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Evidence for fungal and chemodenitrification based
N2O flux from nitrogen impacted coastal sediments
Scott D. Wankel1, Wiebke Ziebis2, Carolyn Buchwald1, Chawalit Charoenpong1, Dirk de Beer3, Jane Dentinger2,

Zhenjiang Xu4 & Karsten Zengler4

Although increasing atmospheric nitrous oxide (N2O) has been linked to nitrogen loading,

predicting emissions remains difficult, in part due to challenges in disentangling diverse N2O

production pathways. As coastal ecosystems are especially impacted by elevated nitrogen,

we investigated controls on N2O production mechanisms in intertidal sediments using novel

isotopic approaches and microsensors in flow-through incubations. Here we show that during

incubations with elevated nitrate, increased N2O fluxes are not mediated by direct bacterial

activity, but instead are largely catalysed by fungal denitrification and/or abiotic reactions

(e.g., chemodenitrification). Results of these incubations shed new light on nitrogen cycling

complexity and possible factors underlying variability of N2O fluxes, driven in part by fungal

respiration and/or iron redox cycling. As both processes exhibit N2O yields typically far

greater than direct bacterial production, these results emphasize their possibly substantial,

yet widely overlooked, role in N2O fluxes, especially in redox-dynamic sediments of coastal

ecosystems.
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N
itrogen (N) loading from anthropogenic activities
profoundly impacts ecosystems worldwide, with loading
to coastal zones among the largest challenges facing

humanity, as nearly half the global population lives within 100 km
of the coast. Coastal sediments are known hotspots of
biogeochemical transformations and recognized as effective
agents for removing excess nitrogen1,2. However, biological
removal of reactive nitrogen may also occur at the expense of
increased production of nitrous oxide (N2O), a potent climatically
active trace gas. Despite being the largest ozone depleting
substance currently emitted to the atmosphere3, N2O remains
unregulated by the international community and large
uncertainties exist concerning N2O budgets (4100%),
particularly for heterogeneous environments such as coasts4,5.
Redox-dynamic estuarine and coastal sediments routinely
experience high N loading and low dissolved oxygen (O2),
conditions that are strongly linked to elevated N2O and underlie
their estimated 10% contribution to the global N2O flux4,6–9.
Thus, understanding their role in both nitrogen removal and N2O
production is important for improving predictions of long-term
impacts of human activity across globally relevant scales.

Many studies have focused on the relative contribution of
bacterial denitrification (bDNF) or nitrification (oxidation of
ammonia (NH3) to nitrite (NO2

� ) or ‘AMO’), as controlling
processes underlying N2O emissions (Fig. 1). While yields of N2O
from both AMO and bDNF are low (o1% in terms of total moles
of N converted), their magnitude and ubiquity across ecosystems
translates into major atmospheric fluxes. Increasingly, however,
the potential for other N2O production processes has become
apparent, including production of N2O by fungi and/or abiotic
reactions coupled to redox cycling of metals such as iron10–12. In
particular, the organic-rich and redox-dynamic regimes of
estuarine and coastal sediments may promote both fungal
activity and rapid redox cycling of iron. To examine controls
and mechanisms of N2O production in coastal sediments (Fig. 1),
we incubated natural sediment cores under flow-through
conditions, manipulating both dissolved O2 and nitrate in the
overlying water (using conditions typifying anthropogenically
impacted ecosystems), while monitoring both porewater N2O
profiles and stable isotopic fluxes of ammonium, nitrate, nitrite
and N2O. Given the complexity of processes involved, we also
leveraged the use of a less-traditional isotope system (17O,
described below) to provide even broader perspective for
disentangling operative N2O cycling mechanisms.

The steady-state emission flux of N2O (FN2O) is governed
by six possible production fluxes (F) (Fig. 1; bacterial denitrifica-
tion (bDNF), fungal denitrification (fDNF), chemodenitrification
(cDNF; specifically the abiotic reduction of NO2

� to N2O by
Fe(II)), ammonia oxidation by bacteria (bAMO) or archaea
(aAMO) and nitrifier-denitrification (nDNF)), as well as
respiratory consumption by denitrifying bacteria (N2ORED) such
that:

FN2O ¼ FbDNFþ FfDNFþ FcDNFþ FbAMOþ FaAMOþ FnDNF� FN2ORED

ð1Þ

Stable isotopes of N2O have been widely used for studying its
production and consumption, including both oxygen (18O/16O)
and bulk nitrogen (15N/14N) (d¼ (((Rsample/Rstandard)� 1)
� 1,000) and R¼ 15N/14N or 18O/16O)13–19. In addition, the
unique intra-molecular distribution of 15N within N2O molecules
has emerged as a powerful tool for constraining N2O cycling, as
differences in 15N content between the central ‘a’ and outer ‘b’
atoms of the N2O molecule (‘site preference’ or SPN2O,
where SPN2O¼ d15Na� d15Nb) have been shown to reflect
formation pathways13,14,16,18. Numerous studies have measured

the steady-state d15N offset between precursor molecules (NO3
� ,

NO2
� and NH4

þ ) and N2O (‘Dd15N’¼ d15Nsource� d15NN2Obulk),
as well as SPN2O values towards characterizing signature
compositions for the processes in equation 1. Some
compositional overlap notwithstanding, the isotopic separation
of many of these endmembers has been used to distinguish their
relative contribution to N2O production, especially nitrification
and denitrification14,19,20. Notably, the respiratory reduction of
N2O by denitrifying bacteria can increase the d15Nbulk of the
remaining N2O (decreasing Dd15N values), as well as SPN2O

values (with a distinctive relationship between isotope effects
imparted on the d15N of the bulk N2O and its site preference,
15ebulk and SPe, respectively21,22) modifying mixing relationships.
Nevertheless, measured values of Dd15N and SPN2O are
quantitative integrators of the proportion of each process
(which may then be modified by N2O reduction; see Methods),
serving as independently responsive tracers for constraining
production mechanisms. To further interrogate N2O dynamics,
we also used a natural atmospherically derived NO3

� having
an unusual triple oxygen isotopic composition (containing
excess 17O) that provides novel ‘isotope space’ for further
resolving co-occurring processes. By comparing levels of
17O-excess within discrete N pools (see Methods), we are able
to independently quantify the proportion of N2O deriving from
NO3

