gp41 proteins may self-cluster32,47,48.
In cases of multiple targeting of antibodies and self-clustering,
the size of the tracer increases and thus its mobility decreases.
We find that segments belonging to brighter particles are of a
lower mobility state on average (Fig. 4a).

To better characterize the size distribution of particles, we turn
to PALM, which is enabled by the unique construct we use for
SPT. In contrast to immunofluorescence, PALM can visualize
individually all of the genetically encoded gp41 proteins in each
cluster with minimal artifacts and with a resolution down to
B25 nm (ref. 49). The detected molecules can then be clustered
by assigning proximal molecules beneath a specific distance
threshold to the same cluster. We chose a distance threshold of
40 nm that accounts for the resolution limit in the localization of
two proximal molecules (see ‘Methods’ section for further
details). Figure 4b shows the cluster size distribution of molecules
from a sample cell in logarithmic scale. We compare this size
distribution to the one from a random scatter (that is, a Poisson
process) of points in the given area. We find that the number of
molecules per cluster is skewed towards clusters as small as
dimers and trimers, but has a long tail compared to the Poisson
distribution. This distribution indicates the existence of
larger clusters than expected by a random scatter and high
heterogeneity in their size.

Figure 4c,d shows the spatial distribution of trajectory
segments associated with the three mobility states. We find that
the higher the mobility of a segment, the farther its corresponding
particle can distribute from the centre of the cell footprint on
average. Thus, lower mobility states tend to be correlated with
aggregation of proteins and tend to be enriched at the centre
of the cell footprint. These observations strengthen the validity
of our segmentation process since they capture independent
characteristics of the tracer particles without a priori assumptions.

We now return to the MSD statistics for further characteriza-
tion of the subpopulations. Figure 5 shows the ensemble and time
averages of the trajectory segments of subpopulations associated
with each of the mobility states. The intersection of the MSD
curves with the y axis shows that the three mobility states are
highly separable and have variable diffusion coefficient values, Ka.
Note that our segmentation process excludes segments shorter
than 50 frames. Thus trajectories with non-distinct mobility
states may be depleted during this process and result in more
separable Ka values. The subdiffusive powers a and the diffusion

coefficients Ka obtained for each of the three mobility states are
shown in Table 1. We find that all three mobility states are
subdiffusive with non-negligible differences between the time
and ensemble values. We account for these differences in the
discussion. The low and medium mobility states exhibit a similar
range of a values (with somewhat higher a values for the low
mobility state), but differ strongly in their diffusion coefficients,
Ka. The high mobility state is only slightly subdiffusive and is
substantially different from the other subpopulations in its
mobility characteristics a and Ka. Importantly, the vbSPT
segmentation method yields three subpopulations with similar,
yet less separable, Ka and a values compared with the CER
method (Supplementary Table 1).

Assigning mechanisms. To further study each subpopulation,
we calculate their velocity autocorrelation (VAC) functions:

Cd
v tð Þ

Cd
v 0ð Þ ¼

~v tð Þ �~v tþ tð Þh i
~v tð Þ �~v tð Þh i ð9Þ

where

~v tð Þ ¼ 1
d
~r tþ dð Þ�~r tð Þð Þ ð10Þ

is the particle velocity at time t calculated over a time period d.
The VAC is computed separately for each trajectory and then
averaged over the subpopulation ensemble. The shape of the
VAC can separate well CTRW from confined motion and
ergodic processes11,29,30,50, but cannot distinguish between fBM
and RWF18.

Figure 6 shows the VAC functions of the three subpopulations
for a range of t values and changing time periods d. For both fBM
and RWF, we expect to find anti-persistent correlations at initial t
values that decay to 0 after some time. These negative correlations
should appear also for longer timescales d. For CTRW, we expect
to find no correlations at all, since the random walker can alter its
direction of movement between trapping events. For a confined
random walk, we expect to find no correlations at short timescales
d, but negative correlations at longer timescales.

The low and medium mobility states are similar and both
exhibit negative correlations that are insensitive to the time
periods d over a wide range of values. This feature confirms our
initial ruling out of CTRW as a possible underlying mechanism
and points to either fBM or RWF as the dominating mechanisms
of subdiffusion. In contrast, the high mobility state shows
markedly different features than the low and medium mobility
subpopulations. At the initial time period d, on the order of our
time resolution of 11 ms, it shows no (or negligible) correlations.
It then shows growing negative correlations for longer d values.
This behaviour, together with the a value being close to 1,
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Figure 5 | MSDs for the different mobility subpopulations. A log–log plot

of MSDs of the three different mobility subpopulations. Only 10% of the

trajectories are shown for clarity. Top group (red)—high mobility, middle

group (green)—medium mobility, bottom group (blue)—low mobility.

Circles and triangles are, respectively, the ensemble and mean of the time

averages of each group. The corresponding subdiffusive a and Ka values are

shown in Table 1.

Table 1 | Subdiffusive power a and Ka[m2s� a] for the three
mobility states found by the CER method.

