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The yielding transition in amorphous solids under
oscillatory shear deformation
Premkumar Leishangthem1, Anshul D.S. Parmar1,2 & Srikanth Sastry1

Amorphous solids are ubiquitous among natural and man-made materials. Often used as

structural materials for their attractive mechanical properties, their utility depends critically

on their response to applied stresses. Processes underlying such mechanical response, and in

particular the yielding behaviour of amorphous solids, are not satisfactorily understood.

Although studied extensively, observed yielding behaviour can be gradual and depend

significantly on conditions of study, making it difficult to convincingly validate existing

theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation

as a reliable probe of the yielding transition. Through extensive computer simulations for

a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit

a sharply defined yielding transition with characteristics that are independent of preparation

history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature

of the impending transition, but exhibit dramatic, qualitative, changes in character across the

transition.
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T
he mechanical response to applied stresses or deformation
is a basic material characteristic of solids, both crystalline
and amorphous. Whereas the response to small perturba-

tions are described by elastic moduli, the plastic, irreversible,
response to large deformation1–16 is often more important to
characterize, as it determines many material parameters such as
strength and ductility, and is also of relevance to
thermomechanical processing of metallic glasses17. Amorphous
solids lack the translational symmetry of crystals, and thus no
obvious analogs to dislocation defects in terms of which plasticity
in crystals has been sought to be understood. Based on work over
the last decades, it is appreciated that plasticity arises in
amorphous solids through spatially localized reorgani-
zations1,2,18, termed shear transformation zones, and that such
localized zones interact with each other through long ranged
elastic strains they induce19. While many details of the nature of
these localized regions of non-affine displacements remain to be
worked out, they form the basis of analyses and models of elasto-
plasticity and yielding7,15,19–21. In addition to extensive experi-
mental and theoretical investigations, computer simulations of
atomistic models of glasses have also been employed, to eludictate
key features of plastic response1,2,4 on atomic scales. While
several studies have been conducted at finite shear rates
(for example,13,15), many studies have focussed on behaviour in
the athermal, quasi-static (AQS)4,6,7,16,22 limit, wherein the
model glasses studied remain in zero temperature, local energy
minimum, configurations as they are sheared quasi-statically. The
AQS protocol represents a limit in which the deformation
behaviour of the solids does not depend crucially on thermally
induced processes, and relaxation processes are expected to occur
on time scales much faster than the shear rate. Thus, results from
AQS may be expected to be useful in understanding the
behaviour of glasses sufficiently below the glass transition, and
for small shear rates. Both these conditions may be expected to be
satisfied in the context of understanding the mechanical failure of
glasses. Such deformation induces discontinuous drops in energy
and stress with corresponding nonaffine displacements that are
highly spatially correlated, and exhibit power law distributions in
size. In analogy with similar avalanches that arise in diverse
context of intermittent response in disordered systems, from
earthquakes, crackling noise in magnetic systems, depinning of
interfaces in a disorded medium and so on23, a theoretical
description of mechanical failure in amorphous solids5, predicts
the mean avalanche size to diverge as a critical stress is
approached from below, leading to a power law distribution
with a diverging mean size at and above the transition. Indeed, it
has been observed that (for example,6,15,22) system spanning
avalanches are present in the steady state beyond yield, whose
sizes scale with system size. The character of avalanches upon
approaching the yielding transition, however, has not received
much attention, as also the differences between pre- and post-
yield avalanches. Among the reasons is the sample to sample
variability of behaviour below yield, in contrast with the universal
behaviour seen in the post-yield regime.

Here we show that oscillatory deformation offers a robust
approach to systematically probe behaviour above and below a
sharply defined point of mechanical failure, which we associate
with yielding. As our results pertain to oscillatory deformation in
the limit of vanishing shear rate, we caution that comparisons
with uniform shear at finite rates must be made with due care.
Oscillatory deformation is a widely used experimental techni-
que12,24–29 as well as a common protocol in materials testing.
However, it has not been employed widely in computational
investigations, barring some recent work14,30–32, to probe yielding
in amorphous solids. In the present work, we perform an
extensive computational study of plastic response in a model glass

former, over a wide range of system sizes, and amplitudes of
deformation that straddle the yielding strain.