� (or NO2
� ) and thereby, in concert with the more

conventional isotopic measurements (Dd15N, SP), uniquely
explain variations in N2O producing pathways. Below we
summarize our results, combining microprofile perspectives
with the use of these mass and isotopic fluxes to constrain N2O
production mechanisms in coastal sediments of the Wadden Sea
under a variety of incubation conditions (Supplementary Fig. 1).
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Figure 1 | Schematic representation of N2O production pathways

considered in this study. N2O can form during decomposition/reaction of

intermediate hydroxylamine (NH2OH) produced during ammonia oxidation

by bacteria (bAMO) or archaea (aAMO). Some of these nitrifying

organisms may also produce N2O during reduction of product nitrite

(NO2
� ), known as nitrifier-denitrification (nDNF). N2O may also be

produced during reduction of nitrate and/or nitrite by denitrification

catalysed by bacteria (bDNF), fungi (fDNF) and/or by chemical reaction

with Fe(II) or ‘chemodenitrification’ (cDNF). Finally, N2O can also be

reductively consumed by denitrifying bacteria (N2ORED). N2O produced

having low or negative site preference values (� 10 to 0%) are indicated in

blue, while those have high site preference values (415%) are indicated in

green. Enzymes are indicated as ammonia monooxygenase (AMO),

hydroxylamine oxidoreductase in bacterial nitrification (HAO), nitrate

reductase (NAR), nitrite reductase (NIR), bacterial nitric oxide reductase

(cNOR), nitrous oxide reductase (NOS) and fungal nitric oxide reductase

(p450NOR). The detailed biochemical pathway of nitrite production by

archaeal ammonia oxidation remains unclear.
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Specifically, we find that the isotopic composition of increased
N2O fluxes resulting from elevated nitrate loading in our
incubations requires substantial contribution by processes not
regularly considered in coastal ecosystems, namely fungal and/or
chemodenitrification. We suggest that variations in the
contribution of these processes to N2O fluxes from coastal and
other ecosystems may help to explain the notorious variability
that is frequently encountered in studies of N2O dynamics.

Results
Microsensor and mass flux perspectives on N2O. Microsensor
profiles revealed shallow O2 penetration (B2–3 mm) typical of
high-respiration rates occurring in organic-rich sediments, with
occasional subsurface peaks in O2 reflecting bioturbation/bioir-
rigation (Fig. 2a). N2O profiles revealed striking vertical and
lateral heterogeneity in location, magnitude and distribution
of N2O, reflecting the complexity of N2O dynamics (Fig. 2b–f).
Elevated N2O was often observed near the sediment–water
interface, suggesting oxidative production by AMO. However,
zones of extremely elevated N2O (43 mM, not shown) were also
observed much deeper, highlighting its spatial heterogeneity.
In some cases, subsurface N2O appeared connected with the
overlying water, co-occurring near subsurface O2 peaks and
reflecting oxidative N2O production despite reducing surround-
ings. In others, elevated N2O coincided with anoxic conditions,
suggesting N2O production by reductive pathways (Fig. 2b).
Several cores had active burrows extending into the sediment,
likely contributing to this heterogeneity. In part, these observa-
tions extend the view of N2O dynamics to slightly
deeper sediment layers, in contrast to previous observations
mostly focusing on dynamics in the upper 1 cm (refs 23,24).
This remarkable heterogeneity, often even laterally within a single
core, hinders straightforward N2O flux calculations, yet
emphasizes the utility of the whole core incubation stable
isotope approach, which integrates this natural heterogeneity
and provides a complementary and mechanistic perspective on
underlying N2O dynamics.

In contrast to the oxidative N2O production captured by the
micro-profiles at the sediment–water interface, mass fluxes
suggest an important role for reductive N2O production. Nitrate
levels in the overlying water were closely related to N2O flux

from the sediment, with net efflux of N2O from the sediment in
all cases ranging from 1.4 up to 84.2 mmoles m� 2 d� 1 (Table 1;
Supplementary Fig. 1; Supplementary Table 2). While fluxes of
N2O under low nitrate conditions averaged 17.8 mmoles m� 2

d� 1 (Table 1), decreasing dissolved O2 saturation to B30%
reduced N2O fluxes (5.9mmoles m� 2 d� 1). In contrast, addition
of NO3

� to the overlying water significantly increased N2O
(as well as NO2

� ) fluxes (Table 1) to the water column, consistent
with other studies linking elevated coastal NO3

� loading
with efflux of N2O to the atmosphere6,8,25. Corresponding
NO3

� consumption also increased significantly, reflecting
diffusion-limitation of organic matter respiration (Table 1;
Supplementary Fig. 1; Supplementary Table1).

Multi-isotope analysis of underlying N2O cycling processes.
The stable isotopic composition of N2O and other nitrogen
pools (Table 2; Supplementary Table 2) provides additional
insight into specific biogeochemical mechanisms regulating
sedimentary N2O fluxes. Average SPN2O for low-nitrate (LN) and
low-O2/low-nitrate (LOLN) experiments were not significantly
different (7.2±3.4 and 6.2±3.2%, respectively) and, together
with small differences between effluent NO3

� and N2O d15N
(Dd15N) indicate that N2O fluxes were largely linked to bacterial
denitrification (having low SPN2O) that was limited by diffusive
supply of NO3

� (yielding low Dd15N) (Fig. 3), a common
characteristic of organic-rich sediments26. Notably, SPN2O values
were higher than values expected from bDNF alone, however,
reflecting contribution by additional N2O cycling processes.

In contrast, the increased N2O fluxes under elevated NO3
�

exhibited higher SPN2O relative to low nitrate experiments,
averaging 16.2±5.0 and 12.9±2.5% for the high-nitrate
(HN) and low-O2/high nitrate (LOHN), respectively (Fig. 3,
Table 2), and indicating a shift in N2O dynamics. This increase in
SPN2O, however, was not accompanied by an increase in d15N of
the N2O pool (no apparent decrease in Dd15N), as would be
expected by increased N2O reduction21,27. This observation
implicates the stimulation of processes that produce N2O with
high SPN2O—namely, b/aAMO, fDNF and/or cDNF. Below, we
use the triple oxygen isotopes of co-existing NO3

� , NO2
� and

N2O to further examine these candidate processes responding to
elevated NO3

� loading.
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Figure 2 | Example microsensor profiles of O2 and N2O from sediment core incubations from the Mischwatt site illustrating typical heterogeneity

observed. Rapid consumption of O2 in the upper 2–3 mm (a) reflects the high organic matter content and respiration rates of these sediments. Depth

profiles of N2O are shown in b through f. ‘Field’ profile (b) reflects conditions immediately upon core collection. Profiles from experiment cores reflect

porewater conditions after B7–8 days of incubation under low NO3
� (c), low O2 and low NO3

� (d), high NO3
� (e) and low O2 and high NO3

� (f). The

complexity in the structure of the N2O profiles—including subsurface zones of production likely influenced by bioirrigation—complicate their use in

conventional flux estimation by porewater models.
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Triple oxygen isotopes as a tool for constraining nitrogen cycling.
Our multi-pool D17O measurements enable disentangling of pro-
cesses that are otherwise overlapping (in SPN2O values, for example),
providing a complementary perspective to the N isotope analyses.
First, these analyses revealed that nitrification played a relatively
small role in NO3

� production. As noted, amended nitrate had a
high D17ONO3 value (þ 18.5%), which when combined with pre-
existing nitrate in the supply seawater (D17ONO3¼ 0%) yielded a
D17ONO3 of B þ 15.3% (Table 2). As changes to this D17ONO3

value occur only by production of new nitrate during nitrifica-
tion28,29, the small differences in D17ONO3 between the inflow and
effluent (at most 0.8%; Table 2), reflect small relative contribution
of newly produced NO3

