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Unravelling the hidden link of lithium halides
and application in the synthesis of organocuprates
Hong Yi1, Dali Yang1, Jie Xin1, Xiaotian Qi2, Yu Lan2, Yi Deng1, Chih-Wen Pao3, Jyh-Fu Lee3 & Aiwen Lei1,4

As a versatile metal, copper has demonstrated a wide application in acting as both orga-

nometallic reagent and catalyst. Organocuprates are among the most used organometallic

reagents in the formation of new carbon–carbon bonds in organic synthesis. Therefore,

revealing the real structures of organocuprates in solution is crucial to provide insights into

the reactivity of organocuprates. Here we provide several important insights into

organocuprate chemistry. The main finding contains the following aspects. The Cu(0) par-

ticles were detected via the reduction of CuX by nBuLi or PhLi. The Cu(II) precursors CuX2

(X¼Cl, Br) could be used for the preparation of Gilman reagents. In addition, we provide

direct evidence for the role and effect of LiX in organocuprate synthesis. Moreover, the EXAFS

spectrum provides direct evidence for the exact structure of Liþ CuX2
� ate complex in

solution. This work not only sheds important light on the role of LiX in the formation of

organocuprates but also reports two new routes for organocuprate synthesis.
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S
ince the pioneering work of Gilman et al.,1 organocuprates
have been widely employed as organometallic reagents in
organic synthesis (including conjugate additions, the

opening of epoxides and cross-coupling reactions)2–7. In the
textbook, organocuprates are usually prepared through
transmetalation of lithium, magnesium or zinc organometallics
with Cu(I) salts8. Different coordination environments always
drastically affect the reactivity or stabilities of organocuprates9.
Up to now, a lot of synthetic methodologies involving
organocuprate reagents have been developed, while great
uncertainty still exists in the related mechanism10. Although
several important crystal structures of organocuprates were
reported11–14, it should be noted that solid-state structures
often reflect the most thermodynamically stable species and are
not necessarily the same as in solution state. Besides,
organocuprates can exhibit complex behaviour in solution,
often existing as a number of different species in equilibrium,
thus further complicating their characterization. For that reason,
the structure of organocopper compounds in solution cannot be
inferred directly from crystal structures and must be determined
independently.

The structures of organocuprate reagents in an ethereal
solution have received wide attention, because they are strongly
relevant to reactivity in real reaction conditions15–17. Nuclear
magnetic resonance18–20 and electrospray ionization–mass
spectrometry21,22 served as powerful tools and have been
widely used in determining the structures of organocuprates in
solution. The linear bonding geometry of the C–Cu–C moiety in
cuprates such as MeCu(CN)Li, Me2CuLi and Me2-CuLi3LiX
(X¼ I, CN) has been well established. In 1996, Knochel and
colleagues23,24 first introduced the extended X-ray absorption fine
structure (EXAFS) to study the local structure of organocuprates
from the reaction between CuCN and nBuLi. EXAFS
spectroscopy provides a unique probe of the local structural
environment of metal ions in non-crystalline systems25–33. The
preliminary structure for lithium cyanocuprates based on EXAFS
data has been elucidated. However, the role of cyanide and the
difference between cyanide and other halide atoms still remain in
debate9. Lipshutz et al.21 and Koszinowski and colleagues34 have

pointed out the LiX could have a positive effect on the solubility
of CuX (X¼ I, Br, Cl, CN) independently. The electrospray
ionization–mass spectrometry was used to study the structure of
formed ate complex21,34. However, determination of the exact
structure, the role for LiX and application in organocuprates have
still been not well-studied up to date. We started our research by
investigating the effect of anion on organocuprates preparation.
Here we show the anion effect of different Cu(I) precursors on
Gilman reagent preparation. The EXAFS reveals that the LiX
(X¼Br, Cl) serves as the hidden link for organocuprates
preparation from unfavoured CuX. A soluble cupric bromide
anion intermediate is evidenced by EXAFS when adding LiBr to
CuBr in tetrahydrofuran (THF). This CuX2

� Liþ ate complex
serves as a key intermediate in the generation of Gilman reagent
(Fig. 1). In addition, we also shed two other important findings in
this work. First, the detection of copper nanoparticles produced
after the addition of nBuLi or PhLi to CuX. Second, the Cu(II)
precursors CuX2 (X¼Cl, Br) can be used for the preparation of
Gilman reagents.

Results
Detection of Cu(0) particles via the reduction of CuX. In
organic synthesis, different Cu(I) precursors are always applied in
different reaction systems10. Initially, we investigated different
cuprous salts with excess nBuLi in THF under � 78 �C for
organocuprates synthesis. From X-ray absorption near-edge
spectroscopy (XANES) spectra (Fig. 2a), we observed the
difference of reactions from CuCN and CuX (X¼Br, Cl). In
Fourier-transformed EXAFS spectra, an obvious copper
nanoparticle feature at high shells in CuBr and CuCl complexes
appeared (Fig. 2b). However, such peaks at 3.4, 4.1 and 4.8 Å were
not detected in the CuCN system, which is accordance with
previous literature23 that CuCN is a good precursor to Gilman
reagent. In addition, such results also indicate that
organocuprates made by CuBr or CuCl are very unstable to
decompose into zero valance copper nanoparticle. Meanwhile, it
seemed that the smaller the anion atom is, the more Cu(0)
particle is formed.