Results
Simulations. We study the Kob-Andersen 80:20 binary mixture
Lennard-Jones glasses for a range of system sizes (see Methods for
details). The glasses studied are prepared by performing a local
energy minimization of equilibrated liquid configurations, at a
reduced temperatures T¼ 1 and T¼ 0.466. The inherent
structures so obtained represent poorly annealed (T¼ 1) and well
annealed (T¼ 0.466) glasses. These glasses, referred to by the
corresponding liquid temperature in what follows, are subjected
to volume preserving shear deformation through the AQS
protocol, wherein the strain gxz is incremented in small steps,
with each step being followed by energy minimization. The strain
is incremented in the same direction in the case of uniform strain,
whereas for oscillatory strain for a given maximum amplitude
gmax, a cycle of strain 0-gmax-0-� gmax-0 is applied
repeatedly over many cycles, until a steady state is reached.
Results presented below, except Fig. 1d are from analysing steady
state configurations. Further details concerning the simulations
and analysis are presented in Methods and Supplementary
Figs 1–11.

Yielding transition. Previous work30 has shown that as the
amplitude of strain gmax approaches a critical value gy from either
side, the number of cycles needed to reach the steady state
becomes increasingly large, with an apparent divergence at gy
(Supplementary Fig. 1). We identify gy (B0.07) as the yield strain,
as justified below. In Fig. 1a we show the averaged stress–strain
curves for N¼ 4,000. For each gmax, we obtain a maximum stress
smax reached at g¼ gmax, which are plotted in Fig. 1b for T¼ 1,
0.466, for N¼ 4,000, 32,000. Figure 1b also shows the stress–
strain curves for the same cases obtained with uniform strain.
Whereas stresses vary smoothly for uniform strain, with no sharp
signature of the onset of yielding, and differ significantly for T¼ 1
and T¼ 0.466, they display a sharp, discontinuous, drop above
gmax¼ 0.07 (0.08 for N¼ 4,000) for oscillatory strain. Intere-
stingly, below gy, the maximum stress increases as a result of
oscillatory deformation, indicative of hardening, consistently with
previous results33. Above gy, repeated oscillatory deformation
leads to a stress drop relative to values just below gy, indicating
yielding.

Figure 1c displays the potential energies obtained over a full
cycle in the steady state (Supplementary Fig. 2). For gmaxogy, the
energies display a single minimum close to g¼ 0, but above,
bifurcate into two minima, indicating the emergence of plasticity.
The stress–strain curves show a corresponding emergence of
loops (Fig. 1a) with finite area. Strain values at the minima for
energy, gUmin and sxz¼ 0, gs0 (see Supplementary Fig. 3), are
shown in Fig. 1d as a function of the number of cycles for
different gmax. We note that gmax¼ 0.08 displays interesting
non-monotonic behaviour, with an initial decrease in these strain
values, similar to smaller gmax, but an eventual increase to larger
strains, similar to the case gmax¼ 0.12, in the yielded regime.
Figure 1e shows gUmin and gs0 versus gmax, which show an
apparently continuous departure from nearly zero, signalling a
transition at gmax � 0:07. Figure 1f shows that the minimum
energies in the steady state versus gmax decrease with increasing
gmax below gy, but increase above, reaching the same values for
T¼ 1 and T¼ 0.466. These data demonstrate the presence of a
sharp transition between a low strain regime where oscillatory
shear produces better annealed, hardened, glasses to a yielded
regime displaying stress relaxation and rejuvenation.
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Statistics of avalanche sizes. We next study (i) distribution of
avalanche sizes, which we compute as the size of clusters of
particles that undergo plastic rearrangements (see Methods for

how they are identified), and (ii) distributions of the size of
energy drops. In Fig. 2a we show the distributions P(s) of
avalanche sizes s for N¼ 2,000, which display a characteristic
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Figure 1 | Stress and energy across the yielding transition. (a) Stress–strain plots of the two differently annealed glasses for various strain amplitudes in

the steady states of oscillatory shear deformation. Maximum stress in the cycle for each amplitude is marked by filled and open circles for T¼0.466 and

