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Secreted CLIC3 drives cancer progression through
its glutathione-dependent oxidoreductase activity
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The secretome of cancer and stromal cells generates a microenvironment that contributes to

tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary

normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular

channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3

promotes invasive behaviour of endothelial cells to drive angiogenesis and increases

invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active

transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that

reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by

cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian

cancers and its levels correlate with poor clinical outcome. This work reveals a previously

undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidor-

eductase drives angiogenesis and cancer progression by promoting TGM2-dependent

invasion.
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A
cquisition of invasive characteristics by cancer cells is a
watershed in the transition between indolent tumours
(such as ductal carcinoma in situ (DCIS)), which are

surrounded by an intact basement membrane, and more
aggressive invasive carcinoma in which the basement membrane
is disrupted. In addition, the invasive characteristics of vascular
endothelial cells allow them to penetrate the tumour stroma to
supply oxygen and nutrients that support cancer growth and
provide a route for cancer cells to leave the tumour to
form metastases1,2. The composition and physical properties of
the microenvironment change dramatically during tumour
development and the secretome of both stromal and cancer
cells plays pivotal roles in this3,4. For example, the lysyl oxidase
(LOX), which is released from cancer and stromal cells, promotes
g-lysyl cross-bridges to stiffen the extracellular matrix (ECM).
This influences integrin signalling and promotes invasive
behaviour of endothelial and cancer cells through b1 integrin-
dependent signalling5,6. Inhibition of LOX decreases tumour
angiogenesis and growth and opposes metastasis6–8, thus
exemplifying the efficacy of strategies aimed at targeting
secreted factors that alter the tumour microenvironment. In
addition, the secretion of factors such as the transforming growth
factor-b (TGFb) and sonic hedgehog by cancer cells is now
well established to lead to generation of populations of
cancer-associated fibroblasts (CAFs) with an activated
myofibroblast-like phenotype9,10. CAFs are abundant in the
stroma of carcinomas and are a key contributing factor in the
generation of an aberrant tumour microenvironment permissive
for cancer progression9,11–13. Indeed, the secretion of soluble
factors such as TGFb and SDF1/CXCL12 (stromal cell-derived
factor 1/C-X-C motif chemokine 12) from CAFs can drive cancer
cell growth14,15. Moreover, the deposition of ECM components is
integral to the ability of CAFs to generate a pro-invasive
microenvironment. However, the complexity of CAF secretome
renders it difficult to obtain a clear picture of how these cells
contribute to cancer progression. Although a few studies have
attempted to resolve the CAF secretome using mass spectrometry
(MS)-based approaches, many of pro-invasive factors that
are released by CAFs and the mechanisms through which
they act remain unclear16,17. Using high-resolution MS we have
comprehensively resolved the secretome of a validated model of
human mammary CAFs14 and compared this with the secretome
of normal mammary fibroblasts (NFs). We show that the
CAF proteome gives insight into the capability of these
cells to alter the extracellular environment and have elucidated
protein components that indicate a new mechanism leading
to a pro-invasive stroma in tumours. We show that the
chloride intracellular channel protein 3 (CLIC3) is a prominent
component of the CAF secretome and that this acts as a
glutathione (GSH)-dependent oxidoreductase to influence the
ability of secreted transglutaminase-2 (TGM2) to promote the
invasive behaviour of both endothelial and cancer cells.

Results
The fibroblast secretome is altered upon activation into CAF.
To elucidate the mechanisms that underpin the pro-invasive
ability of fibroblasts upon activation into CAF by cancer cells, we
used normal human mammary fibroblasts (iNF) and CAF
(iCAF)14. These iCAFs were generated by serial passage of
hTERT (human telomerase reverse transcriptase) immortalized
normal human mammary fibroblasts through nude mice in the
presence of HRas-transformed MCF7 breast cancer cells.
The iNFs were obtained by similar passage through nude mice,
but in the absence of cancer cells14. The iCAFs have a
typical myofibroblast-like phenotype and express high levels of

alpha-smooth muscle actin (aSMA)18 (Fig. 1a) and TGFb that is
maintained when grown in culture by positive feedback TGFb
signalling loop14. The iCAFs have greater capacity than iNFs to
promote tumour vascularization and growth when co-injected
with MCF7-HRas cells as subcutaneous xenograft14. First, we
sought to evaluate the capability of iCAFs to directly affect the
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Figure 1 | iCAFs generate stiff ECM and have a pro-invasive secretome.

(a) Schematic explanation of the iNF-iCAF cell model. Below, the western

blot shows the levels of the myofibroblast marker aSMA in total cell

lysate of immortalized fibroblasts normal (iNF) and activated by

MCF7-HRas cancer cells (iCAF). Vinculin was used as loading control.

Full-size images of WB are presented in Supplementary Fig. 9. (b) Stiffness

measurement of cell-free extracellular matrix (ECM). Whisker plot

(10–90 percentile); niCAF¼ 179, niNF¼ 103 (n¼ fields assessed by AFM).

(c) Cartoon representing the 3D fibrin gel co-culture system used to

evaluate endothelial cell invasion. (d) Representative bright-field images

(bar, 100mm) and sprouting quantification of HUVEC co-cultured for 12

days with iNF and iCAF in 3D fibrin gel; niCAF¼ 31, niNF¼ 38 (n¼HUVEC-

coated beads assessed). (e) Cartoon representing the pseudopod

elongation assay used to evaluate cancer cells invasion through telomerase

immortalized fibroblast (TIF)-derived ECM. (f) Representative bright-field

images (bar, 100mm) and quantification of the invasive pseudopod length

of MDA-MB-231 cells invading TIF-derived ECM in the presence of

conditioned medium (CM) produced by iNF or iCAF. Whisker plot (5–95

percentile). The cross indicates the mean; n¼ 540 cells assessed from 3

biological replicates. These samples are also reported in Fig. 4e. Bars,

mean±s.e.m.
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characteristics of the extracellular environment, and the invasive
behaviour of endothelial cells (ECs) and cancer cells. Atomic
force microscopy (AFM) analysis indicated that iCAFs produced
a matrix that was significantly stiffer than that generated by iNFs
(Fig. 1b). We used a three-dimensional (3D) culture system to
investigate how factors released by fibroblasts may influence the
invasiveness of ECs. We plated ECs into fibrin gels and overlayed
these with either iNFs or iCAFs and monitored the invasive
sprouting of the ECs in the gel (Fig. 1c). In the presence of iCAFs,
the number of sprouts emanating from ECs was 25% greater than
in the presence of iNFs (Fig. 1d). We also looked at the ability of
conditioned medium (CM) from iCAFs to influence MDA-MB-
231 breast cancer cells to extend invasive pseudopods into
cell-free preparations of ECM (Fig. 1e). The CM from iCAFs was
significantly more effective at promoting the extension of invasive
pseudopods than was CM from iNFs (Fig. 1f). From this, we
reasoned that the iNF-iCAF cell lines would be an excellent
model to identify secreted factors necessary to generate a
pro-invasive microenvironment.

To accurately quantify proteomes, we used SILAC (stable
isotope labelling by amino acids in cell culture)19 and compared
the cellular, CM/secreted and ECM proteomes of iNFs and
iCAFs. We prepared cell extracts and cell-free ECM using
previously established protocols20,21, whereas for the CM we
developed a simple affinity-based approach where Strataclean
resin is used to enrich for proteins secreted into serum-free
medium (Fig. 2a,b and Supplementary Fig. 1a). Proteomes were
measured using an LTQ-Orbitrap mass spectrometer and MS
data analysed with the MaxQuant computational platform22 that
identified 5,467 proteins. Of these, 4,113 were reproducibly
quantified in the cell proteome, 2,054 in the ECM and 1,527 in
the CM (Fig. 2c, Supplementary Fig. 1b and Supplementary
Data 1). The validity of our approach to isolate secreted proteins
was demonstrated by Gene Ontology (GO) cellular compartment
category enrichment analysis that indicated that proteins detected
in the ECM and CM were significantly enriched in secretory
proteins, whereas the subsets found within the cell extracts were
enriched in cytoplasmic and nuclear proteins (Fig. 2d).
Approximately 50% of the proteins identified in the CM and
ECM fractions were also identified in the cell proteome (Fig. 2c).
This group contained significant subsets of vesicles and
extracellular organelle proteins (Supplementary Fig. 1c),
suggesting that a substantial proportion of the fibroblast
proteome may be secreted. A good correlation was measured
between our data set and previously published breast cancer
stroma signatures identified by gene expression analysis23–25

(Supplementary Fig. 2a–c and Supplementary Tables 1 and 2)
that vindicates our use of the iNF and iCAF cell lines for
this purpose. We assembled a signature of 325 proteins that
were differentially regulated in iNFs and iCAFs (Fig. 2e,
Supplementary Data 1 and Supplementary Methods). TGFb
signalling is the prominent pathway sustaining iCAF activation14

and, accordingly, our iCAF signature was characterized by
increased levels of TGFb-regulated proteins (Supplementary
Fig. 3a). STRING analysis26 identified known physical and
functional interactions between 164 proteins of the iCAF
signature. The most highly connected network (Supplementary
Fig. 3b) was enriched for extracellular and cell adhesion proteins
(Fig. 2f). These included matrix components, such as collagen
(COL)1A1, COL5A1, COL4A1, COL10A1, COL5A3, COL18A1,
fibronectin (FN1), laminin (LAM) and Syndecan 2 (SDC2), and
the matrix remodelling enzymes LOX and TGM2 that were found
upregulated (Fig. 2g and Supplementary Data 1). Moreover,
secreted factors (for example, thrombospondin 1 (THBS1) and
biglycan (BGN)), and growth factors and cytokines (for example,
TGFb, CXCL12/SDF1, CTGF and FGF2), many of which actively

control endothelial and cancer cell behaviour, were differentially
regulated between iNFs and iCAFs (Fig. 2g and Supplementary
Data 1). Thus, when fibroblasts become activated this is parti-
cularly noticeable in alterations to their secretome and the ECM
proteins deposited by these cells. Our iCAF signature reveals the
presence of a number of components that are potential novel
regulators of angiogenesis and tumour progression.