� by nitrification.
Comparatively, D17ON2O values averaged þ 6.5 and þ 5.4%

for high nitrate (HN) and low O2/high nitrate (LOHN),
respectively. These are lower than the corresponding D17ONO3

(Table 2), yet unequivocally reflect transfer of NO3
� derived O

atoms into the N2O flux. Whether the lower D17ON2O (relative to
D17ONO3) stems from production of N2O by processes having a
precursor other than NO3

� (for example, bAMO/aAMO) or from
the equilibration of intermediate NO2

� with water (also causing
D17O to approach 0%) cannot be ascertained by comparing
D17ONO3 and D17ON2O (equation 2). However, D17ONO2 values
were also typically lower than steady-state D17ONO3, averaging
þ 8.5 and þ 9.2%, respectively (Table 2). While non-zero
D17ONO2 values reflect reduction of NO3

� to NO2
� (since D17O is

conserved), D17ONO2 values lower than steady-state D17ONO3

values must reflect NO2
� production by ammonia oxidation

(bAMO or aAMO) and/or partial equilibration of NO2
� with

water. Regardless, comparison of steady-state D17ON2O with
D17ONO2 (equation 5) indicates an average of 70–80% of the N2O
derived from a NO2

� precursor under high NO3
� incubations

and thus indicates that the increased production occurred via
reductive pathways (Fig. 4) and not by a/bAMO. Together with
the elevated SPN2O and only small changes in Dd15N, this
suggests fungal and/or chemodenitrification as possible contri-
butors (Fig. 4). Both fDNF and cDNF are dependent on supply of
NO2

� and typically exhibit yields far greater than bacterial N2O
production (that is, the relative amount of N2O emitted per mole
of NO3

� or NO2
� reduced or NH3 oxidized). Thus, only small

levels of these processes would be required to contribute relatively
large amounts of N2O—setting the stage for a potentially
important role for these biogeochemical processes in regulating
N2O fluxes wherever they occur.

Discussion
Diversity and abundance of fungi in oxygen-depleted coastal
sediments is generally thought to represent a small fraction of
their soil-hosted counterparts30–32. Nevertheless, their ecological
role remains unclear—with recent studies challenging the
perspective that fungi are only ecologically significant under
aerobic conditions31–33. Adapted for organic-rich environments
often depleted in O2, many fungi have a range of cellular
adaptations to life under suboxic conditions32,34–36, including the
ability to couple denitrification37 directly to mitochondrial

Table 1 | Steady state mass fluxes of measured nitrogen species.

NO3
� flux (mmol m� 2 d� 1) NO2

� flux (mmol m� 2 d� 1) NH4
þ flux (mmol m� 2 d� 1) N2O flux (lmol m� 2 d� 1)

Mean by treatment
Low NO3

� �4.7±1.1 0.7±0.3 7.1±1.7 17.8±6.5
Low O2, Low NO3

� �4.1±1.0 0.7±0.3 8.3±1.2 5.9±6.6
High NO3

� � 10.4±1.4 1.3±0.2 8.6±1.4 49.0±18.5
Low O2, High NO3

� � 17.4±2.1 2.4±0.7 7.1±1.4 51.1±23.1
Mean by site
Mud (MD) �9.4±1.2 1.1±0.4 10.7±1.4 31.9±17.0
Mixed (MX) � 7.6±1.8 1.2±0.2 7.9±1.3 31.1±12.3
Sand (SD) � 10.5±1.3 1.5±0.6 4.7±1.5 29.9±11.7

Mean values are shown grouped either by treatment type or by site. Negative values refer to uptake by the sediments.

Table 2 | Steady state isotopic composition of measured nitrogen species.

NO3
� NO2

� TRN N2O

d15N D17O d15N D17O d15N d15N D17O SP

By treatment
Low O2 (LO) 14.0±1.0 ^ 6.6±2.2 ^ 11.9±1.1 13.7±1.7 ^ 7.2±3.4
Low O2, Low NO3

� (LOLN) 14.0±0.6 ^ 7.7±2.7 ^ 11.6±1.9 14.5±2.0 ^ 6.2±3.2
High NO3

� (HN) 4.6±0.2 14.7±0.7 � 1.2±1.8 8.5±2.4 11.9±1.1 0.0±0.6 6.5±1.2 16.2±5.0
Low O2, High NO3

� (LOHN) 5.3±0.5 14.7±0.6 � 1.5±1.9 9.2±3.2 12.9±6.8 �0.7±1.1 5.4±1.3 12.9±2.5
By site
Mud (MD) 9.2±0.5 15.2±0.7 1.6±1.9 5.4±2.5 12.0±1.7* 6.4±1.2 5.3±1.5 12.5±4.3
Mixed (MX) 9.4±0.6 14.5±0.6 2.8±1.7 10.0±2.3 13.5±1.5 5.8±0.9 6.6±1.2 6.4±3.5
Sand (SD) 9.9±0.6 14.5±0.6 4.3±2.8 11.1±3.5 11.1±2.6 8.3±1.9 5.9±1.1 13.0±3.0
Inflow
Low O2 (LO) 12.7±1.2 0.0±0.6 ND ND ^ 5.7±0.6 ^ 17.4±1.0
Low O2, Low NO3

� (LOLN) 11.7±0.5 0.0±0.6 ND ND ^ 5.7±0.6 ^ 17.4±1.0
High NO3

� (HN) 4.3±0.3 15.3±0.7 ND ND ^ 5.7±0.6 ^ 17.4±1.0
Low O2, High NO3

� (LOHN) 3.9±0.3 15.0±0.5 ND ND ^ 5.7±0.6 ^ 17.4±1.0

Mean values are shown for either treatment type or by site. Values are also shown for the water used as inflow. All values are in units of permil (%) with error indicated as ±1 s.d. based on all
measurements conducted during steady-state conditions. TRN refers to total reduced nitrogen equal to the combined NH4

þ and dissolved organic nitrogen pool. ND¼ not detected. D17O was only
measured in effluent of experiments in which NO3

� was amended. The symbol (^) indicates no measurements were made.
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respiration38—a metabolic capacity that has been documented in
a variety of environments including coastal sediments34,39. Given
this respiratory flexibility, fDNF is poised to be especially
important under hypoxic conditions and wetland environments,
where access to O2 in overlying water is juxtaposed with anoxic,
carbon-rich conditions40. The most characteristic feature of the
fungal-denitrifying system is a P450 cytochrome operating as a
nitric oxide reductase (P450nor)41 giving rise to the
characteristically high SP of B35–37% (refs 42,43), the
biochemical nature of which was recently interrogated in the
purified enzyme44. Although assessment of fungal metabolic
activity was beyond our scope, sequencing of the fungal ITS
region revealed the presence of fungi across all incubations and
study sites (Supplementary Fig. 3), indicating diverse sequences
including members of several divisions, some of which include
N2O producing isolates37. While their presence does not confirm
specific physiological activity involved in nitrogen

transformations, taken together our results point to an
unexplored role of fungi in coastal sedimentary N cycling. In
particular, as fungi lack N2O reductase38, yields from fDNF are
also typically 1–2 orders of magnitude greater than for bDNF
(generally o0.1%) and N2O production appears to be
physiologically widespread among fungi37. Indeed the
importance of fungi in contributing to N2O production is
well-recognized across a range of terrestrial ecosystems45. While
their overall role in the reductive elimination of reactive N may be
small relative to that of bacterial denitrification, these high yields
mean that even small levels of fDNF could have
disproportionately large impacts on N2O release, serving as an
important, yet under-recognized source to the atmosphere.