Low Med High

ae 0.67(6) 0.55(1) 0.91(2)
at 0.55(1) 0.40(2) 0.83(2)
aMME 0.65(1) 0.59(1) 0.96(2)
Ka,e 3.0(8)� 10� 15 1.7(2) � 10� 14 0.9(1) � 10� 12

Ka,t 2.1(5) � 10� 15 1.0(1) � 10� 14 0.6(1) � 10� 12

Ka,MME 6(1) � 10� 15 3.4(5) � 10� 14 1.2(2) � 10� 12

The ensemble, time average and MME values are calculated by the mean of the values from all
threshold sets that meet the guidelines in the CER segmentation process. 625 unique threshold
sets are computed and 83 meet the guidelines (see ‘Methods’ section for further details). The
s.d. of the value is shown as an error of the last digit in parenthesis. Fitting over multiple time
windows of the MSD results in a larger effective error of B0.04 for the a values, while the Ka

errors are comparable to those shown.
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indicates that the motion of the high mobility subpopulation
is mostly Brownian, yet confined29. The appearance of
growing negative correlations with d immediately after the
initial d value can be understood from the timescale Dt needed
for a particle to travel the mean step size of the high mobility
subpopulation Dr ffi 71 nm. This value can be estimated by

Dt � ðDr
2

Ka
Þ1=a � 3 ms, which is shorter than our time resolution.

Thus, we conclude that for small d values only a small fraction of
the particles is affected by the boundary, whereas at growing d
values, an increasing fraction of the particles is affected by it.
We refer to this as weak confinement of the high mobility
subpopulation. Conversely, strong confinement would result in
significant negative autocorrelations at the initial time period d.
Furthermore, we note that our analyses are limited by the
trajectory lifetimes to B0.6 s. This time frame is likely too short
for the trajectory segments to regain apparent Brownian MSDs
(Fig. 5) and null velocity autocorrelations at long time periods
(Fig. 6c).

We now focus on the study of the underlying mechanisms for
the low and medium subpopulations, since for these subpopula-
tions, the VAC alone can not distinguish between fBM and
RWF18. We first turn to PALM imaging, as it enables the spatial
mapping of available sites for the particles and, consequently, the
characterization of the fractal dimension of the cell footprint
(related to RWF). We assume the particles are homogeneously
spread over the structure imaged by PALM, and thus is effectively
captured by it. We calculate the fractal Hausdorff dimension
of the gp41 spatial distribution across the PM using the
box-counting method51 (Fig. 7a,b). We find a fractal dimension
df¼ 1.84±0.07. Notably, this calculation excludes the lowest
scales, where the resolution limit is bounding, and the largest
scales, where the footprint of the cell becomes significant. The
observed fractal-like structure may not be the only mechanism
that affects the particles mobility. Thus, we turn below to two
complementary statistical tests of the PDF Gaussianity of the SPT
trajectories, namely moment ratios analysis11,28,52 and the
growing sphere analysis11,28.

The moment ratio analysis tests the extent of Gaussianity of the
regular (MSD) and mean maximal excursion (MME) by
calculating the regular and MME moment ratios. Note that
earlier we tested the step-size distribution for Gaussianity while
here, we test the Gaussianity of the PDF of the diffusion process.
We compute the time-averaged MME for each trajectory
segment as:

Drk
max t � Dtð Þ

� �
time¼

1
T � t

XT � t

i¼1

max
0�t0 �t

~rt0 þ i�~rif g
	 
k

ð11Þ

where k is the moment and T,t and Dt are defined as in
equation (3). We provide the MME values for a and Ka in

Table 1. Note that the MME values for a are higher than the
ensemble and time-averaged values. This is expected for an fBM
process, but cannot be regarded as conclusive evidence for it28.
The regular and MME moment ratios are defined as:

Dr4 tð Þh i
Dr2 tð Þh i2

;
Dr4

max tð Þ
� �
Dr2

max tð Þ
� �2 ð12Þ

and are used as measures for the PDF Gaussianity. These moment
ratios should have distinct asymptotic values (that is, for tc1)
for fBM and RWF processes. These asymptotic values depend on
the subdiffusive power a and, in the case of RWF, also on the
fractal dimension df (ref. 28). For an fBM process, the regular
asymptotic moment ratio converges to the value 2.0. There is no
exact analytical solution for the MME moment ratio, but an
approximation28:

Dr4
max tð Þ

� �
Dr2

max tð Þ
� �2 � 1:05 	 0:01ð Þ a

2

� �1:42	 0:01
þ 1:10 	 0:01ð Þ

ð13Þ
Also, in the case of RWF, there is an approximated solution,
which can be numerically computed for any choice of df and a
(ref. 28).

Figure 7c shows the regular (crosses) and MME (triangles)
moment ratios for the low (blue) and medium (green) mobility
subpopulations. We mark the expected values for fBM and RWF
processes for the low and medium subpopulations for the regular
and MME moment ratios (overall, seven lines in the figure). Our
calculated moment ratios show asymptotic values, which for the
MME moment ratios fit slightly better the RWF model, yet hard
to distinguish from fBM. More distinctly, the asymptotic values of
the regular moment ratios converge to the RWF expected values.
This supports the possibility of an RWF process as an underlying
mechanism.

The second statistical test is the growing sphere analysis11,28. In
this method, we calculate the probability of a particle to be within
a growing sphere with a radius increasing as pr0ta/2:

P r � r0t
a
2

� �
� 1

N tð Þ
XN tð Þ

i

Y ri tð Þ� r0ta=2
� �

ð14Þ

where Y(r) is the Heaviside function (that is, 1 for rZ0 and 0 for
ro0) and N(t) is the number of particles present at time t. For an
fBM process, this ratio should be constant, while for an RWF it
should scale as / taðd� df Þ=2 (ref. 28), thus showing a power law
growth with t. Figure 7d shows the growing sphere analysis of the
low and medium subpopulations. We find that the values for
the growing sphere analysis are constant, with an exception of the
shortest timescales, which is found to be a property of the
growing sphere analysis as demonstrated by simulated particles
(black dash-dotted line) in Fig. 7d. This indicates fBM as an
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added underlying mechanism to RWF for the subdiffusive
mobility of both subpopulations.