CLIC3 is secreted by CAFs and cancer cells. Among the proteins
not found in the interaction network and which were most
upregulated in the iCAF proteome and secretome (Fig. 2g), we
were intrigued by CLIC3. A function for CLIC3 in fibroblasts is
unknown, and the observation that it was found in the extra-
cellular milieu suggested previously unexplored functions for this
protein. CLIC3 belongs to a family of proteins mostly described
as intracellular Cl� channels and scaffolding proteins27–29. We
have previously shown that CLIC3 localizes in the late endosomal
compartment of cancer cells and determines cell invasion and
metastasis by promoting the trafficking of a5b1 integrin and the
transmembrane matrix metalloprotease MT1-MMP to the plasma
membrane30,31. Intriguingly, there is increasing evidence that
CLIC proteins are secreted and detected in body fluids32,33, but
an extracellular role for the CLICs has not been reported.
Western blotting confirmed that CLIC3 was upregulated in iCAFs
and showed that it was released into the medium and
incorporated into the ECM (Fig. 3a). Similar levels of CLIC3
were measured in primary mammary CAFs and iCAFs (Fig. 3b),
and detected in the ECM deposited by primary mammary
CAFs (Fig. 3c). Analysis of publicly available gene expression
data sets indicated higher CLIC3 levels in the stroma of ovarian
(GSE40595), oral (GEOD-38517) and colon (GSE35602)
carcinoma when compared with stroma of the corresponding
normal tissues (Supplementary Table 3). We confirmed the
expression of CLIC3 in primary ovarian CAFs isolated from
patient samples by western blot (Fig. 3d). Hence, CLIC3
expression is enhanced in the stroma of different tumours. We
have previously shown that CLIC3 levels are high in cancer cells
of aggressive cancers30,31. Here we determined that cancer cells
also secrete CLIC3. Indeed, western blot analysis detected CLIC3
in the ECM produced by CLIC3-expressing MDA-MB-231 and
A2780 cancer cells, but not MCF10DCIS.com cells that have low
levels of CLIC3 (Figs 3e,f). Thus, we have identified CLIC3 as a
factor that can be released extracellularly by activated fibroblasts
and cancer cells.

CLIC3 promotes cell invasion. Despite clear indications that
CLIC3 is not required for proliferation of iCAFs (Fig. 4a and
Supplementary Fig. 4a), CLIC3 knockdown (with two indepen-
dent small interfering RNAs (siRNAs)) reduced the ability of
iCAFs (Fig. 4b and Supplementary Fig. 4b,c) and primary
mammary CAFs (Supplementary Fig. 4d,e) to promote EC
sprouting in 3D fibrin gel. This was likely because of defects in EC
invasiveness and not proliferation because treatment of ECs with
CM from iCAFs silenced for CLIC3 had no significant impact on
EC proliferation (Supplementary Fig. 4f). Given our MS data
indicating that CLIC3 is secreted, we tested whether CLIC3
influence on ECs was mediated extracellularly. We stably over-
expressed a secreted signal peptide-containing form of CLIC3
(spCLIC3) in iNFs (Supplementary Fig. 4g). Strikingly, compared
with iNFs expressing an empty control vector, iNFs-spCLIC3
enhanced EC sprouting (Fig. 4c), indicating that extracellular
CLIC3 is biologically active. Further evidence of the extracellular
role of CLIC3 came from experiments in which we measured
the effect of soluble purified recombinant CLIC3 (rCLIC3)
on EC sprouting, when co-cultured with iNFs. Addition of
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purified rCLIC3 to the medium promoted EC sprouting in a
dose-dependent manner (Supplementary Fig. 4h). Importantly,
rCLIC3 drove EC sprouting in fibrin gels in the absence of a
fibroblast overlay (Fig. 4d), and enhanced vascular endothelial
growth factor (VEGF)-driven EC sprouting from mouse aortic
rings explanted into Matrigel (Supplementary Fig. 4i). To deter-
mine whether secreted CLIC3 contributed to cancer cell inva-
siveness, we incubated MDA-MB-231 cells with conditioned
medium from iCAFs in which CLIC3 had been knocked down
(Supplementary Fig. 5a). The CM from CLIC3-knockdown iCAFs

had reduced ability to drive the extension of invasive pseudopods
from MDA-MB-231 cells, and this was completely restored by
replacement of CLIC3 in the iCAF-CM with rCLIC3 (Fig. 4e).
Moreover, addition of rCLIC3 was sufficient to drive extension of
invasive pseudopods from both MDA-MB-231 breast and A2780
ovarian cancer cells in a dose-dependent manner, even in the
absence of CM from iCAFs (Fig. 4f,g and Supplementary
Fig. 5b,c). Consistently, addition of rCLIC3 was sufficient to
increase the invasiveness of A2780 cells into Matrigel plugs34

(Supplementary Fig. 5d). Taken together, these data indicate
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Figure 2 | Proteomics and secretomics of iNF and iCAF. (a) MS-based approach workflow used for the comparative proteomic analysis of iNF and iCAF.

Heavy SILAC-labelled iCAFs and light iNFs were used for the forward experiment (Exp 1a), and heavy SILAC-labelled iNFs and light iCAFs for the reverse

experiment (Exp 1b). Cells, total cell proteome; CM, conditioned medium; ECM, extracellular matrix; FASP, filter-aided sample preparation (used for protein

digestion); SAX, strong anion exchange (used to fractionate peptides). (b) Schematic workflow of the protocol developed to isolate proteins from serum-

free CM produced by iNF and iCAF and used for SILAC-based proteomic quantification. TFA, trifluoracetic acid. Affinity resin, silica-based resin

(Strataclean, Agilent Technologies). (c) Venn diagram of proteins quantified in both SILAC replicates by MS proteomics in cell, ECM and CM proteomes.

(d) Fisher’s test-based (2% Benjamini–Hochberg false discovery rate (FDR)) category enrichment analysis performed with Perseus on the indicated

fractions, using the global proteome (cells, ECM and CM) as reference data set. Cells, proteins quantified in the cell but not in the CM and ECM proteomes;

CM, proteins quantified in the CM but not in the cell proteome; ECM, proteins quantified in the ECM but not in the cell proteome. (e) Hierarchical

clustering (based on average Euclidean distance) and heat map (colours based on SILAC ratio iCAF/iNF) of the SILAC ratio iCAF/iNF calculated for the 325

proteins of the iCAF signature. Cells, total cell lysate. (f) Gene ontology biological process (GOBP) enrichment analysis performed with STRING for the

iCAF signature using the total proteome as background and Bonferroni test to correct for multiple testing. (g) Subcluster of most upregulated proteins in

iCAFs (black line in (e)).
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that the extracellular pool of CLIC3 is necessary and sufficient to
drive the invasiveness of both ECs and cancer cells. Next, we
investigate the mechanisms of CLIC3 function.

CLIC3 is a GSH-dependent oxidoreductase enzyme. It
has recently been shown that some CLIC proteins have
GSH-dependent oxidoreductase activity29. We used an assay that
measures the reduction of bis(2-hydroxyethyl)disulfide (HEDS)
to establish that rCLIC3 possessed GSH-dependent oxidore-
ductase activity that was comparable to that of CLIC1. The
glutaredoxin-like activity of CLIC1 requires the presence of a
conserved cysteine in its N-terminal thioredoxin-like domain29.
We mutated the corresponding cysteine residue in CLIC3 to
generate rCLIC3C22A (Fig. 4h and Supplementary Fig. 5e–g). As
expected, this mutant had strongly reduced GSH-dependent
oxidoreductase activity (Fig. 4i). To determine whether CLIC3
oxidoreductase activity may contribute to its capacity to drive
invasiveness, we tested the ability of CLIC3C22A to drive EC
sprouting and extension of invasive pseudopods from tumour
cells. It was clear that rCLIC3C22A had significantly reduced
capacity to drive the invasiveness of endothelial, MDA-MB-231
and A2780 cells (Fig. 4d,f,g). Hence, the oxidoreductase activity of
CLIC3 may contribute to the pro-invasive role of extracellular
CLIC3.

CLIC3 reduces TGM2 and alters TGM2 binding with its cofac-
tors. TGM2 was among the most upregulated proteins of the
iCAF secretome (Figs 2g and 5a). TGM2 can crosslink and sta-
bilize the ECM35, and it controls cell–matrix interactions by
binding to membrane receptors such as b1 integrin36. Both
matrix stiffness and integrin activation promote cell invasion5,6.
Moreover, TGM2 activity is controlled by a thioredoxin-mediated
reduction of cysteines 370–371 (refs 37,38). For these reasons, we

considered the possibility that CLIC3 worked in collaboration
with TGM2 (Fig. 5b). We determined that CLIC3 controls the
reduced status of TGM2 cysteines by using quantitative MS (see
Supplementary Methods). First, H2O2 treatment of GTP-bound
recombinant TGM2 (rTGM2) showed that the cysteines at
positions 10, 27, 230, 269, 370–371, 505, 510, 524 and 554 can be
reduced and susceptible to oxidation (Fig. 5c). Next, we incubated
GTP-bound rTGM2 with rCLIC3 or rCLIC3C22A and compared
the reduced status of TGM2 cysteines by MS. This analysis
revealed that cysteine 505 was fivefold more reduced when TGM2
was incubated with the enzymatically active rCLIC3
compared with the inactive mutant rCLIC3C22A (Fig. 5c).
Similar results were obtained when TGM2 was incubated with
rCLIC3 in the presence or absence of reduced GSH (Fig. 5c).
Higher reduction levels (1.5–2-fold) were also measured for
cysteines 27, 269 and 370–71 when TGM2 was incubated with
rCLIC3 compared with when incubated with rCLIC3C22A

(Fig. 5c). These data indicate that CLIC3 controls TGM2
reduction at specific cysteines.