Although biological N2O production has received much
attention, abiotic production of N2O is also widely documented,
typically via reactions involving intermediates such as NH2OH
and NO2

�—though its environmental role remains unclear (Zhu-
Barker et al.11, and references therein). Specifically, reduced iron
(Fe(II)), especially mineral or surface-bound Fe(II), is an effective
catalyst of NO2

� reduction under a range of conditions46, and the
presence of mineral surfaces and elevated levels of Fe(II) has also
been shown to increase N2O yield47,48. Although data are limited,
SPN2O from chemodenitrification is generally 410% and recent
evidence suggests that elevated reaction rates, promoted by
high levels of Fe(II), may also increase SPN2O (up to 26%) (47–51).
The production of reactive Fe(II) as the result of direct or indirect
microbial activity is a ubiquitous feature of marine sediments.
Our sites contained between 67 and 1344 mM HCl-extractable
Fe(II) g� 1 wet sediment (Supplementary Fig. 4). However,
prediction of reaction kinetics between Fe(II) and NO2

� in
these porewater environments is complex, particularly given the
range of binding environments of Fe(II), which largely controls
its reactivity52,53. Nonetheless, the positive flux of NO2

� together
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NO2
� pool as a substrate (where D17ONO2¼ steady-state value), while

nitrifier-denitrification uses only NO2
� derived directly from NH4
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reduction (Ostrom et al.21; Jinuntuya-Nortman et al.86), however, this mass

dependent process will only impact SPN2O and not alter D17O values

(horizontal arrow). Error bars represent±1 s for SPN2O and propagated

error for D17ON2O/D17ONO2. Data demonstrate that associated increases in

SPN2O upon elevated NO3
� is not associated with ammonia oxidation, but

instead is linked to increased contribution of fungal and/or
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with the porewater Fe(II) levels suggests that cDNF may also have
contributed to N2O production. Interestingly, however, despite its
lower Fe(II), the sandy site (SD) exhibited similar overall N2O
isotope dynamics to the other two more Fe-rich sites (Table 2),
suggesting that perhaps the increased response of N2O
production to NO3

� loading was perhaps not as tightly linked
to Fe(II) content.

On the basis of the isotope systematics described, we use an
isotope mass balance (based on equations 1, 2, 5 and 6 and
defined endmember compositions (Supplementary Table 3)) to
estimate relative contribution of operative N2O producing
mechanisms (see Methods). While fDNF and cDNF are not
mutually exclusive, we consider them separately to more robustly
evaluate their potential contribution. Previous studies appear to
demonstrate a strong relative dominance of ammonia oxidizing
bacterial abundance compared to archaea in organic-rich coastal
sediments54,55. An assumed numerical dominance of bacterial
ammonia oxidizers notwithstanding, pure culture studies of
archaeal ammonia oxidizers typically produce N2O reflecting a
isotopic compositional mixture of both the AMO and nDNF
pathways56–58, as has been more directly characterized in
bacterial ammonia oxidizers59. Ongoing studies of N2O
production mechanisms in ammonia oxidizing archaea will
undoubtedly provide more insight on their unique biochemical
nature. Differences in biochemistry aside, however, given the
apparent similarity in isotopic composition of N2O deriving from
bAMO and aAMO (especially a high SPN2O value, Figs 3 and 4),
here we opt to combine bacterial and archaeal AMO for

consideration in our mass balance analysis—setting endmember
values to those previously determined for bAMO, as these have
been studied in far more detail59. Thus, for elevated nitrate
experiments (in which we can leverage the use of the positive
D17O), we consider N2O production by bDNF, nDNF and AMO
(bAMOþ aAMO) together with either fDNF or cDNF
(Supplementary Table 4), while also examining the relative
influence of N2O reduction on the calculated steady-state
contributions of each process (see Methods). Error was
estimated using a Monte Carlo approach in R with 10,000
simulations (Supplementary Table 4; see Supplementary
Information for a more detailed sensitivity analysis of
endmember composition).

Under elevated nitrate, mass balance indicates N2O production
predominantly driven by varying contribution of bacterial and
fungal denitrification (Fig. 5; Supplementary Table 4). For the
base case (Supplementary Table 3), fungal denitrification
contributed on average 36% of the N2O flux (up to 70% in one
core). In evaluating the sensitivity of these estimates to
endmember composition, this average value increased to 41 or
56% (if using a lower SP value of 30.3% for fDNF or a lower
Dd15N value for the nDNF endmember, respectively;
Supplementary Table 5) or decreased to 28% (if all nDNF
derived N2O were to originate from NO2

� having a positive D17O
value instead of 0%; Supplementary Table 6). In contrast,
ammonia-oxidation contributed on average only 3–12% (via
NH2OH decomposition) and 8–17% (via nDNF) for the base
case. Consideration of cDNF (in lieu of fDNF) as the endmember
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having both a high SPN2O and a NO2
� precursor required an

even higher proportion of this process to satisfy mass balance
(Supplementary Table 4). However, two cores in this case
exhibited isotopic compositions violating mass balance (those
with highest SPN2O), evidently requiring at least some contribu-
tion of fDNF (having a higher endmember SPN2O) over cDNF.
Although the LN and LOLN treatments did not involve the D17O
approach, the statistically higher SPN2O values under elevated
nitrate (relative to low nitrate; Fig. 3, Supplementary Table 2)
point to a shift in N2O production mechanisms in response to
NO3

� , which must have included increased contribution by fDNF
and/or cDNF. Ultimately, while the precise contribution of N2O
pathways varies depending on prescribed endmember composi-
tions, all scenarios indicated substantial contribution by these
non-traditional N2O production pathways.

Increased N2O emissions from coastal systems receiving
elevated NO3

� are well documented4,8,9 and the ‘central role’ of
NO2

� in relation to N2O has been emphasized by others6. For
example, large increases in N2O from sediments amended with
NO2

� (relative to NO3
� ) was previously interpreted as evidence

for ‘obligate nitrite-denitrifying bacteria’ that reduce NO2
� to

N2O (ref. 6). Similarly, based on SPN2O it was concluded that N2O
production in estuarine sediments was controlled by an as yet
‘unidentified process’60 having an isotopic composition consistent
with more recent studies of fungal and chemodenitrification. On
the basis of our results, we suggest that these previously ‘missing’
and/or ‘unidentified’ pathways likely represent non-traditional
pathways including denitrification catalysed either by fungi or
reactions involving Fe(II).