Then, we also used X-ray absorption spectroscopy (XAS) to
study the reaction between CuX (X¼Br, Cl) and PhLi. The
XANES spectra were shown in Supplementary Fig. 1. From the
EXAFS spectra in Fig. 3a, we found that the mixture of Cu (0) and
Cu (I) species was formed when mixing CuBr or CuCl with PhLi.
The CuCl was easier to be reduced to Cu(0) particle than CuBr by
PhLi, which was consistent with the reaction with nBuLi. In
addition, we also investigated the solvent effect on this process.
We found that the reduction process was even faster when using

CuX + LiX
THF RLi

[R2Cu]–Li+LiX–Cu–X

Gilman reagentSoluable Cu ate
complex

(X = Br, Cl)

–

Figure 1 | Hidden link of lithium halides. Scheme of the role of LiX (X¼ Br,

Cl) and application in Gilman reagent preparation.
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Figure 2 | XAFS analysis of CuX reduction. (a) XANES spectra of various cuprous salts with excess nBuLi in THF under � 78 �C. (b) Comparison of FT

magnitudes of k2-weighted EXAFS of various Cu(I) species mixed with excess nBuLi in THF under � 78 �C. (3.0Å� 1oko12.4Å� 1).
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ethyl ether (Et2O) as the solvent (Supplementary Figs 2 and 3). To
further evidence the Cu(0) species and this reduction process,
X-ray powder diffraction experiments were performed and the
results are shown in Fig. 3b. The figure shows the main existence
of Cu in the reaction between CuCl and nBuLi in THF or Et2O, in
which the three peaks at 43.3�, 50.4� and 74.1� are corresponding
to the (111), (200) and (220) planes of Cu (JCPDS number 04-
0836), respectively.

Reduction of Cu(II) precursors. As the nBuLi could serve as a
reductant to reduce CuX (X¼Br, Cl) to Cu(0) species, we also
employed EXAFS to investigate the reactions between Cu(II) salts

and nBuLi. We are very excited to discover that instead of using
Cu(I) as the starting reagent, more stable and cheaper Cu(II)
halide salts could also be good Gilman reagent precursors in the
presence of excess organolithium reagent. EXAFS provided us a
direct view of these transformations. Compared with traditional
Gilman reagent prepared from CuCN, we could see that in the
presence of 5.0 equivalent of nBuLi in THF under � 78 �C, both
CuBr2 and CuCl2 were reduced into Cu(I) with edge energies
about 8979.9 and 8980.0 eV, respectively, in the XANES spectra
(Fig. 4a). The PhLi could also reduce CuBr2 to corresponding
Cu(I) species (Fig. 4b). The fitting result further verified the
existence of 2-coordinated [C-Cu(I)-C] short-range structure
(Fig. 4c). Owing to the fact that CuX2 is stable and easy to store,
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Figure 3 | EXAFS and X-ray powder diffraction analysis. (a) EXAFS spectra of of CuBr and CuCl mixed with excess PhLi in THF under � 78 �C. (b) X-ray
powder diffraction experiments, blue line: CuClþ 5.0 equiv nBuLi in Et2O, black line: CuClþ 5.0 equiv nBuLi in THF.
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Figure 4 | XAFS analysis of CuX2 reduction. (a) XANES spectra of CuCN, CuBr2 and CuCl2 mixed with excess nBuLi in THF under � 78 �C. (b) XANES
spectra of CuBr2 mixed with excess PhLi in THF under � 78 �C. (c) Fitting result for CuBr2þ 5.0 equiv nBuLi in THF solution (2.910Å� 1oko11.472Å� 1

and 1.065ÅoRo2.127Å).
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this method will be a new route for organocuprates preparation
from CuX2. We also applied this method to organic synthesis.
When adding the electrophile such as benzyl bromide or (2-
bromoethyl)benzene into the reaction system, the desired C–C
bond formation was formed, which implied that this method for
organocuprates could be used for cross-coupling reactions. The
detail application of this method in complicated molecular
synthesis is on the way in our lab.

Role of lithium halides in the synthesis of organocuprates.
The lithium salts may have an effect on the formation of orga-
nocuprates, which has been awaked by several groups21,34–39.
Although knowing this phenomenon for a long time,
determination of the exact structure, the role for LiX and
application in organocuprates have still been not well researched.
When one equivalent LiBr was added to the mixture of CuBr and
5 equivalent nBuLi, we obtained a similar XANES spectra of
which obtained from CuCN and excess nBuLi under low
temperature (Fig. 5a). The edge energy was determined as
8979.7 and 8979.9 eV, respectively. Furthermore, high shell
features for copper nanoparticle disappeared in the EXAFS
spectrum, which indicates the formation of relatively pure
organocopper compound (Fig. 5b). The results of fitting show
two carbon atoms at 1.94Å around the copper atom equally
(Fig. 5c). Thus, we developed a new method of preparing Gilman
reagents using CuX with the help of LiX, which is very similar to
what we get from mostly used cuprous cyanide in traditional
synthesis route.