Cell activation effects on subdiffusion mechanisms. T-cell
activation results in significant changes in its morphology as it
adheres to APCs. It is unclear how such changes affect protein
mobility at the cell PM53. To study the effect of cell activation, we
now turn to results from imaging of cells under non-activating
conditions, as the cells adhere to coverslips that do not stimulate
the TCR (see ‘Methods’ section). Figure 8 shows the summary of
the different tests for these cells using the three states model.
As for the activated cells, we find both dynamic and static
heterogeneity in the MSDs, thus we follow the same segmentation
procedure. After segmentation, using the CER approach, we
observe similar overall characteristics: (1) the segments can be
separated into subpopulations of low, medium and high mobility
(ae¼ 0.56±0.08, 0.49±0.04 and 0.92±0.02, respectively).
(2) These subpopulations are distributed differentially in the
cell footprint as the high mobility subpopulation is evenly

distributed and extend to the periphery of the cell, while the lower
mobility subpopulations localize to the centre (Fig. 8a,b). (3) The
time and ensemble MSDs are consistent with ergodicity of all
underlying processes (Fig. 8c). (4) The VAC indicates fBM or
RWF processes as the underlying mechanisms of the low and
medium mobility subpopulations. The VAC of the high mobility
subpopulation shows again confinement, yet a larger negative
correlation at short time periods (Fig. 8d–f). (5) The moment
ratios for the low and medium mobility subpopulations correlate
better with fBM as their regular moments converge to a value of
E2 and the MME ratios converge to their expected values
(Fig. 8g). (6) The growing sphere analysis also points to fBM,
in agreement with the moment ratio analysis (Fig. 8h). Thus,
we conclude that without cell activation, the PM is
more viscoelastic and less fractal-like as indicated by the
mobility properties of the low and medium subpopulations.
Still, the three distinct mobility subpopulations are common
to activated and non-activated cells, under our measurement
conditions.

0.2 0.4 0.6 0.8 1 1.2
1

1.2

1.4

1.6

1.8

2

2.2
fBM

fBM

RWF

RWF

t (s)

15

15

10

10

5

5
Y

 (
μm

)

0

0

–5

–5

–10

–10
–15

–15

X (μm)

104

103

102

102101

Box size L (nm)

B
ox

 c
ou

nt
 N

(L
)

〈Δ
r4 m

ax
〉/〈

Δr
2 m

ax
〉2 ,〈Δ

r4
〉/〈

Δr
2
〉2

P
(r

<
r 0

tα/
2 )

0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

tα/2

a

b

c d

Figure 7 | Imaging and analyses for distinguishing RWF from fBM. (a) PALM image of a representative cell showing a fractal-like structure with

dfE1.87. The fractal dimension is measured for the red points, which are the majority of the cell footprint. (b) Log–log plot of the box counting algorithm

results for the PALM image in a. The red line is a linear fit to the data points in the range 10–1,000, which is emphasized by the solid part of the line.

The fractal dimension is the slope of the fit. (c) Regular (MSD) moment ratios (crosses) and MME moment ratios (triangles) for low (blue) and medium

(green) mobility states. The expected values are marked for both fBM (short marks on the right axis) and RWF (long horizontal lines) processes.

The expected values come in pairs for the low (blue) and medium (green) mobility subpopulations according to their respective ae values from Table 1.

The expected values are: fBM regular moments at 2.0; fBM MME moments at 1.32 and 1.27; RWF regular moments at 1.76 and 1.66; RWF MME moments

at 1.28 and 1.2. (d) Growing sphere analysis for low (blue circles) and medium (green circles) mobility states. A simulated result of 2� 104 Brownian

particles is added for comparison (black dashed line).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15851 ARTICLE

NATURE COMMUNICATIONS | 8:15851 | DOI: 10.1038/ncomms15851 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


Discussion
In this study, we detect heterogeneity of protein mobility at the
PM of activated and non-activated T cells. This heterogeneity
appears to be both static and dynamic. We observe polydispersity
of particles containing a transmembrane protein derived from
gp41 and dynamic heterogeneity in which particles may change
their diffusion state during their motion. After segmentation
of trajectories into subpopulations with distinct mobility states,

we notice a third heterogeneity in the spatial distribution of the
segment subpopulations, where more mobile trajectories can
distribute farther from the centre of the cell footprint. This
complexity, in the form of multiple levels of heterogeneity,
is likely a common feature of biological samples and is generally
difficult to capture and characterize on the whole ensemble level
or with small data sets of particle trajectories. Such a complexity
is often simplified by using, artificial and in vitro systems
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including vesicles and lipid bilayers38, model fluids, computer
simulations and so on.7,40,54. However, multiple studies have
characterized macromolecular diffusion within the PM of live
cells7,40,54. A few recent studies have detected underlying
heterogeneity in SPT results and suggested unifying models to
explain their findings21–26. However, these studies typically do
not attempt to separate the data into subpopulations with distinct
mobility states. Thus, they cannot resolve potentially distinct
underlying mechanism acting differentially on different particle
subpopulations and during the diffusion of individual particles.