To the degree that our sediment incubations reflect processes
ongoing under natural conditions, elevated NO3

� loading to coastal
sediments appears to increase N2O fluxes largely through reactions
involving a NO2

� intermediate, yet also exhibiting elevated SP
values. This combination of characteristics pinpoints an increased
involvement of processes not regularly considered in coastal
ecosystems—namely fungal and chemodenitrification. We suggest
that both may represent important, yet under-appreciated sources
regulating N2O fluxes from redox-dynamic, organic-rich environ-
ments and warrant further examination. Studies are frequently
challenged by the dynamic nature of N2O fluxes, which are often
episodic and difficult to link to specific factors or processes (for
example, refs 23,25). Although our study was conducted at steady-
state (enabling our assessment of fDNF and cDNF), we posit that
the commonly observed patchy and dynamic nature of N2O fluxes
may stem from a complex network of differential contribution by
direct and indirect, biological and abiotic processes, including the
metabolic activity of fungi and biogeochemical redox cycling of
iron. In particular, compared to bacterial denitrification and/or
ammonia oxidation, their especially high yields poise these
processes to be important, yet under-recognized, contributors to
N2O dynamics in many systems.

Methods
Study site and experimental setup. Twenty-four sediment cores were collected
in August of 2013, from three intertidal sites near Königshafen on the island of
Sylt in the North Sea, Germany. Sites were B100 m apart and chosen based on
qualitative differences in sediment grain size and location characteristics. The
‘Schlickwatt (MD)’ and ‘Mischwatt (MX)’ sites were located inside a small lagoon,
while the ‘Sandwatt (SD)’ site was more openly exposed to wind and waves
(Supplementary Fig. 1). Thirty intact push cores (30 cm length, 10 cm OD, 1/800

wall thickness) were taken using polycarbonate core liners having vertical lines of
silicone sealed holes (ø 3 mm) at 1-cm intervals to allow porewater collection using
Rhizon samplers. Cores were retrieved leaving B10 cm of overlying water and
sealed with double o-ring Delrin caps to minimize gas exchange during transport,
and brought immediately back to the laboratory. In addition to the cores used for
the incubations, two additional cores were used from each site for immediate
microsensor profiling (O2, N2O) and pore-water extraction (‘field cores’). The
remaining cores were prepared in parallel for incubations. On completion of the

incubations, microsensor profiling of O2 and N2O was conducted immediately
followed by extraction of porewaters.

Incubations. The gas-tight sealed sediment cores were incubated in the dark at
in situ temperatures (19 �C) in a temperature-controlled room at the Alfred
Wegener Institute—Waddensee Field Station. Throughout the incubations the
overlying water of the cores was continuously supplied with filtered seawater from
large carboys, which were refilled as needed. The o-ring sealed core tops contained
inlet/outlet fittings for continual delievery of fresh seawater through gas
impermeable PEEK tubing (1/800 OD). Peristaltic pumps were used to regulate flow
rates at 1.8±0.06 ml min� 1 (measured gravimetrically at each sampling point) for
B8 days. The inflow line was placed near the sediment–water interface to mini-
mized stratification. For experimental manipulations, four different inflow seawater
compositions were used: ‘Low nitrate’ (air sparged; B20 mM; LN), ‘Low oxygen,
low nitrate’ (sparged with N2 to 30–35% O2 saturation; B20mM; LOLN), ‘High
nitrate’ (amended with NaNO3 to B120mM (above background nitrate); HN) and
‘low oxygen, high nitrate’ (combined treatments; LOHN).

Sample collection. Samples of each sediment core effluent were taken twice per
day. For dissolved ions, effluent was directed into HDPE bottles and allowed to fill
for B60 min before subsampling, filtering (0.2 mm) and freezing (� 20 �C).
Separate 20 ml aliquots were taken for measurement of dissolved inorganic
nitrogen concentrations (nitrate, nitrite and ammonium) and stable isotopic
composition. Concentrations of nitrite and ammonium were made immediately
(see below), while nitrate concentrations were measured later in the Wankel lab at
WHOI. Samples for dissolved N2O were directed through gas impermeable PEEK
tubing directly into pre-evacuated Tedlar gas sampling bags followed by gentle
transfer into 160 ml serum bottles using a 1

4
00 OD silicone tubing, filling from the

bottom to minimize turbulence and gas exchange. Sample water was allowed to
overflow the bottle volume for at least two volumes before crimp-sealing with grey
butyl septa and preserving with 100ml of a saturated HgCl2 solution.

Porewater sampling. Pore water samples were collected from sediment cores in
1-cm depth intervals using Rhizons61, which were inserted into intact sediment
cores through silicon-filled ports in the walls of the core tubes. Samples of 5–10 ml
volume were taken starting at the sediment–water interface down to 16 cm depth
and frozen immediately for later analysis. Parallel cores were sectioned in 1-cm
intervals for the analyses of iron. HCl extractable Fe(II) and the amorphous, poorly
crystalline fraction of the Fe(III) minerals were measured by procedures described
in ref. 63, with the modifications as in ref. 64.

Concentration and flux measurements of N bearing species. Concentrations of
NO3

� þNO2
� were measured by chemiluminescence after reduction in a hot

acidic vanadyl sulfate solution on a NOx analyser65. Concentrations of NO2
� were

quantified by using the Griess–Ilosvay method followed by measuring absorption
540 nm, and NO3

� was quantified by difference66. Concentrations of NH4
þ were

measured by fluorescence using the OPA method62. Concentrations of N2O were
made using the integrated peak area of the m/z 44 beam on the IRMS (see below),
standardizing to analyses of known amounts of N2O (injected into N2 sparged
seawater in 160 ml serum bottles) and normalizing to sample volume (158 ml).
Mass fluxes (Supplementary Fig. 2; Supplementary Table 1) were calculated as a
function of the steady-state difference (usually after B3 days) between influent and
effluent concentrations (D[C]), flow rate (r) and sediment surface area (A) using:
Flux¼ (D[C]� r)/A. Error estimates of fluxes incorporate variations in both
measured flow rates as well as steady state concentrations.

Isotope measurements. All N and O isotopic composition measurements (d15N
and d18O; where d15N¼ ((15Rsample/15RAir)� 1)� 1,000 in units of %, and
15R¼ 15N/14N and where d18O¼ ((18Rsample/18RVSMOW)� 1)� 1,000 in units of
%, and 18R¼ 18O/16O) were made after conversion of analytes to nitrous oxide,
followed by purification with a customized purge and trap system and analysis on a
continuous flow IsoPrime 100 isotope ratio mass spectrometer (IRMS).