T¼ 1, respectively. (b) Averaged stress–strain curves for uniform strain (US) are shown as lines—thick (black) for N¼4,000 and thin (magenta) for

N¼ 32,000 while solid and dashed lines represent T¼0.466 and T¼ 1, respectively. Maximum stress smax versus gmax are shown for cyclic strain (CS)

(circle and square denote N¼4,000 and 32,000, respectively, with filled and open symbols corresponding to glasses from T¼0.466 and T¼ 1). The

vertical line at gmax¼0.08 indicates the sharp yielding transition seen. (c) Energy versus strain in the steady states, displaying a bifurcation in the strain

corresponding to minima in energy at the yielding transition between gmax¼0.07 and 0.08. (d) Strain values corresponding to energy minima (gUmin) and

and zero stress gs0
� �

are shown as open and filled symbols respectively, versus the number of cycles for different gmax. For gmax¼0.08 an initial relaxation

towards zero is reversed as the system evolves to a yielded steady state with finite gUmin and gs0 . (e) gUmin and gs0 as functions of strain amplitude gmax,

displaying a transition beyond gmax¼0.07. (f) Asymptotic energy per particle at g¼0 versus strain amplitude gmax. Energies decrease with gmax until the

yield strain is reached, after which they increase with gmax.
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Figure 2 | Statistics of avalanches as a function of strain amplitude gmax and system size N. (a) Cluster size distributions for N¼ 2,000 displaying a

power law with a cutoff that grows with gmax but does not indicate sharp changes at yielding. (b) Cluster size distribution for N¼ 64,000 displaying a sharp

increase in the cutoff size across the yielding transition. The line in both panels corresponds to a power law with exponent � 3/2. (c) Mean cluster size

versus gmax showing a qualitative change across the yielding transition, with strong system size dependence above gy. The inset shows the mean cluster

size scaled with N1/3, which describes well the size dependence above gy. (d) Mean cluster size versus system size N shows no significant size dependence

for gmaxogy but a clear N1/3 dependence above. A crossover in behaviour is seen for gmax¼0.08. Lines, with N0 (constant) and N1/3 dependence, are

guides to the eye. (e) Mean cluster sizes for bins in strain g for different gmax for N¼ 32,000. Mean cluster size does not depend on gmax, and depends only

mildly on strain g, for two distinct sets, below and above yield strain gy. (f) Scaled cluster size ~s¼s= sh ið Þ distributions exhibit data collapse separately for

gmaxogy and gmax4gy (inset). Distributions for gmaxogy do not display a power law regime, whereas gmax4gy do, over about two decades in ~s, as

highlighted in a plot of P ~sð Þ~s3=2 versus ~s. Data shown are for T¼ 1, and averages are over the full cycle, except for (e) which are averaged over the first

quadrant.
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power law decay with a cutoff. Although the cutoffs move to
larger values as gmax increases, we see no indication of a transi-
tion. To assess the role of system sizes, we compute the avalanche
sizes for a variety of system sizes. Figure 2b shows the avalanche
size distribution for N¼ 64,000. The distributions fall into two
clear sets, corresponding to gmax above and below gy. We compute
and display in Fig. 2c the mean avalanche size sh i as a function of
gmax, for all studied system sizes. The striking observation is that
below gy, sh i displays no system size dependence, and only a very
mild dependence on gmax, and no indication of the approach to
gy. Above gy, a clear system size dependence is seen. Figure 2d
shows the same data versus system size, revealing a roughly N1/3