We next wished to determine whether CLIC3 and TGM2
interaction influenced TGM2 activity. We used a fluorescence
polarization assay that exploited the fact that TGM2 is a GTP/
GDP-binding protein. First we confirmed the capability of
recombinant TGM2 to bind to the fluorescently labelled
non-hydrolyzable GTP analogue, Mant-GMPPNP, and that this
interaction is disrupted in the presence of free Ca2þ , as reported
previously (Supplementary Fig. 6a). Then, we explored CLIC3
interaction with TGM2. Starting with Mant-GMPPNP, we
observed incremental increases in the polarization signal upon
step-wise addition of TGM2 followed by rCLIC3, but not
rCLIC3C22A (Fig. 5d and Supplementary Fig. 6b). This increase
was observed in the presence of reduced GSH, but not its oxidized
form (Fig. 5d and Supplementary Fig. 6b). As TGM2 was at
subsaturating concentration, the increase in the polarization
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Figure 3 | CLIC3 is abundant in activated fibroblasts and deposited in the ECM by CAF and cancer cells. (a) Western blot for CLIC3 in iNF and iCAF cell

lysate, conditioned medium (CM) and extracellular matrix (ECM). Vinculin was used as loading control for the cell lysate. (b,c) Western blot for CLIC3 in

cell lysate (b) and ECM (c) of cultured primary mammary CAF (mCAF) isolated from tumour tissue of two breast cancer patients. The iNF and iCAF cell

lysates were loaded for comparison. Vinculin was used as loading control. In c, the brightness of the panels has been increased using Photoshop.

(d) Western blot for CLIC3 in cell lysate of cultured primary ovarian CAF (ovCAF) isolated from tumour-omentum (#1, #2) and tumour tissue (#3) of

ovarian cancer patients. The iNF and iCAF cell lysates were loaded for comparison. Vinculin was used as loading control. (e,f) Western blot for CLIC3 in the

total lysate (e) and ECM (f) of the indicated cancer cells showing that MCF10DCIS.com express very low levels of CLIC3 and that MDA-MB-231 breast

cancer cells and A2780 cells can deposit CLIC3 in the ECM, as shown for iCAFs. A2780-Rab25, A2780 cells stably expressing Rab25 that has been shown

to increase CLIC3 levels31. Vinculin was used as loading control for the cell lysate. Full-size images of WB are presented in Supplementary Figs 9 and 10.
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Figure 4 | CLIC3 is a glutathione-dependent oxidoreductase enzyme. (a) Proliferation of iCAF silenced for CLIC3 with two independent siRNAs,

measured by means of % of cells that incorporated EdU (¼ cells in S phase). The results shown are from three biological replicates for siCtl and siCLIC3 #1

and two for siCLIC3 #2. (b) Sprouting quantification of HUVECs co-cultured in 3D fibrin gel for 6 days with siCtl or siCLIC3 iCAF. Each siCLIC3 was

normalized by and statistics calculated based on its siCtl; nsiCtl¼ 66, nsiCLIC3#1¼48, nsiCLIC3#2¼ 32 (n¼HUVEC-coated beads assessed). (c) Sprouting

quantification of HUVECs co-cultured in 3D fibrin gel for 4 days with iNFs stably overexpressing a modified secreted form of CLIC3 containing a signal

peptide (spCLIC3) or the control empty vector (EV); nEV¼89, nspCLIC3¼ 85 (n¼HUVEC-coated beads assessed). (d) Sprouting quantification of HUVECs

in 3D fibrin gel stimulated for 2 days with vehicle (Ctl), rCLIC3 (250 ngml� 1) or rCLIC3C22A (250 ngml� 1); nsiCtl¼ 151, nrCLIC3¼ 135, nrCLIC3C22A¼ 145

(n¼HUVEC-coated beads assessed from three biological replicates). (e) Quantification of invasive pseudopod length of MDA-MB-231 cells migrating on

cell-free ECM produced by telomerase immortalized fibroblasts (TIFs) and in the presence of conditioned medium (CM) generated by siCtl iCAF or iNF or

CLIC3-silenced iCAF. rCLIC3¼ 1 ngml� 1. Whisker plot (5–95 percentile). The cross indicates the mean; n¼ 540 (for all but nsiCLIC3þ rCLIC3¼ 500) cells

assessed from 3 biological replicates. iNF and iCAF siCtl are the same reported in Fig. 1f. (f,g) Quantification of invasive pseudopod length of MDA-MB-231

breast (f) and A2780 ovarian (g) cancer cells migrating on cell-free ECM produced by TIFs and treated with GST (25 ngml� 1, Ctl), rCLIC3 (25 ngml� 1)

or rCLIC3C22A (25 ngml� 1). Whisker plot (5–95 percentile). The cross indicates the mean. For MDA-MB-231 cells, nCtl¼ 360, nrCLIC3¼ 720,

nrCLIC3C22A¼ 330 cells assessed from two biological replicates; for A2780 cells nCtl¼480, nrCLIC3 and nrCLIC3C22A¼ 540 cells assessed from three

biological replicates. (h) Scheme of CLIC3 domains highlighting the N-terminal thioredoxin motif. In red, the cysteine conserved among CLICs and which

we have shown to be enzymatically active (i). (i) Enzymatic assay showing the glutathione-dependent oxidoreductase activity of CLIC1 and CLIC3 wild type

or when mutated at the active cysteine (cysteine 24 for CLIC1, CLIC1C24A; cysteine 22 for CLIC3, CLIC3C22A). Buffer only was used as negative control for

the enzymatic reaction. Bars indicate average±s.d.; n¼ 3 technical replicates. Bars, mean±s.e.m.
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signal could indicate either that rCLIC3 physically interacts with
Mant-GMPPNP.TGM2 or that it regulates the affinity between
TGM2 and Mant-GMPPNP. Strikingly, we noticed that rCLIC3,
but not rCLIC3C22A, prevented Ca2þ -induced release of Mant-
GMPPNP (Fig. 5d), indicating that CLIC3 regulates the binding
of TGM2 to Ca2þ and GTP that are the cofactors regulating
TGM2 activities.

Finally, we determined that TGM2 is required for the
function of extracellular CLIC3. The iCAFs silenced for CLIC3
(Supplementary Fig. 6c) generated an ECM with significantly
reduced stiffness, and this was almost completely restored
simply by adding rCLIC3 to the culture medium of iCAF
silenced for CLIC3 (Fig. 5e). Conversely, the addition of rCLIC3
to iCAF expressing endogenous levels of CLIC3 was not
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14206 ARTICLE

NATURE COMMUNICATIONS | 8:14206 | DOI: 10.1038/ncomms14206 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


able to induce a further increase of matrix stiffness (Fig. 5e).
This suggests that endogenous levels of CLIC3 were sufficient
to stiffen the iCAF ECM and that iCAFs cannot generate a
stiffer ECM. Conversely, when iCAFs were silenced for
TGM2 (Supplementary Fig. 6c), they generated a matrix with
significantly reduced stiffness, but this was not restored by
adding rCLIC3 (Fig. 5e).

CLIC3 requires TGM2 to promote cell invasion. Next, we
investigated the requirement of TGM2 in extracellular CLIC3
ability to promote invasion. The ability of rCLIC3 to drive
EC sprouting was TGM2 dependent. In fact, rCLIC3-driven
EC sprouting was completely opposed by knockdown of TGM2
in ECs (Fig. 6a and Supplementary Fig. 7a). Moreover, a well-
characterized inhibitor of TGM2 activity, Z-DON39, blocked
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(d) Quantification of invasive pseudopod length of A2780 cells migrating on ECM produced by siCtl or siTGM2 TIFs and treated with GST (1 ng ml� 1) or
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rCLIC3 (1 ngml� 1) in the presence or absence of mAb16 (20nM). Whisker plot (5–95 percentile). The cross indicates the mean; n¼ 540 (n¼ cells

assessed from three biological replicates). Bars, mean±s.e.m.
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rCLIC3-driven EC sprouting when used at a concentration that
did not affect cell viability and that would not be expected
to penetrate the cell39 (Fig. 6b and Supplementary Fig. 7b,c). As
rCLIC3-induced but not VEGF-induced EC sprouting was
inhibited by Z-DON (Supplementary Fig. 7d), we conclude that
the effect of TGM2 blockade was specific for CLIC3-induced
sprouting.

Next, we assessed the requirement of TGM2 in extracellular
CLIC3 ability to promote cancer cell invasion. The ability of
rCLIC3 to drive pseudopod elongation was completely ablated
when cancer cells were plated into ECM generated by TGM2
knockdown fibroblasts (Fig. 6c and Supplementary Fig. 7e).
Strikingly, addition of purified active rTGM2 to the culture
medium was sufficient to restore rCLIC3-induced pseudopod
elongation (Fig. 6c). In addition, in the presence of Z-DON,
rCLIC3-driven pseudopod elongation was completely opposed
(Fig. 6d). Similar results were obtained using a 3D Matrigel-based
invasion assay (Supplementary Fig. 5d).