Nitrate. Nitrate was converted to N2O using the denitrifier method67,68 after
removal of nitrite by addition of sulfamic acid69. Corrections for drift, size and
fractionation of O isotopes during bacterial conversion were carried out using
NO3

� reference materials USGS 32, USGS 34 and USGS 35 (refs 67,70), with a
typical reproducibility of 0.2 and 0.4% for d15N and d18O, respectively, in the
course of single run. Triple oxygen isotope measurements allow for the
determination of ‘anomalous 17O,’ (the deviation from the terrestrial fractionation
line) with the magnitude of this anomaly expressed as D17O (after71), where:

D17O ¼ 1þðd17O=1000Þ
½1þðd18O=1000Þ�0:525 � 1

� �
�1000 ð2Þ

Nitrate D17O measurements were made on separate aliquots by routing
denitrifier-produced N2O through a gold tube (1/1600 OD) held at 780 �C, thermally
decomposing the N2O into N2 and O2, which were chromatographically separated
using a 2 m column (1/1600 OD) packed with molecular sieve (5 Å) before analysis
on the IRMS72,73. Nitrate reference materials USGS 35 and USGS 34 were used to
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normalize any scale contraction during conversion, with reproducibility of D17O
typically ±0.8%.

Nitrite. All samples for nitrite N and O isotope measurements were converted to
N2O within 2 h of collection using the azide method74. Parallel conversions of
internal nitrite standards (WILIS 10, 11 and 20) were conducted to assess potential
changes in reagents with time. Internal nitrite standards were also used correct for
any variations due to peak size linearity and instrumental drift, with a typical
reproducibility for both d15N and d18O of ±0.2%. On the basis of calibrations
against isotope reference materials USGS 32, 34 and 35 for d15N (ref. 75) and N23,
N7373 and N10129 for d18O (ref. 76), the values of WILIS 10, 11 and 20 are
reported here to be � 1.7, þ 57.1 and � 7.8% for d15N and þ 13.2, þ 8.6 and
þ 47.6% for d18O, respectively. Nitrite D17O measurements were made after
conversion to N2O using the azide method and normalized using a combination of
NO2

� and NO3
� isotopic reference materials. D17O values of NO2

� isotope
standards WILIS 10 and WILIS 11 were calibrated previously against USGS 34 and
USGS 35 using the denitrifier method followed by thermal decomposition of N2O
to N2 and O2 as described above—yielding D17O values of 0% for both. For sample
NO2

� , raw d17O and d18O values were first normalized for oxygen isotopic
exchange with water during the azide reaction74 using the calibrated d17O and
d18O values of WILIS 10 and WILIS 11. During the same IRMS run, N2O
produced from USGS 34 and USGS 35 via the denitrifier method was also
thermally converted and analysed as N2 and O2. Because any isotope fractionation
occurring during these reactions is mass dependent (D17O is unaffected), the D17O
of NO2

� can be calculated by normalizing to D17O values of these NO3
� standards.

We disregard the small amount of oxygen isotope exchange occurring during the
denitrifier method, as this would have only a small impact on the calculated D17O
values.

Reduced nitrogen. Total reduced nitrogen (TRN¼DONþNH4
þ )

was measured in a subset of incubation cores by oxidation of the total dissolved
nitrogen (TDN) pool to nitrate via persulfate digest—followed by d15N analysis
using the denitrifier method77. The d15N of the TRN pool was then calculated
by mass balance by subtracting the molar contribution of the measured d15N
of NO3

� and NO2
� pools to the TDN pool. On the basis of the measurement of

NH4
þ concentrations, the DON flux was generally of the same magnitude as the

NH4
þ flux (not shown). For use in the mass balance calculations (for estimation of

the bAMO endmember Dd15N value), the d15N of the TRN pool was assumed to be
a reasonable proxy for the d15N of the NH4

þ pool. In general, this assumption had
only a very small impact on the apportionment N2O sources by mass balance
(o1%).

Nitrous oxide. For dissolved N2O, samples were extracted from the 160 ml
serum bottles using a purge and trap approach78. Liquid samples were
quantitatively transferred from the sample bottle into a purging flask using a 20 psi
He stream, followed by He-sparging (B45 min) and cryogenic trapping using the
same system described above for nitrate and nitrite derived N2O. Isotopic
composition of the dissolved N2O was measured by direct comparison against the
N2O reference tank, as no isotopic reference materials were available at the time of
the analyses (USGS 51 and USGS 52 have since been publicly released: http://
isotopes.usgs.gov/lab/referencematerials.html). The composition of this tank
(d15Nbulk¼ � 0.7%; d18O¼ þ 39.1%; SPN2O¼ � 5.3%, where
SPN2O¼ d15N(a)� d15N(b) and a and b refer to the central and outer N atoms in
the linear N2O molecule, respectively) was calibrated directly against aliquots of
two previously calibrated N2O tanks from the Ostrom Lab at Michigan State
University, having been calibrated by Tokyo Tech (Ostrom, pers. comm.). Several
sample analyses of tropospheric N2O from the study site using this system yielded
isotope values of þ 6.8±0.7% for d15Nbulk, þ 44.1±1.7% for d18O and
þ 17.4±2.2% for SPN2O (error reported as s.d. of n¼ 6 samples). Reported values
have been corrected for any size linearity effects on isotopic ratios (31/30, 45/44
and 46/44) by using a series of reference tank subsamples injected into He-purged
20 ml headspace vials using a gastight syringe. Precision for replicate analyses of
this reference gas analysed as samples (that is, aliquots injected into sample vials
and analysed via purge and trap) for d15N is±0.3%, for d18O is ±0.4% and for
SPN2O is ±0.8%. The D17O of N2O was calculated similar to that described above
for NO2

� . After extraction and cryotrapping, the N2O sample is thermally
decomposed to N2 and O2 and chromatographically separated before measurement
on the IRMS. Regular analyses of N2O converted from NO3

� isotope reference
materials (USGS 35 and USGS 34) via the denitrifier method were made to
normalize D17O values.

Triple oxygen isotope tracing of N2O production. While the d18O of most
terrestrial O-bearing materials tightly co-varies with d17O (along the ‘terrestrial
fractionation line’), atmospheric NO3

� , stemming from reactions involving
stratospheric ozone, contains a large relative excess of 17O giving rise to a
composition falling above the terrestrial fractionation line79 (with the magnitude of
this anomaly expressed as D17O; see equation 2). Since kinetic isotope effects lead
to mass dependent changes in d17O values approximately half as large as in d18O,
the D17O remains unchanged80–82. Therefore N2O produced from this NO3

�

(whether by bDNF, fDNF or cDNF) will retain its D17O, despite any kinetic isotope
fractionation. Changes in D17O of an O-bearing N pool only occur through
production incorporating O atoms having D17O B0% (O2 (D17O¼ � 0.3%) or
H2O (D17O¼ 0%) incorporated during AMO), thus, decreasing the D17O of the

standing pool towards B0%. To the degree that NO2
� derives from NO3

�

reduction (and hence carries its D17O value), isotope equilibration between NO2
�

and water O may also ‘erase’ a non-zero D17O signal. Thus, in our incubations
D17ON2O provides independent quantification of the fraction of O atoms originally
deriving from NO3

� (through a NO2
� intermediate):

D17ON2O=D
17ONO3¼ fraction of N2O from a NO�3 source via bDNF; fDNF; or cDNFð Þ

ð3Þ
Normalizing for any potential equilibration of intermediate NO2

� with water,
D17ON2O can similarly be compared to D17O of the NO2

� pool:

D17ON2O=D
17ONO2¼ fraction of N2O from a NO�2 source via bDNF; fDNF; or cDNFð Þ

ð4Þ

Isotope mass balance approach. Isotope mass balance calculations were made
for estimating the relative contribution of N2O production pathways in the sedi-
ment incubations (denitrification by bacteria (bDNF), by fungi (fDNF), or by
chemodenitrification (cDNF), as well as combined production by ammonia
oxidizing bacteria and archaea via NH2OH decomposition (AMO) or nitrifier
denitrification (nDNF)). By combining four independent mass balance expressions
(equations 5, 6, 9 and 11 below) we can solve for the contribution of four
independent N2O production processes (here we describe consideration of fDNF
(case 1), with cDNF being considered separately (case 2)). Equation 1 can be
expressed in terms of the fractional contribution (f) of each production process to
the total flux of N2O:

Total N2O flux ¼ f bDNF þ f nDNF þ f AMO þ f fDNF¼ 1 ð5Þ
Equation 4, incorporating the D17O measurements, is used but neglecting cDNF
for this case:

D17ON2O=D
17ONO2¼ f bDNF þ f fDNF ð6Þ

For measured Dd15N values, equation 7 describes the mass balance contribution of
each process to the cumulative steady-state flux (Dd15Nmeas):

Dd15Nmeas ¼f bDNF�Dd15NbDNF þ f fDNF�Dd15NfDNF þ f cDNF�Dd15NcDNF

þ f bAMO�Dd15NbAMO þ f aAMO�Dd15NaAMO

þ f nDNF�Dd15NnDNF�f N2Oredð Þ�15eN2Ored

ð7Þ

where again f refers to the fractional contribution of a given process, Dd15N is equal
to the steady-state difference (or offset) between d15N of NO3

� and N2O, and
where the endmember Dd15N for given process is expressed based on measured
steady-state d15N values of NO3

� , NO2
� or NH4

þ and the isotope offsets for each
process (Supplementary Table 3). For example, the difference between d15N of
reactant NH3 and N2O (15eNH3-N2O) produced by bAMO has been estimated to be
B3.7±3%, with d15NN2Obulk depleted in 15N relative to the NH3 source59. To
express this in terms of a Dd15N value for the NO3

� /N2O mass balance in
equation 7, we also need to account for the steady-state difference between the
d15N of NO3

� and NH4
þ such that:

Dd15NbAMO¼15eNH3-N2O þðd15NNO3 � d15NNH4Þ ð8Þ
As the isotopic composition of N2O from bAMO and aAMO are very similar in the
context of the isotope space evaluated here56–58, we choose to combine these terms
into a single term (AMO), having the composition of bAMO (Supplementary
Table 3). Together with the fact that we will treat cDNF separately, equation 7 thus
simplifies to:

Dd15Nmeas¼f bDNF�Dd15NbDNF þ f fDNF�Dd15NfDNF þ f AMO�Dd15NAMO

þ f nDNF�Dd15NnDNF�f N2Oredð Þ�15eN2Ored

ð9Þ

Similar to equation 7, the fractional contribution of each process to the measured
SPN2O of the effluent can be expressed as:

SPN2O¼f bDNF�SPbDNF þ f fDNF�SPfDNF þ f cDNF�SPcDNF þ f bAMO�SPbAMO

þ f aAMO�SPaAMO þ f nDNF�SPnDNF � f N2Oredð Þ�SPeN2Ored

ð10Þ
where f denotes the fractional contribution of a given process having a particular
SP value, and where f(N2ORED) is equal to 1� (FN2O/(FbDNFþ FfDNFþ FcDNF

þ FbAMOþ FaAMOþ FnDNF)) and SPeN2ORED is the kinetic isotope effect on SP for
N2O reduction of � 6% (refs 21,22). As in equation 9, consideration of four
processes simplifies equation 10 to:

SPN2O¼f bDNF�SPbDNF þ f fDNF�SPfDNF þ f AMO�SPAMO

þ f nDNF�SPnDNF � f N2Oredð Þ�SPeN2Ored
ð11Þ

By combining equations 5, 6, 9 and 11—we can uniquely solve for the fractional
contribution of four processes (bDNF, fDNF, AMO and nDNF) to the total
observed N2O fluxes of the core incubations (Fig. 5; Supplementary Table 4).
Isotope offsets (Dd15N) and SPN2O values for defining endmember compositions
are given in Supplementary Table 3, as well as the expected D17ON2O/D17ONO2

values for the high nitrate incubations.
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Error propagation and sensitivity analysis. Error estimates for these mass
balance calculations (Supplementary Tables 4,5 and 6) were calculated using a
Monte Carlo error propagation approach in R (with 10,000 simulations), in which
randomized Gaussian distributions of values were generated, as defined by their
mean and s.d. given in Supplementary Table 3. This approach takes into account
both the error associated with measurement of steady-state isotopic compositions
(Supplementary Table 2; which implicitly incorporates both analytical error during
instrument measurement, as well as natural variability during operation of the
incubations) as well as error associated with the definition of endmembers
(Supplementary Table 3).

Beyond these estimates of error, we also evaluated the sensitivity of specific
endmember values to the calculated mass balance estimates—focusing on
variations for endmember values having the least amount of certainty. First, the
endmember values of Dd15N for bDNF and fDNF (and cDNF) are prescribed to be
low as an inferred consequence of diffusion-limited expression of intrinsic (enzyme
level) isotope effects (Supplementary Table 3). For nDNF, we chose to use a Dd15N
value established by a study of nitrifiers under varying oxygen tension (Frame and
Casciotti59), as nitrifiers will be growing at the sharp oxic/anoxic interface in our
sediment core incubations. Whether their supply of NO2

� (as a substrate for
nDNF) could be considered to be limited by diffusion is perhaps a matter of debate.
However, we reasoned that nitrifiers will most generally be denitrifying the product
NO2

� that they themselves are producing (for detoxification) and therefore would
not be limited by diffusion of NO2

� from anoxic depths below. Further, the positive
flux of NO2

� out of the sediments—also indicates that the diffusive supply of NO2
�

should not have been limited (regardless of the source of the NO2
� ). Nevertheless,

we discretely examined the impact that these assumptions make by decreasing the
endmember Dd15N value for nDNF from 56.9 to 28% and then to 14%. Under
these scenarios (assuming 10% N2O reduction, for example)—the average relative
contribution of nDNF increases from 8 to 14 and 26%, respectively, though mostly
at the expense of bDNF, which decreases on average from 45 to 38 and 25%,
respectively. In comparison, these scenarios actually increase estimated
contribution of fDNF from 36 to 43 and 56%, respectively (Supplementary
Table 5).