The dynamic heterogeneity of single trajectories and the
non-Gaussianity of their step-size distribution led us to apply
segmentation of trajectories according to local variations
in particle mobility. We use two complementary segmentation
approaches: vbSPT25 and our modified CER approach.
Alternative segmentation approaches may be applied to SPT
data, including temporal sliding window, Bayesian algorithms,
HMM or supervised classification40. Each approach incorporates
dynamic variables that serve for classification. However, the target
of classification may be subjective. Here we offer the property of
Gaussianity of the step-size distribution as a universal classifying
target for effective segmentation of distinct subpopulations.
This approach is applicable to a wide range of mixed
subdiffusive or Brownian random walks, however, excluding
systems of fluctuating environments on similar timescales as the
random walk itself46. Thus, an optimal classifier for mixed
random walks may include a robust classifier (for example,
vbSPT) with a consideration of the possibility of anomalous
diffusion of the subpopulations and with a requirement for the
Gaussianity of their individual step-size distributions.

Notably, our analyses rely on a first robust step of rejecting
immobile species based on their radius of gyration Rg and mean
step size h|Dr|i. Such rejection is important since this immobile
fraction often dominates the population of single trajectories21,22,
and may complicate attempts to distinguish the step-size
Gaussianity of distinct subpopulations.

In our segmentation process, we consider models with an
increasing number of mobility states, from two to four. A two
states model fails to separate the medium and high mobility
subpopulations as it fails to capture the VAC properties of the
high mobility state, while showing dominating features of the
medium mobility state (Supplementary Fig. 3, compare panels
(d,e) to Fig. 6). Next, we consider a three states model. This
model accounts for 495% of the data of each subpopulation.
As expected, the subpopulations that correspond to the three
mobility states differ in their diffusion coefficient Ka. The
subpopulation corresponding to the high mobility state under-
goes weak confinement as its dominating underlying mechanism.
Surprisingly, the two subpopulations with the lower mobility
states are found to share a common underlying mechanism as
they have similar mobility characteristics, including comparable a
values, and similar VAC curves, moment ratios, growing sphere
analysis and spatial distribution. These statistical tests indicate
either RWF, fBM or their combination as the underlying
mechanism for subdiffusion. Having two subpopulations of low
and medium mobilities that differ predominantly in their Ka
values, but otherwise share multiple statistical characteristics,
strongly suggests that they belong to a common subpopulation of
particles. The particles in this subpopulation are affected by the
environment through the same mechanism and only differ in
their size-dependent mobility. To confirm this conclusion, we test
the data using a four states model (Supplementary Fig. 4) and
find, yet again, a highly mobile subpopulation with the same
characteristics indicating weak confinement. The remaining three
lower mobility states have differing Ka values, but otherwise, a
common underlying mechanism (Supplementary Table 2).

For all subpopulations, we notice non-negligible differences
between the mobility values a and Ka of the time and ensemble
averages (for example, Table 1). This opens the possibility of the
involvement of non-ergodic mechanisms (for example, CTRW).
A previous study20 predicts specific dependencies of the
ensemble and time MSDs on the subordination of a CTRW
on a fractal lattice. This study suggests a relation of
ae¼ aCTRW� aRWF and at¼ 1� aCTRWþ aCTRW� aRWF. This
implies that aCTRW¼ 1þ ae� at. Since atoae in all of our
results, this yields erroneous values of aCTRW41.0. An alternative
explanation is the general effect of the weak confinement,
which we find for the high mobility subpopulation, on all
subpopulations. Indeed, weak confinement can generate
inequivalent time and ensemble averages in ergodic systems55.
To test this explanation, we simulate combinations of weak
confinement and either Brownian motion or fBM (see ‘Methods’
section). We find that in both cases, the confinement leads
consistently to atoae with a difference of B5–20%, depending on
the relative radius of confinement, simulated a, localization
uncertainty and MSD fitting accuracy (for example,
Supplementary Fig. 6). This explanation also holds for the small
observed difference in the a values of the ensemble and time
averages before the segmentation process (Fig. 2). Thus, we
conclude that weak confinement can sufficiently account for the
inequivalence in the ae and at values in all presented cases. We
also observe that consistently, Kða;tÞoKða;eÞ. This is
understandable since the MSD of the time average is computed
as the geometric average of all trajectories, while the MSD of the
ensemble is an arithmetic average. Therefore, Kða;tÞ consistently
underestimates the true Ka.

It is difficult to distinguish between RWF and fBM as
the underlying mechanisms of the ‘low–medium’ mobility
subpopulation. The moment ratios test and the PM fractal
dimension found by PALM indicate RWF as the dominating
mechanism. However, the asymptotic behaviour of the growing
sphere analysis (Fig. 7d) indicates a possible fBM process, which
cannot be excluded by VAC11. Thus, our data suggest the
existence of both mechanisms acting simultaneously. Statistical
tests have been suggested and applied for resolving the
subordination of subdiffusion mechanisms11,19. However, these
tests have been applied to the separation of ergodic (for example,
fBM or RWF) from non-ergodic (for example, CTRW) processes,
while clear guidelines and concrete examples for the separation of
mixed ergodic processes seem missing.

Both fBM and RWF have been associated with molecular
crowding56,57. Structural patterning of the PM may additionally
cause RWF, while a viscoelastic mesh may give rise to fBM58,59.
We further show that these mechanisms depend on cell activation
as RWF is dominant for activated cells, while fBM is dominant
for non-activated cells. Indeed, cell activation has been shown to
cause global changes in the morphology of the PM and the
cytoskeleton2,3. These changes include coalescence of signalling
proteins into micro-clusters, polymerization of cytoskeletal
proteins and tighter adhesion with the APC and spreading.
These changes might alter the diffusive motion of proteins at the
PM. For instance, signalling proteins might get trapped in
clusters39 or in actin corrals58,60, experience diffusion barriers61,
while the PM might change its three-dimensional patterning62.
Here we use a relatively inert transmembrane protein, namely the
gp41 transmembrane domain with a mutation that suppresses its
interactions with specific lipids32 and cellular proteins at the PM.
However, specific interactions of this protein with the PM
environment cannot be completely ruled out. Naturally,
other transmembrane proteins in the cell may undergo
significant and specific interactions to facilitate their action,
and thus may exhibit different underlying subdiffusive
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mechanisms than are found here (for example, non-ergodic
processes)40.