Finally, we determined that a5b1 integrin, of which the b1
subunit can be bound and activated by the GTP-bound TGM2
(ref. 36), was required for CLIC3-induced invasion. Indeed, the
ability of CLIC3 to drive endothelial (Fig. 6e) and cancer cell
(Fig. 6f) invasion was blocked in the presence of function-blocking
antibody that recognizes the a5 subunit of a5b1 integrin40.

Taken together, these data indicate that secreted CLIC3
requires the activity of extracellular TGM2 and a5b1 integrin to
promote the invasive behaviour of both ECs and cancer cells.

CLIC3 drives angiogenesis and tumour invasion. We
asked whether extracellular CLIC3 generated pro-invasive
outcomes in in vivo and 3D models. To determine the influence
of extracellular CLIC3 on EC behaviour in vivo, Matrigel plugs
impregnated with FGF2 in the presence and absence of CLIC3
were subcutaneously implanted into mice. By immunohisto-
chemical staining for Pecam1 to visualize endothelial cells and
haemoglobin measurements to verify blood vessel functionality,
we found that addition of rCLIC3, but not rCLIC3C22A, sig-
nificantly increased functional vascularization of the plug
(Fig. 7a). Furthermore, we inhibited TGM2 with the
inclusion of Z-DON within the plug. When this inhibitor was
included in the plug together with rCLIC3, rCLIC3 was unable to
significantly enhance angiogenesis (Fig. 7b). Next, to investigate
cancer cell invasion, we deployed MCF10DCIS.com breast cancer
cells. This model has the advantage that both in vitro and in vivo
assays recapitulates the progression from DCIS to invasive
carcinoma41,42. When cultured in Matrigel for up to 5 days,
MCF10DCIS.com cells formed noninvasive comedo-like spheres
bounded by basement membrane (BM), as determined by
immunofluorescence staining for laminin 5 and b4 integrin
(Fig. 7c and Supplementary Fig. 7f). Addition of rCLIC3 to the
extracellular milieu did not influence the initial assembly of DCIS
structures, but the tumour spheres displayed loss of sphericity
after 6 days of culture with rCLIC3, but not rCLIC3C22A

(Fig. 7c). The loss of sphericity was associated with a
pronounced disruption of the BM, a well-established indicator
of cancer cell invasion30. Moreover, the ability of CLIC3 to
accelerate BM disruption was completely blocked by addition of
Z-DON (Fig. 7c). Finally, to mimic an excess of extracellular
CLIC3 in the tumour microenvironment, regardless of its origin
(stromal and/or cancer cells), we mixed MCF10DCIS.com cells
with Matrigel in the presence and absence of rCLIC3 and injected
this subcutaneously into mice. Immunohistochemical staining
showed that MCF10DCIS.com cells injected in the absence of
CLIC3 formed numerous DCIS-like structures bounded by a
laminin 5-containing basement membrane (Fig. 7d). In the

presence of extracellular CLIC3, tumours had a more invasive
phenotype, as assessed by the presence of DCIS-like structures
with reduced sphericity (spherical related to in situ; nonspherical
related to invasive) (Fig. 7d,e). Strikingly, when Z-DON was
added into the Matrigel to inhibit TGM2, rCLIC3 was incapable
of significantly enhancing invasion (Fig. 7d,e). Hence, the CLIC3/
TGM2 pathway promotes angiogenesis in vivo, and breast cancer
invasion in 3D culture and in vivo.

High CLIC3 levels in ovarian tumours indicate poor outcome.
Analysis of tissue microarrays (TMAs) that we have previously
stained for CLIC3 (refs 30,31) indicated that 90% of ovarian, 20%
of breast and almost none of the pancreatic cancers stained
positively for CLIC3 in the stroma. As in ovarian tumours CLIC3
was detectable both in the stroma and cancer cells in the vast
majority of the patient samples, we chose this cancer type to
investigate the relationship between CLIC3 levels in cancer cells
and stromal compartment, and whether CLIC3 levels associated
with a clinical outcome.

Immunohistochemistry staining indicated that CLIC3 was
expressed in the stroma of ovarian tumours but not in the stroma
of the corresponding normal tissue (uterus) (Fig. 8a). Moreover,
CLIC3 was detected in the tumour stroma that also stained
positively for aSMA and TGM2 (Supplementary Fig. 8a). CLIC3
levels in the cancer cells and stroma of two independent TMAs
were measured by immunostaining. Histoscore of CLIC3 staining
in the stroma (Fig. 8b) showed higher CLIC3 levels in high-grade
serous (HGS) compared with less aggressive43 clear cell and
endometrioid cancer subtypes (Fig. 8c). Similarly, CLIC3 levels in
cancer cells were higher in more aggressive HGS cancers (Fig. 8d),
in line with our previous findings30,31. Clearly, CLIC3 levels
were similarly regulated in stroma and cancer cells (Fig. 8e).
Highlighting the fact that CLIC3 levels may be relevant to clinical
outcomes, overall survival (OS) in HGS patients was lower when
high (average OS¼ 16.4 months in TMA 1 and 4 months in
TMA 2) compared with low/medium (average OS¼ 24.7 months
in TMA 1 and 9.8 months in TMA 2) stromal CLIC3 histoscore
was measured (Table 1). Concordantly, HGS patients with higher
levels of CLIC3 in cancer cells had poorer survival (Table 1).
Corroborating our findings, in a study conducted by Gyorffy
et al.44, patients with HGS ovarian cancer with high CLIC3 mRNA
levels in the tumour had reduced overall survival compared with
those with low CLIC3 (Supplementary Fig. 8b). Taken together,
these data indicate that high CLIC3 levels in aggressive ovarian
cancers are associated with poor patient outcomes.

Discussion
The contribution made by the microenvironment to tumour
progression is underpinned by autocrine and paracrine signalling

Table 1 | Overall survival of the HGS patients in TMA 1 and 2.

HGS TMA 1 HGS TMA 2

AVG OS SD OS AVG OS SD OS

Stroma CLIC3 histoscore
Low (0) n.a. n.a. 9.8 7.3
Medium (5) 24.7 11.2 8.1 3.4
High (6) 17.4 13.6 4.0 2.2

Tumour cells CLIC3 histoscore
Low (1) 41.5 n.a. 8.9 6.2
Medium (4) 20.5 7.0 5.8 3.9
High (6) 17.4 12.4 3.1 1.4

OS, overall survival, expressed in months.
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in which the secretome of CAFs and cancer cells plays a pivotal
role. Here we show that modern mass spectrometry and SILAC
for robust protein quantification combined with a protocol that
we have developed to easily access secreted proteins in culture
cells is a powerful approach for the unbiased discovery of invasive
pathways in cancer.

A facet of the CAF secretome that is well established to
influence tumour progression is the TGFb-related network, and
the iCAF model that we have deployed has previously been key to
the identification of these pathways14. Rapidly accumulating
evidence supports a role for ECM remodelling enzymes in
promoting cancer cell invasion and angiogenesis6,45. TGM2 may
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also participate in these processes. In fact, when bound to Ca2þ ,
TGM2 stiffens the ECM and couples integrins to fibronectin by
generating covalent crosslinks between lysine and glutamine
residues of adjacent peptide chains. When bound to GTP, TGM2
activates integrin by directly binding to the b1 subunit36,46. Here
we have identified a new pathway whereby extracellular CLIC3
cooperates with TGM2 to drive endothelial and cancer cell
invasion.

Members of the CLIC family are abundant in tumour and
stromal compartments. CLIC4 influences TGFb signalling in
tumour cells to promote cell growth47 and CLIC3 drives integrin
and metalloproteinase recycling to increase invasiveness30,31.
However, the way in which CLICs influence cancer progression
through altering the tumour microenvironment is not yet clear.
As previously shown for CLIC4 (ref. 48), CLIC3 may act
within stromal cells to influence TGFb signalling, but our data
indicate that it is the extracellular pool of CLIC3 that is
most important to drive cell invasion. Indeed, we can
recapitulate all of stromal CLIC3 pro-invasive capabilities
simply by adding purified recombinant CLIC3 to the
extracellular milieu at a concentration that is commensurate
with the quantities of CLIC3 released by iCAFs (Supplementary
Fig. 8c). CLIC proteins have been cast in a variety of guises
including Cl� channels and molecular scaffolds28, but our work
corroborates the compelling evidence that their primary role in
the cell is to function as oxidoreductases. A recent study has
demonstrated that CLIC1,2 and CLIC4 have glutaredoxin-like
activity, with the conserved cysteine at the N-terminal GST fold
acting as the key catalytic residue29. Here we demonstrate that
CLIC3 is also a GSH-dependent oxidoreductase and that
cysteine 22 is the necessary active site. The cysteine 22 was
necessary for all of TGM2-dependent extracellular pro-invasive
functions of CLIC3. In combination with the fact that CLIC3
controls the GSH-dependent reduction of TGM2 at specific
cysteines, and that CLIC3 influences the binding of
TGM2 to its regulatory cofactors, our work supports the view
that the pro-invasive capabilities of extracellular CLIC3 are
imparted via its GSH-dependent oxidoreductase characteristics.
Reactions catalysed by glutaredoxin-like enzymes depend
on the redox context of the environment. In the strongly
reducing environment of the cytosol, high GSH concentration
(0.5–10mM) can compromise protein activity by
glutathionylation, and CLICs may de-glutathionylate these
cysteine residues to restore protein activity29. However,
outside the cell, where GSH concentrations are
much lower (mM range), CLICs would not need to function as
de-glutathionylating enzymes. Certain extracellular enzymes
possess cysteine residues that control their activity, and
reduction of oxidized cysteines in extracellular proteins is
known to be performed by thioredoxins that use FADH as a

source of reducing equivalents. TGM2 possesses cysteines 370
and 371 that must be reduced for the enzyme to be fully active,
and thioredoxin has recently been shown to activate TGM2 by
reducing these cysteines37. Like thioredoxins, GSH transferases
catalyse reduction of cysteine using GSH as a source of reducing
equivalents. We propose that CLIC3 acts in this way to activate
extracellular TGM2. Intriguingly, cysteines 370 and 371 showed
only a modest increase in reduction when TGM2 was in the
presence of the enzymatically active CLIC3. Conversely, cysteine
505 was most reduced by CLIC3. Together with the fact that
CLIC3 was able to alter TGM2 binding to its cofactors, and that
cysteine 505 is conserved among species, our work opens to the
possibility of alternative regulatory mechanisms of TGM2
activity.

