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Proteins attain their function only after folding into a highly organized three-dimensional 
structure. Much remains to be learned about the mechanisms of folding of large multidomain 
proteins, which may populate metastable intermediate states on their energy landscapes. 
Here we introduce a novel method, based on high-throughput single-molecule fluorescence 
experiments, which is specifically geared towards tracing the dynamics of folding in the 
presence of a plethora of intermediates. We employ this method to characterize the folding 
reaction of a three-domain protein, adenylate kinase. Using thousands of single-molecule 
trajectories and hidden Markov modelling, we identify six metastable states on adenylate 
kinase’s folding landscape. Remarkably, the connectivity of the intermediates depends on 
denaturant concentration; at low concentration, multiple intersecting folding pathways  
co-exist. We anticipate that the methodology introduced here will find broad applicability 
in the study of folding of large proteins, and will provide a more realistic scenario of their 
conformational dynamics. 
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Understanding protein folding mechanisms has become a 
major challenge not only from the viewpoint of basic bio-
logical research, but also from that of biomedical studies of 

diseases caused by misfolding1. Analysis of the two-state folding 
behaviour of small, single-domain proteins2–4 has led to the sug-
gestion that their folding landscapes (or energy landscapes, that is, 
the multidimensional surfaces that describe free energy as a func-
tion of conformation) were optimized by evolution to be ‘smooth’, 
namely to minimize the number of intermediates and/or kinetic 
traps on the way to the folded state5. This might not be the case for 
larger proteins, especially those built of multiple domains, which 
constitute more than 70% of the eukaryotic proteome6. Past work 
has already pointed to the possibility that folding of such proteins 
may involve stable or metastable intermediate states, and classical 
thermodynamic and kinetic experiments have captured some of 
this complexity (see, for example, refs 7–11). Further, spectroscopic 
methods such as native-state hydrogen exchange have provided 
detailed structural information on intermediates12,13. Yet, a particu-
larly daunting task for these experiments has been the characteriza-
tion of the major kinetic pathways connecting a set of intermediate 
states. Notably, recent theoretical studies point to the importance of 
multiple kinetic pathways for folding reactions14, even in the case 
of small proteins15. New experimental methods that can readily 
identify intermediate states and determine their kinetic connectiv-
ity are thus much in need. In this work, we demonstrate that sin-
gle-molecule fluorescence resonance energy transfer spectroscopy 
(smFRET)16–18 is well-poised to rise to this challenge.

Many smFRET protein folding experiments have been performed 
on freely diffusing molecules, and have revealed fascinating details 
on phenomena such as the collapse transition19 or the nanosecond 
chain reconfiguration dynamics in the denatured state20. However, 
experiments on freely diffusing molecules are limited to short time 
scales, of the order of a millisecond, and some form of immobili-
zation is required to study dynamics on longer time scales. Only 
a handful smFRET folding experiments have been performed on 
immobilized molecules21–25. The promise of this type of experiment 
to identify intermediates in the folding of large proteins and charac-
terize the pathways connecting them26 has yet to be fulfilled.

Here we show how a map of the folding landscape of the three-
domain, 214 amino-acid protein adenylate kinase (AK) can be 
obtained from the analysis of thousands of smFRET trajectories of 
molecules immobilized within lipid vesicles. AK is a good model pro-
tein for such studies. Observation of its structure (Fig. 1)27 suggests 
that its three domains interact strongly with each other, and cannot 
be seen as independent folding units. This picture is reinforced by 
studies of the intricate functional dynamics of this enzyme, which 
involve domain closure-type motions28–30. Indeed, the complexity of 
the folding dynamics of AK has been partially unveiled in previous 
experiments24,31–34. Yet, it hasn’t been known how many intermedi-
ates are involved in AK folding, and what their connectivity is.