Taken together, our results and statistical tests demonstrate
the simultaneous existence of multiple subdiffusion processes,
namely confinement, RWF and fBM at the PM of cells. These
mechanisms act differentially on particles depending on their size
and may change their dominance under varying cell activation
conditions. Thus, our results shed new light on the multiple
mechanisms that govern protein mobility at the PM of activated
and non-activated T cells. More generally, our approach and
results demonstrate how one can methodologically resolve mixed
mechanisms of subdiffusion that act simultaneously on a
polydispersed sample within the complex medium of the cell
PM. This approach can also serve as a framework for resolving
mixed mechanisms in a wide range of random walks of arbitrary
nature.

Methods
Sample preparation. Gp41-PAGFP63 was generated from previously published
constructs of gp41 (D1 mCRAC gp41 (ref. 32)). DNA was introduced into E6.1
Jurkat T cells (a kind gift from the Samelson lab at the NIH) using the Neon
electroporation system (Invitrogen). Cells were next incubated at 37 �C for 48 h.
Since PAGFP is not stable or bright enough for SPT, we used it as a specific target
for immunofluorescence labelling. For labelling, 0.5 mg anti-GFP, rabbit polyclonal
antibody, Alexa Fluor 594 (AF594) conjugate (Life technologies Cat. A21312 Lot
1476604) was added to 5� 105 cells suspended in FACS buffer for 30 min on ice.
According to vendor specifications, there are three AF594 fluorophores bound to
each antibody molecule. The cells were washed three times with PBS and
suspended in an imaging buffer. Cells were dropped onto a coated coverslip for live
cell imaging. For fixed cell imaging, the cells were first incubated for 20 min
and then PFA was added at a ratio of 3/5 for cell fixation over another 30 min
(in an incubator) before washing and imaging.

For imaging, we used coverslips (Ibidi m-8-well glass bottom No. 1.5H) coated
with 0.01% poly-L-lysine (Sigma) and aCD3e (UCHT1; BD Biosciences) or aCD45
(BD Biosciences) antibodies at a concentration of 10 mg ml� 1. aCD3e coating
robustly stimulates the TCR and leads to T-cell activation and spreading. In
contrast, the aCD45 coating does not stimulate the TCR and serve for T-cell
adherence to the coverslip without its TCR-dependent activation.

Imaging. Imaging was performed on a TIRF microscope (Nikon) with a CFI Apo
TIRF � 100 oil objective (NA 1.49, WD 0.12 mm). Imaging in TIRF mode served
to visualize molecules at the PM of spreading cells in close proximity to the
coverslip (up to B100 nm). Cells were first dropped on the coverslip in imaging
buffer and given B10 min to spread before imaging commenced. Imaging was
conducted for 20–30 cells per experiment at a rate of B3 min between cells, hence
B60–90 min typically passed between the first and last cells imaged. Imaging was
conducted at room temperature.

For live cell imaging, cells were illuminated by a 561 nm excitation laser at 80%
power for 5,000 frames at 85 fps of an EMCCD Ixonþ camera. Fixed cells were
further imaged by PALM. For that, they were illuminated using a 405 nm laser for
photoactivation of the PAGFP using a changing intensity over the duration of the
imaging sequence (typically, using 1–20% power). Illumination with a 488 nm laser
at 100% power was used for PAGFP excitation.

Particle localization. Single molecule localization was performed using an
ImageJ ThunderStorm plugin64. The default values were used for the analysis
(B-spline wavelet filter—order 3 and scale 2.0, approximate localization by
eight-neighbourhood local maximum, Subpixel localization by PSF integrated
Gaussian with the weighted least squares fitting method with a 3 pixels fitting
radius and 1.6 pixels initial sigma). Particle coordinates and statistical properties
were exported and further analysis was conducted using Matlab 2013a
(MathWorks). Image drift and vibrations were corrected by mean image
displacement values using a custom code in MATLAB.

SPT. Linking particle locations into trajectories were done using a modified
MATLAB version of refs 34,35. Briefly, the algorithm links particles in a given
frame with the particles in the previous one. Particles are linked according to their
displacement distance between frames. In cases of ambiguity, a choice has to be
made. This is done by minimizing the overall distance travelled by all particles
between two consecutive frames:

PN
i¼1 Dr2

i where N is the number of particles
and Dri is the displacement of each one. The algorithm uses a threshold
for the maximum displacement allowed for a particle in a single time step.
We use a distance corresponding to three times the expected displacement:
dmax ¼ 3 Drj jh i � 3

ffiffiffiffiffiffiffiffiffiffiffi
4DDt
p

. Assuming a normal diffusion with D¼ 0.5 mm2 s� 1,
at a frame rate of 85 Hz, this corresponds to dmaxE459 nm. We chose for the

algorithm to have ‘no memory’, that is, if a particle is lost for one frame or more,
the linkage is terminated and a new track would begin once it returns. After the
linking process is done, only tracks longer than 50 consecutive frames were kept for
further analysis. These stringent measures ensure that erroneous linkage of random
localizations would be highly suppressed since the probability of persistent linking
of randomly occurring points for 50 consecutive frames is negligible at the particle
density we work with.