We show that iCAFs silenced for CLIC3 or TGM2 generate an
ECM with significantly reduced stiffness and that this can be
almost completely restored simply by adding soluble purified
recombinant CLIC3 (rCLIC3) to the culture medium, but not
when silenced for TGM2. Moreover, CLIC3 ability to drive
invasion depends on a5b1 integrin engagement. It is tempting to
speculate that, consistent with the established role for a5b1
integrin in enhancing cell invasion by responding to micro-
environmental stiffness6,49, CLIC3 acts via TGM2 g-glutamyl
crosslinking activity to drive ECM stiffness. Our polarized
fluorescence experiments indicate that CLIC3 is capable of
altering TGM2 association with its ligand GTP. Considering that
a5b1 integrin activation drives fibronectin fibrillogenesis50 and
that this may, in turn, increase ECM stiffness, an alternative
intriguing hypothesis is that CLIC3 may influence the capacity of
TGM2-GTP complex to bind to integrins. This may contribute to
the a5b1 dependence of CLIC3-driven invasiveness in both
tumour and endothelial cells (Fig. 8f).

Our study discovered an unprecedented molecular mechanism
used by CAFs and cancer cells to generate a pro-invasive stroma,
and opens up the possibility for the development of inhibitors of
CLIC3 oxidoreductase activity to alter vessel growth and oppose
tumour invasiveness. Moreover, we provide a comprehensive
categorization of molecules responsible for generating a
pro-angiogenic and pro-invasive stroma for the discovery of
other pathways key to generate invasive cancers.

Methods
Cell culture. The iNF and iCAF cell lines (kindly provided by Professor Akira
Orimo, Paterson Institute, Manchester) were cultured in Dulbecco’s modified
Eagle’s medium (DMEM; Life Technologies) supplemented with 10% fetal bovine
serum (FBS; Life Technologies). SILAC-labelled iNF and iCAF were cultured in
SILAC DMEM (without arginine and lysine, Life Technologies) supplemented with
84mg l� 1 12C6

14N4 L-arginine and 146mg l� 1 12C6
14N2 L-lysine (that we refer to as

‘light’, Sigma-Aldrich) or 84mg l� 1 13C6
15N4 L-arginine and 175mg l� 1 13C6

15N2

L-lysine (that we refer to as ‘heavy’, Cambridge Isotope Laboratories), or 84mg l� 1

13C6
14N4 L-arginine and 175mg l� 1 D4 L-lysine (that we refer to as ‘medium’,

Figure 7 | Extracellular CLIC3 is pro-invasive in vivo and 3D models in vitro. (a) Representative immunohistochemistry staining for the endothelial

marker Pecam1 and quantification of functional blood vessels, by means of area (%) containing positive staining for Pecam1 (above) or amount of

haemoglobin (below), of FGF2-containing Matrigel plugs embedded with vehicle (Ctl) or rCLIC3/rCLIC3C22A (33mM) that were implanted subcutaneous in

mice for 10 days; n (n¼mice) is indicated in the figure. Scale bar, 100mm. (b) Quantification of the functional vascularity of FGF2-containing Matrigel plugs

containing vehicle or rCLIC3 (33 mM) with or without Z-DON (2 mM) that were implanted subcutaneous in mice for 10 days; n (n¼mice) is indicated in the

figure. (c) Representative immunofluorescence staining for b4 integrin and actin (phalloidin) and quantification of the circularity of comedo-like DCIS

structure formed by iMCF10DCIS.com cells cultured for 3 and 6 days in Matrigel, which formed in the presence of GST (Ctl, 25 ngml� 1) or rCLIC3/

rCLIC3C22A (25 ngml� 1), in the presence or absence of Z-DON (20nM, ZD). Whisker plot (5–95 percentile). Bar, 40mm; n (n¼ comedo-like DCIS

structure assessed from three biological replicates) is indicated in the figure. The dashed box highlights region where the cancer cells have breached the

basal membrane and invaded the Matrigel. (d) Representative laminin 5 immunohistochemistry and quantification of noninvasive tumour formed by

MCF10DCIS.com cells grown for 2 weeks as subcutaneous xenograft in the presence of vehicle or rCLIC3 (33 mM) in the presence or absence of Z-DON

(20nM). Bar, 100 mm. (e) Quantification of the circularity of DCIS-like structures formed by MCF10DCIS.com cells grown for 2 weeks as subcutaneous

xenograft in the presence of vehicle or rCLIC3 (33 mM) in the presence or absence of Z-DON (20 nM). Bar, 100mm. N¼ 180 DCIS-like structures/group

(¼ 30 DCIS-like structures assessed/mouse/group). In all the plots, the cross indicates the mean.
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Cambridge Isotope Laboratories), 92.1mg l� 1 L-proline (to reduce arginine to
proline conversion, Sigma), 2% FBS and 8% 10 kDa dialyzed FBS (PAA). HUVECs
were isolated and pooled from different umbilical cords (2–5) and cultured in
EGM-2 (Lonza) for maximum 5 passages. MCF10DCIS.com breast cancer cells
were kindly provided by Professor Philippe Chavrier and cultured in F12 (Gibco)
5% horse serum (Gibco). A2780 cells wild type or overexpressing Rab25 (kind gift
from Dr Gordon Mills, MD Anderson Cancer Centre, Houston, TX, USA) were
cultured in RPMI (Life Technologies) supplemented with 10% FBS. Mouse
telomerase immortalized fibroblasts and MDA-MB-231 breast cancer cells (from
ATCC) were cultured in DMEM supplemented with 10% FBS. Primary mammary
CAFs were from the NHS-Glasgow biorepository (from LREC 01/63, R and D
project 02PA002) or they were isolated from patient samples obtained through
NHS Greater Glasgow and Clyde Biorepository. All participants gave specific
consent to use their tissue samples for research. The pCAFs were cultured on
collagen (35 mgml� 1 in PBS, rat tail Collagen I, BD Biosciences)-coated culture
dish in DMEM 10% FBS. All cell lines are routinely tested for Mycoplasma at the
facility available at the CRUK Beatson Institute.

iCAF-iNF sample preparation for MS analysis. For the cell proteome,
forward or reverse experiments (experiment 1, results are shown in the
Figures and Supplementary Data 1): one 10 cm dish/cell type of 80–90%
confluent cells was lysed in SDS buffer, 4% SDS, 100mM dithiothreitol, 100mM
Tris HCl pH 7.6. Then, 100 mg of light and heavy lysates from iCAF and
iNF were mixed together, boiled at 95 �C for 5min sonicated using a metal tip
(Soniprep 150, MSE) and centrifuged 16,000 g for 10min. Proteins were
then trypsin digested using the filter-aid sample preparation (FASP) method
and 50 mg of peptides separated by strong anion exchange chromatography
on StageTip as previously described20. Two additional biological replicates
were performed, experiment 2 and experiment 3, where 50 mg of light and
heavy lysates from iNF and iCAF or 50 mg of heavy and medium lysates from
iNF and iCAF were mixed together, separated on 4–12% gradient NuPAGE
Novex Bis-Tris gel (Life Technologies) and in-gel digested (20 gel slices)51.
Results of experiments 2 and 3 are shown in Supplementary Data 1 (column
‘Ratio iCAF/iNF Cell Experiment 02 (log2)’ and ‘Ratio iCAF/iNF Cell
Experiment 03 (log2)’).
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Figure 8 | High CLIC3 levels associates with ovarian cancer clinical outcome. (a) Example of positive and negative immunohistochemistry staining for

CLIC3 in the stroma of ovarian tumour (OT) and normal (non-OT, uterus) samples, respectively. Bar, 100 mm. (b) Example of immunohistochemistry

staining used to measure CLIC3 histoscore in the stroma and cancer cells of ovarian tumours. Bar, 10mm. (c) Stacked bars showing the prevalence of high

and medium CLIC3 histoscore in the stroma of HGS compared with clear cell (CC) and endometrioid (Endo) ovarian cancers in two cohorts of patients

(TMA 1 and TMA 2); CC and Endo were pooled together as ‘non-HGS’ in TMA 2 to increase the number of samples for comparison with HGS. (d) Whisker

plot (min to max) showing the higher CLIC3 histoscore in the cancer cells of HGS compared with clear cell and endometrioid ovarian cancers in two

cohorts of patients (TMA 1 and TMA 2). (e) Whisker plot (min to max) that shows similar trend of CLIC3 histoscore in the cancer cell and stroma of the

ovarian cancer TMA 1 and 2; n¼ number of single core assessed. (f) Working model for CLIC3-TGM2 cooperation to drive angiogenesis and tumour

invasion. Grey arrows indicate the detailed mechanism through which CLIC3-activated TGM2 drives ECM stiffness and possibly integrin activation has still

to be determined. The number of cores assessed (n) is indicated in the plot. Of the assessed cores, there were 2–4 cores/patient/tumour type.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14206

12 NATURE COMMUNICATIONS | 8:14206 | DOI: 10.1038/ncomms14206 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


For the cell-derived ECM, the ECM was prepared as previously described21,52

with minor modifications. Briefly, one 10 cm dish/cell type was cultured at
confluence for 8 days in DMEM 10% FBS supplemented with 50 mgml� 1 ascorbic
acid. Cells were removed by washing thoroughly with a buffer 20mM NH4OH,
0.5% Triton X-100 in PBS and DNA digested with 10 mgml� 1 DNase I (Roche).
The ECM was then lysed in SDS buffer, boiled at 95 �C for 5min, sonicated using a
metal tip (Soniprep 150, MSE) and centrifuged 16,000 g for 10min. Equal volumes
of SILAC heavy and light SDS soluble proteins from iNF and iCAF were mixed
together and one-third of the sample separated on 4–12% gradient NuPAGE
Novex Bis-Tris gel (Life Technologies) and in-gel digested (10 gel slices)51.