The concept of the experiment reported here is shown in Fig-
ure 1. AK molecules were labelled at positions 73 and 203, which 
span the CORE domain of the protein27. Labelled AK molecules 
were encapsulated within surface-tethered lipid vesicles (Fig. 1a), 
which provide an excellent means to study single-molecule protein  
dynamics, as previously shown24,25,35–39. Equilibrium experiments 
were performed in the presence of a series of guanidinium chlo-
ride (GdmCl) concentrations, selected so as to lower the folding/
unfolding barrier and facilitate molecular dynamics that sample the 
whole folding landscape of the protein. Thousands of short trajec-
tories were obtained, which, because of the random initial state of 
each molecule, sampled different regions of the folding landscape 
of the protein (Fig. 1b). Statistical analysis, using hidden Markov 
modelling (HMM)40, then allowed us to effectively ‘connect’ the 
trajectories and obtain a single multi-state map of the folding  
landscape of AK.

Results
Single-molecule FRET trajectories of AK. An automated single-
molecule spectrometer was constructed to facilitate the collection 
of large sets of single-molecule trajectories, each corresponding to 
a particular denaturant concentration. Each trajectory, consisting  
of the photon arrival times of both donor and acceptor fluorophores, 
was binned in 50 ms time bins, and the FRET efficiency was 
calculated bin by bin. The availability of a large number of trajectories 
allowed us to employ rigorous criteria for data validation. These 
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Figure 1 | Principle of the single-molecule folding experiment. (a) Individual AK molecules, double-labelled for FRET, are encapsulated in vesicles 
tethered to a glass-supported bilayer using biotin-streptavidin chemistry. The protein molecule is not drawn to scale with the vesicle, which is 100 nm 
across. (b) In lack of a very long single-molecule temporal trajectory that maps the whole landscape, multiple short trajectories are collected in our 
experiment. However, the availability of a large number of equilibrium trajectories facilitates reconstruction of the folding landscape using statistical 
analysis based on HMM.
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criteria, described in the Supplementary Methods section, enabled  
a systematic removal of various artefacts in the data set, such as 
spurious signal levels due to photophysics of one of the dyes. In 

addition, we explicitly verified that spectral drifts similar to those found 
by Chung et al.23 were not observed in our data (see Supplementary 
Methods for details). After data selection, more than a thousand 
valid trajectories remained in most data sets (Fig. 2a; Supplementary 
Fig. S5 for sample trajectories, and Supplementary Table S1 for detailed 
statistics). To validate the quality of these data sets, we calculated 
the mean FRET efficiency for each and compared these values with 
the ensemble denaturation curve of AK, measured using FRET as a 
reporter. Very good agreement was found between FRET efficiency 
values obtained from the single-molecule data and bulk measurements 
(Fig. 2b). We further compared the probability distributions of FRET 
efficiency values with FRET efficiency histograms obtained from a 
free-diffusion single-molecule experiment (Fig. 2c), finding excellent 
agreement in peak positions and widths.

Change-point analysis of trajectories. Using a change-point algo-
rithm, we then analysed each individual trajectory to identify points 
at which a transition between two FRET efficiency states occurred. 
The average trajectory length and the average number of transitions 
per trajectory depended on the GdmCl concentration (Supplemen-
tary Table S1), and were 4.3 s and 1.2, respectively, at 0.65 M (close 
to the denaturation midpoint, Fig. 2b). The average FRET efficiency 
change in a transition was 0.18, much smaller than the difference 
between fully folded and fully unfolded conformations, suggesting 
that jumps between these conformations are rare. To obtain a global 
picture of the states visited during folding and unfolding transitions, 
we used the change-point algorithm to generate a two-dimensional 
transition map, which plots the transition density as a function of 
the initial and final FRET efficiency values24. Around the denatura-
tion midpoint, a two-state folding reaction should result in a transi-
tion map with two peaks symmetrically positioned with respect to 
the diagonal. The map based on data measured at 0.65 M GdmCl  
(Fig. 3a) deviates significantly from this picture. First, it is not sym-
metric with respect to the diagonal. This is due to the larger photob-
leaching rate of the donor probe compared with the acceptor probe, 
which shortens trajectories that start in more unfolded states (that 
is, states with lower FRET efficiency). But more importantly, the 
map shows multiple peaks, each corresponding to a pair of states 
visited by the molecules as they diffuse on the folding landscape. 
This is an indication that several intermediate states exist on this 
landscape. However, the transition map is too dense to resolve and 
accurately assign all states of the denatured AK, and the situation 
becomes even more complex at higher concentrations of denatu-
rant, where transitions tend to cluster at lower FRET efficiency  
values. Further, a transition map based on change-point analysis 
does not directly contain information on state-to-state kinetics.