To further elucidate the role of LiX in preparing Gilman
reagent, the mixture of LiBr and CuBr in THF was used

for demonstration. As shown in Supplementary Fig. 4, the
CuBr species alone look polymer-like and very insoluble in
THF. In contrast, CuBr can be dissolved in THF with the aid
of one equivalent quantity of LiBr. A green solution is
quickly formed after adding 1 equivalent LiBr into the system.
This result indicated that the CuBr has an interaction with
LiBr and a new copper species is possibly formed. The interaction
between CuBr and LiBr might be the key to stabilizing the
Gilman reagents prepared through this method. Valance
alternation in cuprous bromide was invisible in the presence of
LiBr from XANES spectra (Fig. 6a, edge energy of 8980.9 eV).
In addition, EXAFS fitting results indicate two bromine
atoms coordinated to the copper(I) centre (Fig. 6b). Thus,
we claim that this type of ate complex was a [Br-Cu-Br]� Liþ

anion. This [CuBr2]� ate complex shows good solubility
and serves as a key intermediate in the generation of Gilman
reagent.

Density functional theory calculations. Density functional the-
ory calculation was also performed to provide support for the
EXAFS fitting results. As shown in Fig. 7a, the coordination of
THF to [Br-Cu-Br]� anion is endergonic by 6.6 kcalmol� 1. The
optimized structure suggests that the Cu–O distance is 3.62Å,
which means the interaction between Cu and O is very weak. As
previous reports, the monomer state of organocuprates was
always present in more polar solvent such as THF. Thus, the
monomer structure of organocuprate was calculated. Meanwhile,
the coordination of THF to [nBu-Cu-nBu]� anion is found
to be endergonic by 9.9 kcal kcalmol� 1 and the corresponding
Cu–O distance is determined to be 4.43Å (Fig. 7b). Thus,
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Figure 5 | Role of lithium halides in the synthesis of organocuprates. (a) XANES spectra of CuCN (black), CuBrþ 1.0 eq LiBr (red) and CuBr2 (blue) with
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the coordination of THF to [Br-Cu-Br]� and [nBu-Cu-nBu]�

anion are both energetically unfavourable19,20,40. Moreover,
optimized structures reveal that the bond length of Cu–Br in
[Br-Cu-Br]� anion is 2.27 Å and the bond length of Cu–C
in [nBu-Cu-nBu]� anion is 1.97 Å, which are very close to that
obtained from EXAFS (2.24 and 1.94Å ). Consequently, the
theoretical study and EXAFS fitting results have reached the same
conclusion.

Discussion
To sum up, we elucidate LiX (X¼Br, Cl) as a hidden link in the
preparation of organocuprate reagents from CuX (X¼Br, Cl)
with a key intermediate CuX2

� Liþ ate complex evidenced by
EXAFS. Meanwhile, this Cu(I) ate complex can serve as a good
precursor to prepare Gilman reagents following a tandem process.
In addition, we also developed the organocuprate reagents
synthesis from Cu(II) precursors. This discovery might help
open a new perspective in understanding the organocopper
chemistry and mechanisms of copper-catalysed reactions as well.

Methods
General information. X-ray absorption measurements were acquired in trans-
mission mode at beamline 17C1 at National Synchrotron Radiation Research

Center in Taiwan. A pure Cu foil spectrum (edge energy 8979 eV) was acquired
simultaneously with each measurement for energy calibration. Multiple scans were
taken to reduce the noise. The Supplementary Tables 1–3 revealed the detailed
parameters of the XAFS spectral.

Reaction system. Cu salt (0.5mmol) was added to the schlenk tube cell in a
glovebox beforehand. Then, 5.0ml of THF was injected into the cell and the
solution was stirred under N2 at � 78 �C for 20min. Subsequently, RLi (2.5mmol)
was added into the system and stirred for 30min. As the last step, the liquid
nitrogen was quickly added to reaction system, which would be frozen into solid
immediately, and it was transferred into the XAFS cell with the protection of
nitrogen gas.

Detection system (beamline). The detection system was cooled using cooled
nitrogen gas. The Supplementary Fig. 5 was the picture of cell holder used in the
beamline. This hold connected with a liquid nitrogen cooled gas stream. The
Supplementary Fig. 6 showed our idea for low-temperature system. We used a gas
stream passing through the liquid nitrogen Dewar to cool the system. The tem-
perature could be controlled by the tuning of the flow rate. The Supplementary
Fig. 7 was the whole picture of experimental set-up in beamline.

Data availability. Data supporting the findings of this study are available within
this article and its Supplementary Information file and from the corresponding
authors on reasonable request.
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