For the conditioned medium, one 10 cm dish of 90% confluent cells was washed
thoroughly with PBS and incubated for 24 h in 7ml DMEM without serum. Then,
5ml of each SILAC heavy and light conditioned medium from iNF and iCAF were
mixed together. After three-step centrifugation at 4 �C of the mixed sample, 10min
at 300 g, 10min at 2,000 g and 30min at 10,000 g, the cleared supernatant was
acidified to pH 5.0 (optimal pH for efficient recovery of proteins from the
conditioned medium, Supplementary Fig. 1a) with 10% trifluoracetic acid and
incubated with 100 ml of Strataclean-resin (Agilent Technologies) for 60min
rotating on a wheel at room temperature (RT). Proteins bound to the beads were
eluted with 100ml of loading buffer (Bio-Rad), boiled 5min at 95 �C and one-third
of the sample separated on 4–12% gradient NuPAGE Novex Bis-Tris gel (Life
Technologies) and in-gel digested (7 gel slices)51.

MS analysis of iCAF-iNF proteomes. Digested peptides were desalted using
StageTip53. After removal of acetonitrile (ACN) using speed vacuum, peptides were
resuspended in 1% trifluoracetic acid, 0.2% acetic acid buffer and injected on an
EASY-nLC system coupled on line to a LTQ-Orbitrap Velos via a nanoelectrospray
ion source. Peptides were separated using a 20 cm fused silica emitter (New
Objective) packed in house with reversed-phase Reprosil Pur Basic 1.9mm
(Dr Maisch GmbH) and eluted with a flow of 200 nlmin� 1 from 5 to 30% of buffer
containing 80% ACN in 0.5% acetic acid, in a 90min linear gradient (190min
gradient for the cell proteome). The full-scan MS spectra were acquired in the
Orbitrap at a resolution of 30,000 at m/z 400. The top 10 most intense ions were
sequentially isolated for fragmentation using high-energy collision dissociation, and
recorded in the Orbitrap at resolution of 7,500. Data were acquired with Xcalibur
software (Thermo Fisher Scientific). An active background ion reduction device
(ABIRD, SmartSource Solutions, LLC) was used to remove background ions. The
MS files were processed with the MaxQuant software22 version 1.3.8.2
(MS files from cells, ECM and CM proteome were analysed together) and searched
with the Andromeda search engine54 against the human UniProt database55 (release-
2012 01, 88,847 entries). To search the parent mass and fragment ions we required
an initial mass deviation of 4.5 p.p.m. and 20 p.p.m., respectively. The minimum
peptide length was set to seven amino acids and a maximum of two missed cleavages
and strict specificity for trypsin cleavage were required. Carbamidomethylation
(cysteine) was set as fixed modification, whereas oxidation (methionine) and N-
acetylation were set as variable modifications. The false discovery rates at the protein
and peptide level were set to 1%. The scores were calculated as described
previously54. The requantification and match between runs features were enabled
and the relative quantification of the peptides against their SILAC-labelled
counterparts was performed by MaxQuant. For protein group quantification unique
and razor peptides (¼most likely belonging to the protein group) were used and we
required proteins to be quantified with at least two ratio counts.

MS data analysis of iCAF-iNF proteomes. The common reverse and
contaminant hits (as defined in MaxQuant) were removed from the MaxQuant
output and the normalized SILAC ratios were further normalized to the median.

Only protein groups identified with at least one uniquely assigned peptide were
used for the analysis. Protein groups were considered reproducibly quantified in
the cells, ECM and CM fractions if identified and quantified in forward and reverse
experiment. For forward and reverse experiment, protein groups with significant
SILAC ratio were determined according to the Significance B as described in
ref. 54, using 5% as false discovery rate. Protein groups with different abundance
between iNF and iCAF are those that passed the significance B test in the forward
or reverse experiment and hits with opposite regulation in the two experiments
were excluded.

Categorical annotation of protein groups was performed with the Perseus
module of MaxQuant56 that uses annotations according to Uniprot.

Functional and interaction network was generated by querying STRING version
9.1 (ref. 26) using the UniProt ID of the proteins significantly different between
iNF and iCAF (iCAF signature of 325 proteins) using the parameters Active
prediction method: Experiments, Databases, Neighbourhood and Score: 0.400.
The identified protein–protein connections were uploaded into Cytoscape57.

Ovarian and breast cancer TMAs. CLIC3 staining was evaluated in breast cancer
patient samples from TMAs that have been previously described in refs 30,31. The
ovarian TMA 2 has been previously described in ref. 58. Ovarian cancer TMA 1
was produced at the Molecular Histopathology Services Laboratory Medicine Unit,
Southern General Hospital in conjunction with the NHSGGC Biorepository,
Southern General Hospital. The study was approved by the West of Scotland

Research Ethics Service REC 4. REC reference: 10/S0704/60. The tissue microarray
was created with triplicate cores from formalin-fixed, paraffin-embedded tumour
material collected at either upfront primary debulking surgery or delayed primary
surgery. All participants gave specific consent to use of archival material for future
translational research. A total of 201 cores from 67 patients were arrayed on the
TMA, of those 24 were HGS, 22 clear cell and 21 endometrioid ovarian cancers.

CLIC3 immunohistochemistry and use of the CLIC3 histoscore calculation in
cancer cells have been described previously in ref. 31. The CLIC3 histoscore in the
stroma was blindly performed by two investigators: nontumour cell tissue was
considered as stroma and the score (no, low, medium and high) represents the
intensity of CLIC3 staining in the majority of the positively stained stroma. The
percentage of positive stroma was not included in the histoscore.

Microarrays analysis. Microarrays data of cultured oral NFs and CAFs were from
GEOD-35356 (12 healthy people undergoing plastic surgery and 12 OSCC patients
undergoing surgical resection) or GEOD-38517 (fibroblasts derived from dysplastic
oral mucosa and oral squamous cell carcinoma compared with fibroblasts derived
from normal oral mucosa); of laser capture microdissected (LCM) ovarian cancer
normal and tumour stroma were from GSE40595 (31 LCM cancer-associated
stroma samples, 32 epithelial tumour samples from high-grade serous ovarian
cancer patients, 8 microdissected normal ovarian stroma samples and 6 human
ovarian surface epithelium (cell samples); of LCM colorectal cancer normal and
tumour stroma were from GSE35602 (tissue samples from 13 colorectal cancer
tissues and 4 normal tissues were microdissected using Laser Microdissection
System (Leica Microsystems), and RNA samples specific for stroma or epithelium
were separately collected); of cultured colorectal NF and CAF were from GEOD-
46824 (we obtained fibroblast cultures from fresh surgical specimen ressected from
patients with primary colorectal carcinoma: normal colonic fibroblasts (9) from the
normal colonic mucosa at least 5–10 cm from the surgical margin, carcinoma-
associated fibroblasts from the primary tumour (CAF-PT¼ 14) and carcinoma-
associated fibroblasts (CAF-LM¼ 11) from fresh surgical specimens of liver
metastases); of cultured prostate NFs and CAFs were from GSE34312 (Stromal
cells cultured from normal peripheral zone tissues (F-PZ-64, F-PZ-79, F-PZ-82,
F-PZ-102, F-PZ-105) and from tumours (F-CA-31, F-CA-39, F-CA-52, F-CA-67,
F-CA-93) were established and grown as previously described in Peehl et al.
(2000)59. Total RNAs were extracted from semiconfluent cells (passages 4–5) 1 day
after feeding fresh medium).

Atomic force microscopy. Force indentation measurements were carried out
using AFM colloidal probes that were prepared by attaching 4.8 mm spherical silica
beads to tipless Nanoworld TL1 cantilevers (spring constant ¼ 0.02Nm� 1)60.
Calibration measurements were performed before every experiment to deduce the
spring constant for each cantilever. All measurements were undertaken in fluid at a
speed of 5 mms� 1 with a loading force of 3 nN. The Young’s modulus was
extracted from the force indentation curves using the Hertz model60. Considering
the Hertz model is generally valid for small indentations, which are in the region of
o15% of the total sample thickness. All curves were analysed up until a 300 nm
depth limit, even if the total curve depth extended deeper.

3D endothelial cell fibrin gel. The 3D fibrin gel HUVEC-fibroblast co-culture
has been performed in 24-well/plate as previously described61, with minor
modifications, such as that HUVECs had always been cultured in EGM2 and
fibroblasts in DMEM 10% FBS. For the reagents, collagen-coated beads (Cytodex 3;
Cat. No. 17-0485-01) were from Amersham, and Aprotinin, Fibrinogen type 1 and
Thrombin were from Sigma Aldrich. Medium was changed (including treatments
were indicated) every second day. Bright-field images were acquired with an
Axiovert 25 microscope (Zeiss) equipped with a Retiga EXi Fast 1394 camera
(Imaging). Lumens were discerned by visual inspection of bright-field images.