HMM reveals six states. To assign the molecular states, as well as 
the rates of interconversion between them, we employed HMM 
analysis of the data40,41. An HMM parses a data set in terms of N 
discrete states, each presenting a distribution of FRET efficiency 
values (we take this distribution to be Gaussian). The dynamics of 
interconversion between these states are assumed to be Markovian. 
Two important modifications of the standard HMM algorithm were 
introduced here. First, we required that the dynamics obey detailed 
balance, so that the flux from any equilibrium state i to any state j 
equals the inverse flux. Second, we added an extra state, represent-
ing the photobleached molecules, and, therefore, connected by a 
one-way transition to each of the equilibrium states. The introduc-
tion of this extra state allowed us to correct for the state-depend-
ent photobleaching rate in a natural way. We used the Baum–Welch 
algorithm40, to obtain a maximum likelihood estimate of the HMM 
parameters. The analysis was performed on each data set (that is, 
all trajectories taken at one denaturant concentration) separately. 
Further details, including error analysis, are given in the Methods 
section below and in the Supplementary Methods section.
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Figure 2 | Single-molecule FRET trajectories. (a) Three examples of 
fluorescence trajectories of individual AK molecules, each showing one or 
more transitions between different FRET efficiency levels. In each example, 
the left panel shows the experimental traces from the donor and acceptor 
channels, whereas the right panel shows the FRET efficiency trace, 
calculated till the photobleaching point. The orange lines in the right panels 
are state assignments based on the HMM analysis, and obtained with the 
Viterbi algorithm. The transitions between different FRET states seen in 
the trajectories are anti-correlated, as were  > 90% of the transitions seen 
in our data. See further examples of trajectories in Supplementary Figure 
S5. (b) Comparison of single-molecule results to the bulk denaturation 
curve. For the bulk curve, fluorescence spectra of a sample of double-
labelled protein molecules were measured at increasing concentrations of 
GdmCl, and FRET efficiency values were then calculated from them (green 
points). Single-molecule mean FRET efficiency values (red points) were 
calculated from the trajectories taken at each GdmCl concentration. These 
values were obtained by averaging over the initial half a second of each 
trajectory, so as to avoid the effect of photobleaching. (c) Comparison of 
the probability distribution of FRET efficiency values obtained from single-
molecule trajectories at 0.65 M GdmCl (green squares) to a histogram 
obtained from a free-diffusion single-molecule experiment performed at 
the same concentration (red bars). The peak at zero FRET efficiency in the 
free-diffusion histogram is due to molecules labelled with donor only. Extra 
FRET efficiency probability distributions appear in Figure 4.
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As is well known, HMM analysis does not provide an estimate 
for N. Although various information criteria are sometimes use-
ful for determining N (refs 41–43), we devised a different method 
for this purpose. Focusing on the data set taken at 0.65 M GdmCl 
(in which the states are expected to be populated most evenly), 
we repeated the HMM analysis for different values of N, from 2 
to 14. We then used the HMM parameters to generate a transition 
map, and cross-correlated this map with the one obtained from 
the change-point analysis. The cross-correlation showed that the 
optimal N is between 5 to 7 (Fig. 3b). We therefore used six states 
for further analysis of all data sets. This method for selecting the 
number of states was tested against an extensive set of simulations. 
As a further validation for the number of states, we segmented the 
trajectories of the 0.65 M GdmCl data set using the Viterbi algo-
rithm, calculated the FRET efficiency value for each segment longer 
than 1 s, and generated a histogram from all values, shown as Sup-
plementary Figure S6. Peaks matching the FRET efficiency values of 
the six states are clearly observed. Since at high GdmCl concentra-
tions states with high FRET efficiencies are rarely visited, we fixed 
the FRET efficiency value of each state in the analysis, based on the 

results of the 0.65 M data set, but allowed all other parameters to be 
optimized by the analysis.