Immobile trajectories threshold. As discussed in the ‘Results’ section, we set a
threshold on the ratio of the radius of gyration Rg and the mean step size h|Dr|i.
For ideal immobile particles, this ratio is a constant, while for a particle that
actually propagates in space the ratio will increase. For an immobile particle, where
the apparent motion is due to localization errors, the localizations would be dis-
tributed in a 2D Gaussian distribution around the true location, namely, N 0;s2ð Þ.
The radius of gyration for a normal distribution with variance s2 is simply
R2

g ¼ 2s2, which is just the second moment. For the mean step size, we want to

compute the expected value: Drj jh i ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 �X2ð Þ2 þ Y1 �Y2ð Þ2

q	 

, where X1,2

and Y1,2 are random variables drawn from a normal distribution with mean 0 and
variance s2. The addition or subtraction of two such values is a normal distribution
with twice the variance of the first: X1 �X2 � N 0; 2s2ð Þ. Next, the square of a
normal distribution is the w2 distribution with 1 degree of freedom (DOF):
X1 �X2ð Þ2 � 2s2w2

1. The sum of w2 distributions gives a w2 distribution with 2
DOF: X1 �X2ð Þ2 þ Y1 �Y2ð Þ2 � 2s2w2

2 and the square root then gives the w2 with

2 DOF:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 �X2ð Þ2 þ Y1 �Y2ð Þ2

q
�

ffiffiffi
2
p

sw2 ¼
ffiffiffi
2
p

sxe�
x2
2 . Then, the mean step

size, which is the expected value, is Drj jh i¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 �X2ð Þ2 þ Y1 �Y2ð Þ2

q	 

¼
R1

0ffiffiffi
2
p

sx2e�
x2
2 dx ¼

ffiffiffi
2
p

s �
ffiffiffi
2
p

G 3
2

� �
¼ s

ffiffiffi
p
p

. Therefore, for a trajectory composed of
points taken from a normal distribution with mean 0 and variance s2, the ratio of
the radius of gyration and the mean step size is a constant: Rg= Drj jh i ¼

ffiffiffiffiffiffiffiffi
2=p

p
.

Importantly, this ratio is independent of the localization error. Note that the
localization error is due to multiple factors36,37, including factors that depend
on the detection system (for example, dark noise, quantization noise and detector
pixel size), the sample (for example, background level), as well as particle-related
factors (for example, detected fluorescence intensity, its size, velocity and so on).

For fixed cells and for immobile 40 nm gold beads fixed to the coverslip, we find
that 95% of the normalized ratio values

ffiffiffiffiffiffiffiffi
p=2

p
Rg= Drj jh i fall below the value 2.11

and 99% below 3.89. We use the threshold for 5% false positives (that is, 2.11) for
the rest of the analyses of the mobile particles. Importantly, this straight-forward
method allows the detection of immobile particles, where Rg and h|Dr|i have
large and comparable values. In contrast, using only the diffusion coefficient or
Rg for rejecting immobile particles would falsely classify such particles as
mobile. Notably, our excluded immobile particles account for 66% of all detected
particles.

Statistical tests and calculations. The values of a and Ka are calculated by a
linear fit to the first 50 time points in any one of the MSDs. Errors for Ka and a are
computed by the s.d. of values found between different threshold sets, which met
the guidelines of the CER segmentation (see ‘Methods’ section and Supplementary
Fig. 5 for choice of the threshold set for CER segmentation). For the whole
ensemble of trajectories, before segmentation, the values are calculated for all time
points for ae and only the linear regime (time points 10–30) for at. The errors, in
this case, are taken from the linear fit while using weights according to the s.e.m. of
the values of the MSD curves.

Segmentation is done as described in the main text. Gaps up to three time
points of inconsistency in the mobility state are smoothed out. For example,
a trajectory with mobility states y 1 1 1 1 1 2 2 1 1 1 1 1 1 y would be
smoothed to become all 1s. This is done to minimize noise-related errors in
segmentation.

Gaussian fitting for step-size distributions is done based on the least square
curve fitting function in MATLAB (Optimization toolbox). The code is adjusted
from https://www.mathworks.com/matlabcentral/fileexchange/40613-multiple-
curve-fitting-with-common-parameters-using-nlinfit so that boundaries can be
introduced. Multiple curves are given simultaneously for fitting with the same set of
Gaussian parameters as discussed in the main text.

Segmentation by the vbSPT method was done by a published MATLAB code25.
Measurement of the fractal dimension on PALM images is done by the

box-counting method. MATLAB code was custom written for this.

Localization error corrections for second and fourth moments. As shown by
Kepten et al.10, localization errors affect the apparent MSD and may result in an
underestimation of a and Ka by raising the MSD at short times. Here we will repeat
the calculation done for the MSD by ref. 10 and extend it further to the fourth
moment, which we use for the moment ratio test.