(or sh i� L) dependence above gy, and minimal N dependence
below. The N1/3 dependence is consistent with previous results6,34

for mean energy drops, but the absence of system size dependence
below, to our knowledge, has not been demonstrated before. We
next ask whether the mean size of avalanches, for a given gmax

depend on the strain g at which they appear, and conversely, for a
given g what the dependence on gmax is. As shown in Fig. 2e
(N¼ 32,000, T¼ 1), for a given gmax the g dependence is weak
and is the same for gmaxogy (and gmax4gy), but the data fall into
distinct groups for gmaxogy and gmax4gy. The same pattern is
seen for the full distributions (Supplementary Fig. 5). For a given
gmax, the avalanche distributions can be collapsed on to a master
curve by scaling s by sh i (data not shown). The distributions of
scaled sizes ~s � s= sh i, averaged over system size are shown in the
inset of Fig. 2f. The same data are shown, multiplied by ~s3=2 in the
main panel, and demonstrate that the character of the
distributions are different above and below yield: whereas above
gy one finds a range of sizes over which the power law form
PðsÞ� s� 3=2 is clearly valid (and thus the cutoff arises purely
because of system size), below gy this is not the case, and the
qualitative shape of the distributions is different (with a cutoff
function multiplying the power law)5,8,14,35.

We now discuss the distributions of energy drops. Shown for
N¼ 4,000 and 32,000 in Fig. 3a,b, these distributions show the
same features as the avalanche sizes, but with a different power
law exponent of B1.25 (as found in ref. 15). Thus, the exponent
depends on the quantity employed, and the avalanche size based
on particle displacements is in closer agreement with mean field
predictions. In Fig. 3c, we show the gmax dependence of the mean
energy drop, for different system sizes, which reveal the same
pattern as the avalanche sizes, albeit with a stronger apparent size
dependence below yield. However, the total energy drops for the
whole system include also an elastic component, in addition to
the plastic component. The component of the energy drop
corresponding to the plastic regions alone, which are plotted in
Fig. 3d, to demonstrate that the plastic component has no system
size dependence below yield. Figure 3e shows the system size
dependence of the mean energy drop (plastic component), and
Fig. 3f shows the mean energy drop versus g for different gmax

(N¼ 64,000, T¼ 1), revealing the same separation below and
above yield as the avalanche sizes. This is in contrast with the case
of uniform shear, wherein both energy drops and avalanche sizes
show a gradual, and strongly sample dependent, variation with
strain (Supplementary Figs 6–9).

Spatial structure of avalanches. Finally, we analyse the spatial
structure of the avalanches briefly, by studying (i) the percolation,
and (ii) fractal dimension, of the avalanches. Below gy, none of
the avalanches percolate, whereas above, a finite fraction does so.
Figure 4a shows the weight of the spanning cluster PN, and
percolation probability PP averaged over bins in ‘probability’ P,
obtained from the fraction of displaced particles, (see Methods)
for different system sizes for gmax¼ 0.08, indicating a percolation

transition at P\0:05. However, the threshold is system size
dependent, and thus merits further investigation. In Fig. 4b, PN
and PP averaged over all considered events are shown as a
function of gmax. The percolation probability does not become 1, a
result of considering all the drop events. To address this artefact
we analyse the cumulative set of all particles displaced in any of
the events. The PN and PP values shown in Fig. 4c indicate that
above gy, this cumulative set always percolates and the weight PN
is comparable for different system sizes. However, PN at the
smallest gmax above gy appears to increase with system size,
suggesting a discontinuous change across gy. The variation of
P with gmax in either method also shows an apparently
discontinuous behaviour across gy (Supplementary Fig. 10).