Tumour cell pseudopod length. A2780 ovarian carcinoma cells or MDA-MB-231
cells were plated onto the fibroblast-derived ECM in 6-well plate at a density of
1� 105 cells per well. After 2 h, indicated stimuli were added in the medium and
3 h later the time lapse started. Pictures of the cells were taken every 5min over a
22 h period with a 10� objective on a Nikon Eclipse Ti microscope equipped with
a CoolSNAP HQ CCD camera (Photometrics). Cells were maintained at 37 �C and
5% CO2 for the duration of the experiment (environmental control chamber,
Okolab). The pseudopod length analysis was carried out with ImageJ. The
pseudopod length was measured from the nucleus to the frontal tip of the cell. For
each well, six fields were recorded and for each of them the length of the
pseudopod of 30 cells measured (¼ 180 cells measured for each experimental
condition in each replicate experiment). For the experiment where iNF- and
iCAF-generated CM was used as stimulus (Fig. 1), only MDA-MB-231 cells were
used because these cells grow in the same medium (DMEM) as the fibroblasts.

Inverted tumour cell invasion assay. Matrigel invasion assay was performed as
described previously62. Briefly, A2780 cells were seeded on the base of transwell
(8 mm, Corning) coated with a thick Matrigel solution composed by pure growth
factor reduced geltrex (LDEV-Free Reduced Growth Factor Basement Membrane
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Matrix, Cat. No. A1413202) diluted 1:1 in cold PBS and supplemented with
25mgml� 1 soluble fibronectin and stimuli. Tumour cells were allowed to migrate
towards a gradient of 10% FCS and 25 ngml� 1 epidermal growth factor for 72 h.
Invasion was measured by labelling cells with 4 mM acteoxymethyl ester calcein
followed by confocal microscopy serial sections analysis using an Olympus FV1000
equipped with an argon laser (SLC), a photon multiplier tube (Hamamatsu
Photonics) and a 20� objective. For each individual experiment three transwells
per condition were analysed and three different optical sections were taken from
three areas of each transwell.

3D MCF10DCIS.com cancer cell invasion. To investigate the role of CLIC3 in
tumour cell invasion, we use ER� MCF10DCIS.com mammary cells that are derived
from the ‘normal’ MCF10A cell line and form well-defined comedo-like DCIS when
injected as xenografts. However, these lesions spontaneously progress to invasive
carcinoma at a predictable rate42,63. Elements of this progression may be
recapitulated in 3D culture41. Indeed, when cultured in matrigel for up to 5 days,
MCF10DCIS.com cells formed noninvasive comedo structures (referred to as
mammosphere) bounded by a basement membrane as determined by
immunofluorescence staining for laminin 5 and b4 integrin30. Following 6 days of
culture, these comedo-like structures began to lose their sphericity as the basement
membrane lost integrity and the mammospheres became spontaneously more
invasive. Mammosphere were generated as described in refs 30,64. Briefly, 5� 103

MCF10DCIS.com cells per well of an eight-well chamber slide were plated on a 40ml
layer of Matrigel (5ml for immunofluorescence analysis) as previously described.
Multiple phase-contrast images at � 10 magnification were captured from duplicate
wells after 6 days of culture and circularity was determined using ImageJ.

Aortic ring assay. The aortic ring angiogenesis assay has been performed as
previously described65,66 with minor modifications. Briefly, thoracic aortas were
isolated from 8-week-old C57Bl/6J mice (Charles River Research Models &
Services) that were euthanized by cervical dislocation. Under a dissection
microscope, surrounding fat, tissue and branching vessels were removed and aortas
were cut in B0.5mm thick rings and put in culture dish, covered with Opti-MEM
(Life Technologies) and cultured for 48 h at 37 �C in 5% CO2. Each ring was then
separately embedded into a 20 ml drop of 1.6mgml� 1 collagen rat tail solution
(Cat. No. 11179179001, Roche) in EBM-2 (Lonza), pH 7, deposited onto a glass
bottom Microwell plate (MatTek). After 30min of incubation at 37 �C to allow the
collagen to solidify, 2ml of EBM2-containing heparin, 10% FBS, containing
30 ngml� 1 murine VEGF165 (PreproTech) and either vehicle or 25 ngml� 1

purified human recombinant rCLIC3 was gently added to the plate. Medium was
replaced every second day and images captured 6 days after embedding. Mice were
housed in individual ventilated cages in a barrier animal facility proactive in
environmental enrichment. All animal work was done in accordance with ethical
approval from University of Glasgow under the revised Animal (Scientific
Procedures) Act 1986 and the EU Directive 2010/63/EU authorized through Home
Office Approval (Project licence number 60/4181).

Matrigel plug assay. Growth factor reduced phenol red free matrigel (Corning) in
liquid form at 4 �C was mixed with vehicle (50mM Tris HCl pH 7.4) or FGF2
15Uml� 1 heparin or purified human recombinant CLIC3 (wild type or C22A
mutant, 500 ng) alone or in combination. For TGM2 inhibition, Z-DON (20 nM)
was additionally added to the matrigel solution. Matrigel (0.5ml) was injected into
the abdominal subcutaneous tissue of female BALB/c-nude mice (8 weeks old, 6
mice per group, 3 or 4 groups) along the peritoneal midline. On day 10, plugs were
harvested, weighted and divided for haemoglobin measurement and immuno-
histochemical analysis (fixed overnight in 2% paraformaldehyde (PFA)). Vascular
identity of infiltrating cells was established by Pecam1 (BD Bioscience) immu-
nostaining. Matrigel plug haemoglobin content was measured using the Drabkin
method (Drabkin reagent kit, Sigma) according to the manufacturer’s recom-
mended protocol. Mice were randomly assigned to a treatment group and the
investigator was blinded when assessing the outcome. All mouse procedures were
approved by the Institutional Animal Care and Research Advisory Committee of
the K.U. Leuven. Animals were excluded from the analysis if they were considered
outliers based on Prism analysis.

Xenograft. The 8-week-old female BALB/c-nude mice (Charles River) were
subcutaneously injected in the flank with 5� 105 MCF10DCIS.com cells (at P11)
that had been resuspended in 400ml of which 200 ml was growth factor reduced
phenol red free matrigel (BD Bioscience) and 200 ml was vehicle (PBS) alone or in
combination with human purified recombinant CLIC3 (500 ng), with or without
Z-DON (20 nM). Mice were humanely euthanized after 15 days from inoculation
and tumours excised and used for immunohistochemical analysis. The circularity
of the tumours was determined using ImageJ. Only tumours with a peripheral
laminin 5 staining were quantified. Mice were randomly assigned to a treatment
group and the investigators were blinded when assessing the outcome. Mice were
housed in individual ventilated cages in a barrier animal facility proactive in
environmental enrichment. All animal work was done in accordance with ethical
approval from University of Glasgow under the revised Animal (Scientific Proce-
dures) Act 1986 and the EU Directive 2010/63/EU authorized through Home
Office Approval (Project licence number 60/4181). Animals were excluded from
the analysis if they were considered outliers based on Prism analysis.

Recombinant proteins generation and purification. For the GST-CLIC3 and
GST-CLIC3C22A constructs, the coding region of CLIC3 with flanking restriction
sites (see table below for primers and restriction sites) was amplified and subcloned
into the expression vector pGEX-6P-1. Mutation of the cysteine at position 22 with
an alanine was performed using QuickChange site-directed mutagenesis (see
Table 2 for primers) according to the manufacturer’s instructions (Stratagene).

E. coli BL21 (DE3) pLysS cells (Invitrogen) transformed with pGEX-6P-1-
CLIC3 vector were grown at 37 �C until the cell density reached an OD600 of 0.6, at
which point GST-CLIC3/CLIC3C22A expression was induced with 0.25mM
isopropyl b-D-thiogalactosidase (IPTG) at 30 �C for 2 h. The bacteria were
harvested by centrifugation at 3,300 g at 4 �C for 1 h. Cell pellets were resuspended
in 100ml of lysis buffer containing 0.1% Triton X-100, 2mM Benzamidine, 3 mM
Pepstatin, 3 mM Antipain, 4 mM Leupeptin and 0.3 mM Aprotinin in PBS pH 7.4.
The identity of rCLIC3 and rCLIC3C22A was verified by MS-based analysis.
Samples were in-gel digested with trypsin51 and analysed on a LTQ-Orbitrap Velos
using operated in the Collision Energy Dissociation (CID) mode to fragment the
peptides. Data were analysed with the MaxQuant computational platform22.

For GST-TGM2 construct, E. coli BL21 (DE3) pLysS cells (Invitrogen)
transformed with pGEX-6P-1-TGM2 vector (kindly provided by Professor Jeffrey
Keillor) were grown at 25 �C until the cell density reached an OD600 reading of 0.6,
at which point the temperature was reduced to 18 �C before overnight induction
with 1 mM IPTG. The bacteria were harvested by centrifugation at 3,300 g at 4 �C
for 1 h. Cell pellets were resuspended in 100ml of lysis buffer containing 20mM
Tris HCl pH 8, 150mM NaCl, 1mM EDTA, 1mM TCEP pH8, 15% glycerol and 2
tablets of Complete ultra protease inhibitors without EDTA (Roche).

For the purification of the recombinant proteins, the bacterial suspension was
incubated with DNAase (30 mg) on ice for 15min, homogenized in a Microfluid
instrument (Model M-110 P) and centrifuged at 33,000 g at 4 �C for 1 h.
The GST-tagged recombinant proteins were purified using GSTrap HP
chromatography (GE Healthcare Life Sciences). The GST was cleaved from
the purified proteins in situ by proteolysis with PreScission protease (Life
Technologies) according to the manufacturer’s instructions, and the recombinant
GST-free proteins eluted, concentrated (Amicon ultra 15, 10 kDa, Millipore) and
stored at � 80 �C until use.