State connectivity changes with denaturant concentration. Figure 4  
shows the FRET efficiency distributions obtained from the HMM 
analysis. The states are enumerated from 1 to 6 according to their 
FRET efficiency. At the lowest GdmCl concentration studied, 0.5 M, 
the distribution is dominated by the population of states with high 
FRET efficiency. As the GdmCl concentration is increased, states 
with low FRET efficiency become more and more populated. Obser-
vation of transition maps generated from the smFRET trajectories 
using the HMM parameters (Fig. 5a–c) shows that the dynamics 
of folding and unfolding involve both sequential transitions of the 
type i→i ± 1, and larger, non-sequential transitions of the type i→j,  
where j > i + 1 or j < i − 1. Qualitatively, the maps show that with 
an increasing concentration of GdmCl, the sequential transitions 
become more dominant. Intriguingly, the most populated state at 
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Figure 3 | Transitions between multiple states in single-molecule 
trajectories. (a) Transition density map constructed from the 0.65 M 
GdmCl data set. The map is a two-dimensional density plot of transitions 
identified by the change-point algorithm, as a function of initial and final 
FRET efficiencies for each transition. Note the strong deviation of the 
transition map from that expected for a two-state folder, which should 
include only two major peaks. (b) Correlation between the transition 
density map based on change-point analysis and maps based on the HMM 
analysis with an increasing number of states. The optimal number of states 
is found to be 5–7.
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0.5 M GdmCl is state 5 rather than state 6. Analysis of the transition 
maps suggests that state 6 is poorly connected kinetically to state 5, 
and might be tentatively designated as a misfolded state.

1D projections of the folding landscape of AK at three GdmCl 
concentrations, based on the HMM parameters, are shown in Fig-
ure 5d–f. The relative free energies of states 1–5 are plotted. In addi-
tion, the figures also present the heights of the free energy barri-

ers for transitions between pairs of states. For clarity, we show only 
transitions that carry more than 10% of the unfolding (or folding) 
flux. These were calculated using either the transition-path theory 
of Noé et al.44 or a stochastic simulation, with similar results (Sup-
plementary Table S2). The widths of the lines in Figure 5d–f depict 
the relative productive flux flowing between each pair of states, and 
their colours represent the transition rates. At 0.5 M GdmCl, many 
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Figure 5 | The folding landscape of AK. (a–c) Transition maps at three indicated GdmCl concentrations, constructed from the experimental data using 
HMM analysis results. As the concentration of denaturant increases, more transitions tend to occur between states of lower FRET efficiency. In addition, 
the fraction of sequential transitions of the type i→i ± 1 increases significantly. (d–f) One-dimensional projections of the folding landscape of AK at the 
three indicated GdmCl concentrations. State 6, which is poorly connected to state 5, is not shown. The relative free energy of each state was extracted 
from the probability distributions of Figure 4. The heights of the free energy barriers between pairs of states were calculated from the HMM transition 
probability matrices (the value of the pre-exponential factor in the Arrhenius equation was set to 1). Line widths depict the relative productive flux flowing 
between each pair of states, whereas the colours depict the rate of each transition, according to the scale shown on the right. Only transitions that carry at 
least 10% of the flux from state 5 to state 1 (or vice versa) are shown.
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transitions, both of the sequential and of the non-sequential type, 
have low enough free energy barriers to participate significantly in 
unfolding pathways. The unfolding flux thus goes through many 
parallel pathways. However, when the denaturant concentration 
is increased to 1 M, most non-sequential transitions have high 
free energy barriers, and therefore do not contribute significantly 
to the productive flux. Indeed, ~50% of the unfolding flux is now 
carried through the fully sequential pathway 5→4→3→2→1 (Sup-
plementary Table S2). Nevertheless, even under these conditions a  
considerable fraction of the trajectories include larger jumps.

