Figure 5 : Bioprosthetic ovaries support vascular infiltration and restore function in vivo.

From: A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice

Figure 5

(a) Whole-mount fluorescent image of GFP+ follicles (green) implanted within the ovarian bursa of GFP− mice removed 8 weeks after surgery. (b,c) Vascularization shown in representative images of immunostaining for endothelial marker platelet endothelial cell adhesion molecule (PECAM) (red) or pericyte marker PDGFRβ1 (green) expression in corpus luteum, antral follicles and interstitial space of bioprosthetic ovary removed 8–10 weeks post-surgery. DNA counterstained blue. (d) Quantification of vessels containing red blood cells within ovarian bioprosthesis collected 1 or 3 weeks post-surgery. (e,f) H&E stained cross-sections of ovarian bioprostheses, removed 3 weeks after surgery, contained vessels and primordial, primary, secondary and antral follicles within the gelatin scaffold struts. (g) Serum analysis for peptide hormones anti-Müllerian hormone (AMH) and inhibin A detected within ovariectomized animals with empty scaffold implant (OVX+Sham) or with bioprosthetic ovary (OVX+Implant). (h) GFP+ pup (black arrow) born to GFP− bioprosthesis recipient female. (i) GFP+ pup born from bioprosthesis sired liters with GFP− CD1 female to create a mixed litter of GFP+ and GFP− pups (grand-pups of ovary recipient). §, scaffold strut. +, vessels. Scale bars: (a) 1 mm; (b,c,e,f) 50 μm. All data are presented as mean±s.e.m. ND, not detected.