We compute the fractal dimension of the spanning clusters
using the box counting method (see Methods). Figure 4d shows a
log-log plot of the occupied boxes versus magnification r (the
largest r corresponds to the smallest box size, of 1.1sAA) for
gmax¼ 0.08, N¼ 32,000. We find a fractal dimension of df¼ 2.05,
close to 2, which appears consistent with the possibility that yield
events are quasi-two dimensional. We find a fractal dimension of
df¼ 2.05, close to 2, which is in consistent with the appearance of
shear bands above the transition which are quasi-two dimen-
sional (Supplementary Fig. 11). However, based on the system
size dependence of the mean cluster size, the fractal dimension
deduced is dfB1 (ref. 15), which is at odds with the result here,
and requires further investigation for it to be properly under-
stood.

Discussion
The results that we have discussed demonstrate that a sharp
yielding transition is revealed through oscillatory deformation of
model glasses. The character of the avalanches is qualitatively
different across the transition, being localized below the
transition, and becoming extended above. Contrary to theoretical
expectations for uniform deformation, the mean size of the
avalanches does not diverge upon approaching the yielding
transition, and prompts theoretical investigation, including
development of suitable elasto-plastic models, of yielding under
oscillatory deformation36. A signature of yielding is instead
revealed by the progressive sluggishness of annealing behaviour as
the transition is approached. Both the avalanche statistics
and percolation characteristics suggest a discontinuous yielding
transition, which may be consistent with the suggestion that
yielding is a first order transition12,16,37, but a comprehensive
characterization of the nature of the transition requires further
investigation. Finally, our results reveal systematic, non-trivial
annealing behaviour of the glasses near the yielding transition,
which we believe are of relevance to thermomechanical
processing of metallic glasses. In particular, processing near the
yielding transition, both above and below, may lead to significant
change of properties, which may be utilized according to specific
design goals.

Methods
Model. The model system we study is the Kob-Andersen binary (80:20) mixtures
of Lennard Jones particles. The interaction potential is truncated at a cutoff
distance of rcab¼ 2.5sab such that both the potential and the force smoothly go to
zero as given by

VabðrÞ¼4Eab
sab
r

� �12
� sab

r

� �6� �
þ 4Eab c0ab þ c2ab

r
sab

� 	2" #
; raborcab ð1Þ

where a, bA{A, B} and the parameters EAB=EAA¼1:5, EBB=EAA¼0:5, sAB/sAA¼ 0.80,
sBB/sAA¼ 0.88. Energy and length are in the units of EAA and sAA, respectively,
and likewise, reduced units are used for other quantities. The correction terms c0ab,
c2ab are evaluated with the conditions that the potential and its derivative at rcab
must vanish at the cutoff.
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Initial glass configurations. The initial liquid samples are equilibrated at two
temperatures, T¼ 0.466 and T¼ 1 using the Nosé Hoover thermostat, at reduced
density r¼ 1.2. Independent samples are generated for each temperature and
system size by further evolving the equilibrated liquid configurations by performing

the molecular dynamics simulations of constant energy, which are separated by the
structural relaxation time (ta) obtained from the self intermediate scattering
function (Fs(k, t)). For the uniform shearing data, we have atleast 100 samples for
all the system sizes. The avalanche data shown for cyclic shearing are for at least 20
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Figure 3 | Statistics of energy drops as a function of strain amplitude gmax and system size N. Distributions of energy drops (a) for N¼4,000 show no

clear separation of gmaxogy and gmax4gy, whereas (b) for N¼ 32,000 a clear separation is visible. In both cases, a power law regime is apparent, with

exponent B1.25. (c) Mean energy drops versus gmax, indicating a sharp change at gy. (d) Mean energy drops considering only plastic regions show no

system size dependence below gy. (e) Mean energy drop (plastic component) versus system size N shows no significant size dependence for gmaxogy but a
clear N1/3 dependence above. A crossover in behaviour is seen for gmax¼0.08. Lines, with N0 (constant) and N1/3 dependence, are guides to the eye.

(f) Mean energy drops (total) for bins in strain g for different gmax for N¼ 32,000, T¼ 1 showing no dependence on gmax, and only a mild dependence on

strain g, for two distinct sets, below and above yield strain gy. Data shown are for T¼ 1, and averages are over the first quadrant.
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samples for Nr32,000, and 10 samples for larger systems. All the simulations are
carried out using LAMMPS38.