Discussion
The results presented here show that single-molecule FRET spec-
troscopy can provide a comprehensive description of the folding 
landscape of a large, multidomain protein like AK in terms of the 
metastable states involved and the rates of transitions between 
them. The picture arising is dramatically different and more com-
plex than the usual two-state folding behaviour seen in small pro-
teins, where a single transition state dominates the reaction. Indeed, 
it is found that the dynamics involve a large set of possible pathways 
on the landscape. An important feature of the folding landscape of 
AK is the increasingly more sequential nature of the dynamics with 
increased denaturant concentration, with a larger and larger share 
of the flux going through the fully sequential pathway.

What is the structural nature of the intermediates identified in 
our experiment? At this point of time, we refrain from attempting 
an answer to this question, as only projections of these structures 
on a single distance were measured in the current work. It is pos-
sible that part of the complexity in AK folding can be attributed 
to proline cis-trans isomerization45. Our results are consistent with 
the work of Haas and co-workers, who demonstrated the complex 
nature of AK folding in a series of kinetic FRET experiments33,34,46. 
In particular, these authors found that the distance 73–203 contracts 
in 2 ms and then presents with a broad distribution that slowly nar-
rows down to that of the native state46. This broad distribution may 
hide the intermediate states seen in our experiment.

More generally, the current work is consistent with the foldon 
picture13,47, and provides the experimental means to characterize 
foldon dynamics. However, the dynamics observed here are con-
siderably richer than the simple sequential dynamics suggested by 
Englander and co-workers12, and may vary significantly with experi-
mental conditions. In the future, it will be interesting to combine the 
results from our smFRET experiment with those obtained from a 
method like native-state hydrogen exchange, which affords detailed 
structural information on foldons more readily, but might be lacking 
in its ability to trace their connectivity and dynamics. Our analysis 
and results are also likely to offer an important link to simulations 
that describe protein folding in terms of Markov models15,44. Indeed, 
in future work, we plan to combine computer simulations and meas-
urements of further intramolecular distances to obtain more infor-
mation on the structure of the intermediate states of AK.

Methods
Protein expression and labelling. The expression vector containing the Escherichia 
coli AK gene was a generous gift from Professor Elisha Haas (Bar-Ilan University). 
Standard site-directed mutagenesis methods were used to substitute alanines at 
positions 73 and 203 of the protein with cysteines. The large variation in labelling 
rate between the two sites33 facilitated site-specific labelling with Alexa 488 maleim-
ide (Invitrogen) at position 73 and ATTO 590 maleimide (ATTO–TEC) at position 
203. More details can be found in the Supplementary Methods section.

Sample preparation for single-molecule studies. Vesicles made of egg phos-
phatidylcholine and a fraction of 1:500 of biotynilated phosphoethanolamine 
(both from Avanti Lipids) were prepared by extrusion34 in a buffer containing the 
appropriate concentrations of labelled proteins and chemical denaturant. The glass 
surfaces of the sample cell were initially coated with a supported bilayer, which 
contained the same fraction of biotynilated lipids as above. Strepatividin was 
added, followed by protein-loaded vesicles.