Endmember SP values have been generally well established for bDNF, nDNF
and bAMO through culture studies under a variety of growth conditions. SP for
fungal DNF is admittedly less well studied, however, several studies have shown
that SP values are universally elevated (often clustering B35–37%). Recent
studies37,42 observe that most N2O producing fungal cultures yielded SP values
430%. Finally, even the purified N2O producing fungal enzyme (p450nor)
has been shown to exhibit elevated SP values, albeit at somewhat lower values
(15–29%). Notably, our choice of þ 37% for the fDNF endmember is conservative
in estimation of the relative contribution of fDNF. For example, decreasing this
value to the mean reported by Maeda et al.37 of þ 30.3±4.8% (which notably also
contained some questionably low values), results in an average of a 6% increase in
the contribution of fDNF to N2O production, with the average contribution of 36%
shifting up to an average of 41–42% (Supplementary Table 6).

Finally, we evaluated our assumption that the extracellular NO2
� pool could

be disregarded as a reactant source for nDNF (that in situ, nDNF only occurred
from NO2

� supplied via bAMO), by setting the prescribed D17O-N2O/D17O-NO2
�

value for nDNF to a value of ‘1’ instead of ‘0’—representing the most extreme case.
Indeed, under this scenario—the average estimated contribution of bNDF and
nDNF actually do not change by 4B1%, while bAMO is increased (from 12 to
19%) and fDNF is decreased (from 36 to 28%) (Supplementary Table 6).

Fungal genetic sequencing. Sediment samples for fungal sequence analysis
were collected and stored frozen at � 80 �C. Genomic DNA from marine
sediment samples was extracted using a bead beating protocol according to the
manufacturer’s instruction (Mo Bio, Carlsbad, CA). ITS region sequences were
amplified using the fungal ITS primer pair F (ITS5): GGAAGTAAAAGTCGTAAC
AAGG and R (ITS4): TCCTCCGCTTATTGATATGC generating fragments of
B600 bps in length. PCR products were cloned using Zero Blunt TOPO PCR
Cloning (Thermo Fisher, Carlsbad, CA). After a ligate buffer exchange the plasmid
was transferred into TOP10 electrocompetent cells. Cells were plated and grown on
LB agar containing kanamycin. Single colonies were recovered from each plate and
amplified using M13F&R primers. The products were sequenced by Sanger method
(EtonBio, San Diego, CA). Sequences were analysed using BLAST. Taxonomy was
assigned for fungal sequences (Supplementary Figure S3) by comparison against
untrimmed ITS in the UNITE database (01/08/2015 version), using QIIME v1.91.
Sequences were assigned only if the database match had a similarity of at least 90%
and maximum e-value of 0.001.

Data availability. The data sets generated during this study are available by
request from corresponding author.
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76. Casciotti, K. L., Böhlke, J. K., McIlvin, M., Mroczkowski, S. & Hannon, J.
Oxygen isotopes in nitrite: analysis, calibration and equilibration. Anal. Chem.
79, 2427–2436 (2007).

77. Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition
of dissolved organic nitrogen and nitrate at the Bermuda Atlantic
Time-series Study site. Glob. Biogeochem. Cycles 19, GB1018 (2005).

78. McIlvin, M. R. & Casciotti, K. L. Fully automated system for stable isotopic
analyses of dissolved nitrous oxide at natural abundance levels. Limnol.
Oceanogr.: Methods 8, 54–66 (2010).

79. Thiemens, M. H. History and applications of mass-independent isotope effects.
Annu. Rev. Earth Planet Sci. 34, 217–262 (2006).

80. Fang, Y. et al. Microbial denitrification dominates nitrate losses from forest
ecosystems. Proc. Natl Acad. Sci. USA 112, 1470–1474 (2015).

81. Michalski, G. et al. Tracing atmospheric nitrate deposition in a complex
semiarid ecosystem using D17O. Environ. Sci. Technol. 38, 2175–2181
(2004).

82. Tsunogai, U., Daita, S., Komatsu, D., Nakagawa, F. & Tanaka, A. Quantifying
nitrate dynamics in an oligotrophic lake using D17O. Biogeosciences 8, 687–702
(2011).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15595

10 NATURE COMMUNICATIONS | 8:15595 | DOI: 10.1038/ncomms15595 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


83. Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N. & Tanji, Y. Fractionation of
N2O isotopomers during production by denitrifier. Soil Biol. Biochem. 37,
1535–1545 (2005).

84. Yamazaki, T. et al. Isotopomeric characterization of nitrous oxide produced by
reaction of enzymes extracted from nitrifying and denitrifying bacteria.
Biogeosciences 11, 2679–2689 (2014).

85. Yoshida, N. 15N depleted N2O as a product of nitrification. Nature 335,
528–529 (1988).

86. Jinuntuya-Nortman, M., Sutka, R. L., Ostrom, P. H., Gandhi, H. & Ostrom, N. E.
Isotopologue fractionation during microbial reduction of N2O within soil
mesocosms as a function of water-filled pore space. Soil Biol. Biochem. 40,
2273–2280 (2008).

Acknowledgements
We would like to acknowledge the generosity and support of the Alfred Wegener Institute
for the use of their facilities at the Wadden Sea Station on Sylt, with special thanks to
Ragnhild Asmus. This work also benefitted from the diligent work of Zoe Sandwith and Luke
Melas-Kyriazi in the lab at WHOI, undergraduate research assistants Sofia Danford, Abigail
Lambretti and Jake Lehman in the lab at USC, as well as Dr Lubos Polerecky while in the
field. Preparation of this manuscript also benefitted from fruitful discussions with Drs Julie
Granger, Colleen Hansel and David Johnston. D.D.B. acknowledges support from the Max
Planck Institute for Marine Microbiology. This work was supported by the National Science
Foundation grants to W.Z. and S.D.W. (OCE-1260373) and to S.D.W. (EAR-1252161).

Author contributions
S.D.W. and W.Z. designed the study and secured funding for the project. S.D.W., W.Z.,
C.B., D.d.B. and J.D. carried out the fieldwork and conducted the experiments. S.D.W.,
W.Z., C.B., C.C. and J.D. generated various components of the chemical and isotopic

data. W.Z., Z.X. and K.Z. characterized fungal DNA from core incubations. S.D.W.
conducted the isotope mass balance modelling. S.D.W. and W.Z. wrote the manuscript
with valuable input from C.B., C.C. and D.d.B.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Wankel, S. D. et al. Evidence for fungal and chemodeni-
trification based N2O flux from nitrogen impacted coastal sediments. Nat. Commun. 8,
15595 doi: 10.1038/ncomms15595 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15595 ARTICLE

NATURE COMMUNICATIONS | 8:15595 | DOI: 10.1038/ncomms15595 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments
	Introduction
	Results
	Microsensor and mass flux perspectives on N2O
	Multi-isotope analysis of underlying N2O cycling processes
	Triple oxygen isotopes as a tool for constraining nitrogen cycling

	Discussion
	Methods
	Study site and experimental setup
	Incubations
	Sample collection
	Porewater sampling
	Concentration and flux measurements of N bearing species
	Isotope measurements
	Triple oxygen isotope tracing of N2O production
	Isotope mass balance approach
	Error propagation and sensitivity analysis
	Fungal genetic sequencing
	Data availability

	Additional information
	Acknowledgements
	References