Simulation details. Shear deformation of the model amorphous solids is done
employing athermal-quasi static (AQS) simulations which consist of two steps. An
affine transformation of coordinates x0 ¼ xþ dg� z; y0 ¼ y; z0 ¼ z is imposed,
subsequently followed by an energy minimization using the conjugate-gradient
method with Lees-Edwards periodic boundary conditions. Strain steps of dg¼ 2
� 10� 4 are used throughout, except for N¼ 256,000 for which dg¼ 5� 10� 4.
Initial configurations are the inherent structures (local energy minima) of equili-
brated liquid samples. Potential energy and mean square displacements are
computed at g¼ 0 as functions of cycles to ascertain that steady states are reached,
wherein the coordinates of particles, and properties such as the potential energy U
and shear stress sxz remain (below yield strain) unchanged at the end of each cycle,
or (above yield strain) become statistically unchanged upon straining further, and
exhibit diffusive motion as a function of the number of cycles. Steady states for
strain amplitudes of gmax¼ 0.02, 0.04, 0.06, 0.07, 0.08 0.09, 0.12, 0.14 are studied for
system sizes N¼ 2,000, 4,000, 8,000, 16,000, 32,000 and 64,000. To further probe
finite size effects, we have consider amplitude below the yield transition at
gmax¼ 0.04 for N¼ 128,000 and 256,000 and gmax¼ 0.14 for N¼ 128,000.

Identifying avalanches. In the steady state, we compute the potential energy per
particle and stress for each strain step. Plastic events result in discontinuous energy
and stress drops. A parameter k¼ dU

Ndg2(ref. 34) exceeding a value of 100 is used to
identify plastic events, where dU is the change in energy during minimization after
a strain step. Avalanche sizes based on the magnitude of energy drops and the
cluster sizes of ‘active’ particles (that undergo plastic displacements) are both
computed. Particles are considered active if they are displaced by more than

0.1sAA. The choice of this cutoff is based on considering the distribution
of single particle displacements dr, which are expected to vary as a power law
PðdrÞ� dr� 5=2 for elastic displacements around a plastic core, but display an
exponential tail corresponding to plastic rearrangements (see, for example, ref. 30).
The separation is clear cut only for small gmax, and we choose the smallest cutoff
value (observed for gmax¼ 0.02) so that plastic rearrangements at all gmax are
considered. In performing cluster analysis, two active particles are considered to
belong to the same cluster if they are separated by o1.4sAA (first coordination
shell). The normalized histogram of cluster sizes P(s) is obtained from statistics for
all the events. The mean cluster size is computed from the distributions as

sh i¼
P

s
s2PðsÞP
s
sPðsÞ (Supplementary Fig. 4).

Percolation analysis. For the percolation analysis, we consider all the plastic
events in the first quadrant of the cycle (g from 0 to gmax), and compute the
‘probability’ P from the fraction of particles that undergo plastic displacement, and
the weight of the spanning cluster PN, from the fraction of particles that belong to
the spanning cluster (PN¼ 0 if there is no spanning cluster). The percolation
probability PP¼ 1 if a spanning cluster is present and 0 otherwise.

Fractal dimension. To obtain the fractal dimension of percolating clusters, we
employ the method of box counting. The simulation volume is divided into boxes
of a specified mesh size, and the number of boxes that contain a part of the cluster,
Nbox, is counted. This is repeated for a series of mesh sizes, and the fractal
dimension is obtained as the slope df¼ log Nboxð Þ

log r where r is the inverse of mesh size.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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Figure 4 | Percolation of avalanches and fractal dimension of percolating clusters. (a) Percolation probability and weight of the spanning cluster PN
shown as open and filled symbols, respectively, against the occupation number P for different system sizes, considering all events, for gmax¼0.08.