Quantitative MS analysis of reduced cysteines. The buffer that TGM2 was
stored in was exchanged with PBS before experiment using a desalting column
(Zeba Spin Desalting Columns, Thermo Scientific); then, TGM2 was oxidized with
0.5 mM diamide and the diamide removed using a desalting column. Oxidized
rTGM2 was incubated with rCLIC3 or rCLIC3C22A in the presence of 10mM GTP,
with or without 1mM GSH for 20min at 37 �C. To measure the levels of reduced
cysteines in rTGM2 between experimental conditions (details of the protocol:
Lilla and Zanivan, manuscript in preparation), after the reaction, samples were
treated either with light iodoacetamide (IAA) or with stable isotope containing IAA
(Sigma). Samples were then mixed together, precipitated with trichloroacetic acid
and digested with trypsin. For each experiment, two independent replicates were
performed, switching the labelling conditions. Samples were run on a LTQ-Orbi-
trap Velos or on a Q-Exactive HF coupled on line to an EASY-nLC 1200 system
(Thermo Fisher Scientific). Peptides were eluted with a flow of 200 nlmin� 1

(EASY-nLC) or 300 nlmin� 1 (EASY-nLC 1200) from 5 to 27% (EASY-nLC) and

Table 2 | Primers for QuickChange site-directed mutagenesis.

Description Sequence

CLIC3 C22/A22 Fw 50-GAGAGCGTGGGTCACGCCCCCTCCTGCCAGCGGCTCTTCATG-30

CLIC3 C22/A22 Rev 50-CATGAAGAGCCGCTGGCAGGAGGGGGCGTGACCCACGCTCTC-30

CLIC3 XhoI Fw 50-GTACTCGAGCTATGGCGGAGACCAAGCTC-30

CLIC3 BamHI Rev 50-ATTGGATCCCTAGCGGGGGTGCAC-30
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from 2 to 20% (EASY-nLC 1200) of buffer containing 80% ACN in 0.1% formic
acid in a 42min linear gradient. The full-scan MS spectra were acquired in the
Orbitrap at a resolution of 60,000 at m/z 200. The top 10 most intense ions were
sequentially isolated for fragmentation using high-energy collision dissociation,
and recorded in the Orbitrap at resolution of 15,000 at m/z 200. The MS .RAW
data were acquired with Xcalibur software and processed with the MaxQuant
software22 version 1.5.3.30 and searched with the Andromeda search engine54

against an in-house database containing common contaminants and human
TGM2, CLIC3 and CLIC3C22A sequences (1,961 entries). Msms.txt file from
MaxQuant was imported into Skyline to extract the XICs (60 K resolution at 400
m/z) of the cysteine-containing peptides of TGM2 that carried 2þ and 3þ
charges and that were modified with IAA light and heavy. Extracted XIC were used
for quantification.

Polarized fluorescence. To measure the functional/physical interaction between
TGM2 and CLIC3, fluorescence-based polarization measurements were used. This
approach exploits the capability of TGM2 to bind to GDP/GTP and uses the
nucleotide analogue MANT-GMPPNP (Life Technologies), where the modified
ribose moiety has been shown to minimally interfere with the binding between
protein and nucleotide. For this assay, recombinant TGM2 and CLIC3 expressed as
GST-tagged protein in E. coli and purified using affinity chromatography followed
by removal of the GST tag were used (see Methods above). The evaluation of the
interaction between CLIC3 and TGM2 operates on the principle that the binding of
another moiety to the Mant-GMPPNP.TGM2 complex will be reflected in an
altered fluorescence polarization signal. Fluorescence polarization measurements
were performed at RT in 20mM Tris-HCl pH 8, 150mM NaCl, 1mM EDTA,
1mM TCEP and 15% glycerol buffer, containing 2 mM MANT-GMPPNP, 1mM
GSH (Fisher Scientific), 1mM GSSG (Sigma-Aldrich), 10mM CaCl2 (Sigma-
Aldrich), 2 mM unlabelled GTP and purified recombinant human proteins TGM2,
CLIC3 and CLIC3C22A at the indicated concentrations alone or in combination.
Data were recorded with a Photon Technology International fluorimeter (PTI,
equipped with LPS-220B, Bryteleox, SC-500, MD-5020 and photomultiplier
detection system 814 modules and Felix 32 analysis V 1.2 software), with excitation
and emission wavelengths at 355 and 440 nm, respectively, for MANT-GMPPNP.

HEDS enzyme assay. The reduced monomeric CLIC1 wild type, CLIC1C24A

mutant, CLIC3 wild type or CLIC3C22A mutant (10 mM final concentration) was
added to 5mM potassium phosphate buffer (pH 7) containing 1mM EDTA,
250mM NADPH, 50 nM GR and 1mM HEDS. The mixture was incubated for
5min at 37 �C, with the reaction initiated by addition of 1mM GSH. Consumption
of NADPH was monitored at A340 nm.

Western blot. Proteins were separated on 4–12% gradient NuPAGE Novex
Bis-Tris gel (Life Technologies), transferred to PVDF membrane (Millipore),
blocked in 1� TBS-Tween with 5% non-fat dry milk and incubated with corre-
sponding primary antibody and secondary antibodies. The following antibodies
were used: rabbit anti-TGM2, (1:1,000; Cat. No. HPA021019, Sigma-Aldrich,
Prestige Antibodies Powered by Atlas Antibodies), Rabbit anti-CLIC3 (1:3,000;
produced in house31), Rabbit anti-b-tubulin (1:1,000; Cat. No. sc-9104, Santa
Cruz), Mouse anti-Vinculin (1:1,000; Cat. No. V9131, Sigma-Aldrich) and Mouse
anti-aSMA (1:1,000; Cat. No. A5228, Sigma). As secondary antibodies, horseradish
peroxidase-conjugated (1:10,000; Cat. No. HAF008 and HAF007, H&D systems, ),
IRDye 680RD (1:10,000; Cat. No. 926-68072, LI-COR) and IRDye 800CW
(1:10,000; Cat. No. 926-32213, LI-COR) were used. Images were captured with a
Bio-Rad GS-800 Calibrated densitometer (Quantity-One software version 4.6.3) or
a LI-COR Odyssey CLx scanner (Image Studio software, version 5.0.21) for
chemluminiscent or fluorescence western blots, respectively. Representative images
from reproducible, independent experiments are shown. Uncropped scans of the
western blots are reported in Supplementary Information (Supplementary Figs 9
and 10).

Small interfering RNA. The day of transfection, iCAF were 70–80% confluent.
The Amaxa electroporation kit R (Lonza) for transfection of the siRNA was
used according to the manufacturer’s protocol. Briefly, 3� 106 iCAFs were
transfected with 1 nM nontargeting siRNA or specific siRNA for CLIC3 or
TGM2 (Dharmacon-Thermo). SiCLIC3¼ 50-CGGACGUGCUGAAGGACUU-30

(refs 30,31); TGM2¼ Smart Pool. For primary fibroblasts experiment, cells were
transfected with oligofectamine (Invitrogen, Life Technologies) according to the
manufacturer’s instructions. Experiments were performed 24 h after the
transfection.

Immunofluorescence. For the 3D MCF10DCIS.com cancer cell invasion,
the staining was performed as previously described30. Briefly, cells were fixed
with 2% PFA for 20min at RT and permeabilized with 0.5% Triton for 10min at
RT and blocked with 1% bovine serum albumin. Staining was performed using
the following antibodies: anti-laminin-5 (1:200; Cat. No. mab19562, Merck
Millipore)30; anti-b4 integrin (1:200; Cat. No. BD555722, BD Biosciences)68; and

Alexa Fluor 488 or 555-conjugated secondary antibodies (1:500; Molecular Probes
Life Technologies).

Immunostainings. Immunohistochemistry staining was performed on 4 mm thick
sections of formalin-fixed, paraffin-embedded tissue of TMA and patient tissue
samples following standard protocols. The antigen retrieval was performed
with Sodium Citrate at pH 6.0. Sections were stained using Rabbit anti-CLIC3
(1:750; produced in-house31), rabbit anti-TGM2 (1:20; Cat. No. HPA021019,
Sigma, Prestige Antibodies Powered by Atlas Antibodies), mouse anti-aSMA
(1:25,000; Cat. No. A5228, Sigma)69 and mouse anti-laminin 5 (1:250; Cat. No.
mab19562, Merck Millipore)70.

Statistical analysis. Statistical analysis was carried out using GraphPad Prism
software (GraphPad Software, Inc.). When comparing two samples, for 3D fibrin
gel assay, endothelial motility, tumour cell invasion, AFM, CLIC3 score in TMA
and microarrays, P-value was calculated according to Mann–Whitney test. For the
pseudopod elongation, Kruskal–Wallis test and Dunn’s multiple comparison test
were used. For multiple samples comparison, ex vivo and in vivo experiments, and
cell proliferation, P-value was calculated according to the two-tailed Student’s
t-test. Unless indicated otherwise, bars represent mean±s.e.m. and each experi-
ment was performed a minimum of three times (biological replicates) and figures
show one representative replicate.

Data availability. The .raw MS files and search/identification files obtained
with MaxQuant have been deposited in the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org/cgi/GetDataset) via the PRIDE
partner repository71 under accession code PXD002444. All the other data
generated or analysed during this study are included in this published article
(and its Supplementary Information files) or are available from the authors
(on reasonable request).
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