Single-molecule setup and data acquisition. The sample cell was mounted on 
top of a capacitance-feedback piezo stage and excited by the focused 488 nm beam 
of an argon ion laser. The arrival times of fluorescent photons were registered by 
two single-photon avalanche photo-diodes. Data acquisition was fully automated 
using dedicated software. A 5 µm×5 µm region of the sample was scanned, and the 
position of vesicles loaded with molecules was identified with subpixel resolution.  
The piezo stage was positioned on each of these in turn, to obtain a fluorescence 
time trace (trajectory). After acquiring trajectories of all molecules in a field, the 
piezo stage was moved to a new region, and the acquisition cycle was repeated. The 
laser power was set to 1,000 nW during the scan and 250 nW during time-trace 
acquisition. An auto-focus device ensured that the laser beam was focused on the 
surface of the sample throughout data collection. Further details on the experimen-
tal setup can be found in the Supplementary Methods section.

Data analysis. As folding/unfolding transitions in AK are slow (of the order 
of 1 s), we first binned fluorescence trajectories (accumulated as photon arrival 
times on the two detectors) in 50 ms time bins. We used a series of computa-
tional filters to ensure that only trajectories generated by individual molecules 
were included in the analysis, and to prevent the occurrence of various artefacts 
(see Supplementary Methods). Trajectories that passed the filtration stage were 
corrected for background and leakage of photons from donor to acceptor chan-
nel, which amounted to ~7%. FRET efficiency was calculated for each bin using 
E I t I t I tA D A= ( ) ⋅ ( ) + ( )[ ]/ g . The factor γ corrects for different quantum efficien-
cies of the donor and acceptor, as well as different detection efficiencies in the two 
detection channels. We evaluated γ directly from single-molecule trajectories and 
found it to be ~1 for our setup.

To identify transitions between FRET efficiency levels in a model-independent 
manner, single-molecule trajectories were subjected to a change-point analysis (see 
the Supplementary Methods section). Bootstrapped trajectories were used to esti-
mate the statistical significance of identified transitions. More than 90% of the identi-
fied transitions involved anti-correlated changes in donor and acceptor channels. The 
FRET efficiency values of the data segments before and after each transition served as 
coordinates for a point on a two-dimensional map. Each such point was then dressed 
with a 2D normalized Gaussian function, which facilitated the construction of  
transition density maps.

HMM analysis of the data assumed a model of Markovian dynamics involving 
N discrete states, the FRET efficiency of each being normally distributed. For this 
analysis, we modified a freely-distributed MATLAB toolkit (http://www.cs.ubc.
ca/~murphyk/Software/HMM/hmm.html). A ‘photobleached’ state was added 
to the N states of the basic model, to account for the irreversible signal loss at the 
end of each trajectory. In practice, this was done by appending a short termina-
tion sequence to each trajectory, with an artificially large FRET value. This value 
made the transition into the termination state effectively irreversible. Multiple 
random initial conditions were used to start the iterative HMM analysis, to ensure 
convergence to the global minimum. The Baum–Welch algorithm was used to 
re-estimate the parameters at the end of each iteration40. Detailed balance was 
enforced on the re-estimated parameters in each iteration based on the condition 
πiaij = πjaji, where aij is the transition probability from state i to state j per time bin, 
and πi is the equilibrium probability of state i. In particular, the transition prob-
abilities estimated by the Baum–Welch algorithm were then corrected according to 

′ = +a a ai j j j i i i j i, , ,( )/p p p2  for i≠j, and ′ = − ′≠a ai i i ji j, ,1 Σ . Obviously, only param-
eters related to the original N states were corrected in this manner. We verified that 
the enforcement of detailed balance in this fashion did not significantly modify 
the convergence pattern of the algorithm. In fact, we found that the resulting 
estimators outperformed the original, non-constrained Baum–Welch estimators 
when used to analyse simulated data obeying detailed balance. A sample transition 
probability matrix obtained from the HMM analysis of the 0.65 M GdmCl data set 
is shown in Supplementary Table S3.

Transition density maps were constructed based on the experimental data and 
the optimal HMM parameters. In brief, the likelihood of each possible segmen-
tation of each trajectory was computed, and the total likelihood for transition 
between pairs of FRET efficiency values was calculated by summation over all 
trajectories. Each such likelihood value was then dressed with a 2D normalized 
Gaussian function, as in the construction of change-point maps. 
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