Let x and y be the true locations of the particle, and ex and ey be the
corresponding localization errors. Then the observed locations are x̂ ¼ xþ ex

and ŷ ¼ yþ ey . We further assume hexi¼ heyi¼ 0 and he2
xi ¼ he2

yi ¼ 1
2he2

r i,
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where~r ¼~xþ~y. The error in the displacement between two locations x1 and x2

due to localization amounts to: Dx̂ ¼ x̂2 � x̂1 ¼ Dxþ ex;2 � ex;1
� �

. Therefore, the
observed mean squared displacement is:

Dx̂2
� �

¼ Dx2
� �

þ 2 Dx ex;2 � ex;1
� �� �zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{0

þ ex;2 � ex;1
� �2
D E

¼ Dx2
� �

þ e2
x;1

D E
þ e2

x;2

D E
� 2ex;1ex;2
� �zfflfflfflfflfflffl}|fflfflfflfflfflffl{0

¼ Dx2
� �

þ 2e2
x

� �
¼ Dx2
� �

þ e2
r

� �
ð15Þ

In two dimensions: Dr̂2h i ¼ Dx̂2h iþ Dŷ2h i ¼ Dr2h iþ 2 e2
r

� �
. Thus, the correction

needed for the MSD is:

Dr2
� �

¼ Dr̂2
� �

� 2 e2
r

� �
ð16Þ

We now turn to the correction needed for the fourth moment:

Dx̂4
� �

¼ x̂2 � x̂1ð Þ4
� �

¼ x2 � x1 þ ex;2 � ex;1
� �� �4

D E
¼ Dxþ ex;2 � ex;1

� �� �4
D E

¼ Dx4
� �

þ 4 Dx3 ex;2 � ex;1
� �� �zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{0

þ 6 Dx2 ex;2 � ex;1
� �2

D E

þ 4 Dx ex;2 � ex;1
� �3

D Ezfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{0

þ ex;2 � ex;1
� �4
D E

¼ Dx4
� �

þ 6 Dx2
� �

ex;2 � ex;1
� �2
D E

þ ex;2 � ex;1
� �4
D E

ð17Þ
The last argument on the RHS of equation (17) can be expanded to:

ex;2 � ex;1
� �4
D E

¼ e4
x;2

D E
� 4 e3

x;2

D E
ex;1
� �

þ 6 e2
x;2

D E
e2

x;1

D E
� 4 ex;2
� �

e3
x;1

D E
þ e4

x;1

D E
¼ 2 e4

x

� �
þ 6 e2

x2
� � ð18Þ

and the second argument is:

6 Dx2
� �

ex;2 � ex;1
� �2
D E

¼ 12 Dx2
� �

e2
x

� �
ð19Þ

Thus, we arrive at:

Dx̂4
� �

¼ Dx4
� �

þ 12 Dx2
� �

e2
x

� �
þ 2 e4

x

� �
þ 6 e2

x

� �2 ð20Þ
As noted earlier, e2

x ¼ e2
y ¼ 1

2e
2
r and e4

x can be realized by:

e4
r

� �
¼ e4

x

� �
þ e4

y

D E
þ 2 e2

x

� �
e2

y

D E
¼ 2 e4

x

� �
þ 1

2
e2

r

� �2 ð21Þ
Thus:

e4
x

� �
¼ 1

2
e4

r

� �
� 1

4
e2

r

� �2 ð22Þ

And equation (20) can be written as:

Dx̂4
� �

¼ Dx4
� �

þ 6 Dx2
� �

e2
r

� �
þ e4

r

� �
� 1

2
e2

r

� �2 þ 3
2

e2
r

� �2

¼ Dx4
� �

þ 6 Dx2
� �

e2
r

� �
þ e4

r

� �
þ e2

r

� �2
ð23Þ

We now note that:

Dr̂4
� �

¼ Dr̂2
� �2
D E

¼ Dx̂2 þDŷ2
� �2
D E

¼ Dx̂4
� �

þ Dŷ4
� �

þ 2 Dx̂2
� �

Dŷ2
� �

ð24Þ
and so:

Dr̂4
� �

¼ Dx4
� �

þ Dy4
� �

þ 6 Dx2
� �

þ Dy2
� �� �

e2
r

� �
þ 2 e4

r

� �
þ 2 e2

r

� �2

þ 2 Dx2
� �

þ e2
r

� �� �
Dy2
� �

þ e2
r

� �� �
¼ Dx4
� �

þ Dy4
� �

þ 6 Dx2
� �

þ Dy2
� �� �

e2
r

� �
þ 2 e4

r

� �
þ 2 e2

r

� �2 þ 2 Dx2
� �

Dy2
� �

þ 2 Dx2
� �

þ Dy2
� �� �

e2
r

� �
þ 2 e2

r

� �2¼ Dr4
� �

þ 8 Dr2
� �

e2
r

� �
þ 2 e4

r

� �
þ 4 e2

r

� �2

ð25Þ
And so finally, the correction for the fourth moment is:

Dr4
� �

¼ Dr̂4
� �

� 8 Dr2
� �

e2
r

� �
� 2 e4

r

� �
� 4 e2

r

� �2 ð26Þ
The values for e2

r

� �
and e4

r

� �
are taken from the uncertainty estimates given by the

ThunderSTORM localization algorithm64.

Choosing the threshold set for CER segmentation. In the case of a three states
model, we use a set of four thresholds: Rs1 ;s2

th ; ns1 ;s2
th

� �
; Rs2 ;s3

th ; ns2 ;s3
th

� �
. This means

that we are looking for an optimal set in a four-dimentional space. To simplify this
process, we fix two thresholds related to the transition between (for example, s1,s2)
and scan a range of relevant values for the other two thresholds (for the same
example, between s2,s3). For each set of thresholds, we get three subpopulations and
a matrix of weights a j

i as defined Sec. IV in the main text. As a reminder, the weight
matrix reports on the weight of each of the three Gaussian components fitted for

each of the three subpopulations. For clarity, we provide a detailed example of a
representative case:

a ¼
0:95 0:05 0
0:03 0:92 0:05

0 0:07 0:93

2
4

3
5 ð27Þ

This matrix reports that the first subpopulation consists of 95% of the low mobility
state s1 and 5% of the medium mobility state s2. The second subpopulation consists
of a mixture of 3%, 92% and 5% of mobility states s1,s2,s3, respectively. The third
subpopulation consists of a mixture of 7% and 93% of s2 and s3, respectively.
Note that the elements in each row must sum to 1.