A percolation transition takes place for PC0.05 although the threshold is system size dependent. (b) Percolation probability (inset) and PN averaged over

all events, versus gmax. (c) Percolation probability and PN for the cumulative set of particles rearranging over a cycle, shown as open and filled symbols

respectively versus gmax, indicating a percolation transition at the yielding strain gy. PN just above the transition increases with system size. (d) Fractal

dimension estimation from box counting. A log-log plot of the number of occupied boxes (Nbox) is shown versus the magnification r. The slope results in an

estimated fractal dimension df¼ 2.05. Data shown are for T¼ 1, and averages are over the first quadrant.
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3. Hébraud, P. & Lequeux, F. Mode-coupling theory for the pasty rheology of soft
glassy materials. Phys. Rev. Lett. 81, 2934–2937 (1998).

4. Maloney, C. E. & Lemaı̂tre, A. Amorphous systems in athermal, quasistatic
shear. Phys. Rev. E 74, 016118 (2006).

5. Dahmen, K. A., Ben-Zion, Y. & Uhl, J. T. Micromechanical model for
deformation in solids with universal predictions for stress-strain curves and slip
avalanches. Phys. Rev. Lett. 102, 175501 (2009).

6. Karmakar, S., Lerner, E. & Procaccia, I. Statistical physics of the yielding
transition in amorphous solids. Phys. Rev. E 82, 055103 (2010).

7. Dasgupta, R., Hentschel, H. G. E. & Procaccia, I. Microscopic mechanism of
shear bands in amorphous solids. Phys. Rev. Lett. 109, 255502 (2012).

8. Lin, J., Lerner, E., Rosso, A. & Wyart, M. Scaling description of the yielding
transition in soft amorphous solids at zero temperature. Proc. Natl Acad. Sci.
USA 111, 14382–14387 (2014).

9. Keim, N. C. & Arratia, P. E. Yielding and microstructure in a 2d jammed
material under shear deformation. Soft Matter 9, 6222–6225 (2013).

10. Knowlton, E. D., Pine, D. J. & Cipelletti, L. A microscopic view of the yielding
transition in concentrated emulsions. Soft Matter 10, 6931–6940 (2014).

11. Hima Nagamanasa, K., Gokhale, S., Sood, A. K. & Ganapathy, R. Experimental
signatures of a nonequilibrium phase transition governing the yielding of a soft
glass. Phys. Rev. E 89, 062308 (2014).

12. Denisov, D. V. et al. Sharp symmetry-change marks the mechanical failure
transition of glasses. Sci. Rep. 5, 14359 (2015).

13. Shrivastav, G. P., Chaudhuri, P. & Horbach, J. Yielding of glass under shear:
a directed percolation transition precedes shear-band formation. Phys. Rev. E
94, 042605 (2016).

14. Regev, I., Weber, J., Reichhardt, C., Dahmen, K. A. & Lookman, T.
Reversibility and criticality in amorphous solids. Nat. Commun. 6, 8805
ð2015Þ:

15. Liu, C., Ferrero, E. E., Puosi, F., Barrat, J.-L. & Martens, K. Driving rate
dependence of avalanche statistics and shapes at the yielding transition. Phys.
Rev. Lett. 116, 065501 (2016).

16. Jaiswal, P. K., Procaccia, I., Rainone, C. & Singh, M. Mechanical yield in
amorphous solids: a first-order phase transition. Phys. Rev. Lett. 116, 085501
(2016).

17. Sun, Y., Concustell, A. & Greer, A. L. Thermomechanical processing of
metallic glasses: extending the range of the glassy state. Nat. Rev. Mater. 1,
16039 (2016).

18. Argon, A. Plastic deformation in metallic glasses. Acta Metall. 27, 47–58
ð1979Þ:

19. Picard, G., Ajdari, A., Lequeux, F. & Bocquet, L. Elastic consequences of a single
plastic event: a step towards the microscopic modeling of the flow of yield stress
fluids. Eur. Phys. J. E 15, 371–381 (2004).
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