On the basis of such a matrix, we compute a score of the extent of mixing
between states as follows:

score ¼
X
i¼j

a j
i

� �2
�
X
i 6¼ j

a j
i

� �2
ð28Þ

In the case of our example, we would have a score of 2.603 out of the possible
maximum of 3.0. For a given range of thresholds, we construct a 2D heat map
showing the score for each set of thresholds of the variable thresholds, while the
two other values are fixed.

Importantly, the total number of segments that are accounted for by each set of
thresholds may differ. This is due to the fact that only trajectory segments longer
than 50 frames are kept. Thus, long trajectories may be excluded from the analysis
if they break down into several short segments that are shorter than 50 frames each.
We take this restrictive approach to be able to classify these segments properly
in the next stages of the analysis where we perform multiple statistical tests for
the identification of the underlying mechanisms. Supplementary Fig. 5a,b shows
two representative heat maps. Supplementary Fig. 5a shows a heat map for
fixed thresholds Rs1 ;s2

th ¼ 40 nm; ns1 ;s2
th ¼ 7frames

� �
and variable thresholds

Rs2 ;s3
th 2 115; 150ð Þ nm; ns2 ;s3

th 2 6; 10ð Þframes
� �

. Supplementary Figure 5b shows a
heat map for variable thresholds Rs1 ;s2

th 2 35; 60 nmð Þ; ns1 ;s2
th 2 5; 9ð Þframes

� �
and

fixed thresholds Rs2 ;s3
th ¼ 125 nm; ns2 ;s3

th ¼ 7frames
� �

. For each set, we specify

the on-diagonal values a j
i¼j and the number of trajectory segments in each

subpopulation. Having the scores and the number of segments, we now provide
general guidelines for the choice of a preferable threshold set:

1. Rth should not be too close to the resolution limit. Here in Supplementary
Fig. 5b, we prefer threshold sets where RthZ40 nm.

2. Sets that result in all three values of aj
i¼j 
 90 % are preferable.

3. Sets that result in any of the aj
i¼j ¼ 100 % should be treated with caution since

the fitting algorithm puts a bound on the value which cannot exceed 1.0. Thus,
such values may indicate a corrupted fit for which the value would have
exceeded 1.0 without the boundary. Hence, we do not consider such sets in our
choice.

4. We prefer threshold sets that result in numbers of segments that represent well
the distinct subpopulations. For instance, diluting a subpopulation to only its
most representative trajectory segments would result in a high fitting score, but
with too few segments for further analysis.

On the basis of these guidelines, we now turn to discuss the choice of threshold
sets in our data. We observe a tendency of high scores to appear along with a ridge
in the heat maps with a negative diagonal trend. Along this ridge, there are several
sets that meet the above guidelines. We tested these sets and found that they overall
provide very similar results and underlying mechanisms for the subpopulations.
We conclude that our results are insensitive to the exact choice of a threshold set.
Supplementary Figure 5c shows a and Ka values for the various threshold sets
tested (grey points) together with the threshold sets that met the above guidelines
(squares). As can be seen, a and Ka vary in their resultant values. This variability is
reduced by a factor of B3–4 when using the guidelines. The s.d. of a is typically
B1–2% of the mean value and B17% for Ka. This high variability for Ka is
understandable since it varies over several orders of magnitude. The values we find
for a and Ka are summarized in Table 1. Furthermore, we note that, as discussed in
the main text, the low and medium subpopulations are in fact part of a continuum
of mobility states and the effort for distinct classification is somewhat subjective. To
conclude, we recommend testing the robustness of threshold sets in the resultant a
and Ka across multiple sets when employing this method.

Clustering of molecules detected by PALM. Individual PAGFP-tagged proteins
were clustered using a custom code in MATLAB for non-hierarchical clustering.
Two molecules were assigned to the same cluster if they were closer than a
threshold distance. We chose a distance threshold of 40 nm that accounts for the
resolution limit in the localization of two proximal molecules in our study
(see mode at 28 nm for the localization uncertainty in Supplementary Fig. 1a).
We also tested thresholds between 10 and 60 nm and verified the resemblance
of their resultant cluster size distributions, and thus, the insensitivity of this
distribution to the chosen threshold.
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Confinement simulations. Simulations were written in custom MATLAB code.
Five hundred particles were simulated for 500 time steps. Confinement was
introduced by an un-crossable circular boundary with a radius of 10 units (a.u).
Particles were distributed randomly inside the boundary at the initiation of the
simulation. For an fBM random walk, the ‘wfbm’ function was used with an a value
of 0.5. The mean step size is B0.9 units. Resulting a values are ae¼ 0.56±0.01;
at¼ 0.50±0.01; aMME¼ 0.63±0.02. For pure Brownian motion, the mean step size
is B0.4 and the resulting a values are ae¼ 0.96±0.08; at¼ 0.90±0.03;
aMME¼ 0.98±0.03.

These results demonstrate the effects of confinement on random walks with or
without an additional subdiffusive mechanism. Importantly, notice the difference
between the time averages and the ensemble or MME average values. The choice of
simulating fBM rather than RWF is due to the relative simplicity of simulation and
demonstration of results.

Code availability. All custom codes used in this work are freely available at https://
github.com/ShermanLab/SubDiffusion. These codes use MATLAB 2013a
(MathWorks).

Data availability. The authors declare that all data that supports the findings of
this study are available within the article and its Supplementary Information files
and from the corresponding author on reasonable request.
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