
ARTICLE

Received 10 Aug 2015 | Accepted 6 Dec 2016 | Published 25 Jan 2017

Design principles for shift current photovoltaics
Ashley M. Cook1,2,*, Benjamin M. Fregoso1,*, Fernando de Juan1, Sinisa Coh1,w & Joel E. Moore1,3

While the basic principles of conventional solar cells are well understood, little attention has

gone towards maximizing the efficiency of photovoltaic devices based on shift currents.

By analysing effective models, here we outline simple design principles for the optimization of

shift currents for frequencies near the band gap. Our method allows us to express the band

edge shift current in terms of a few model parameters and to show it depends explicitly

on wavefunctions in addition to standard band structure. We use our approach to identify

two classes of shift current photovoltaics, ferroelectric polymer films and single-layer

orthorhombic monochalcogenides such as GeS, which display the largest band edge

responsivities reported so far. Moreover, exploring the parameter space of the tight-binding

models that describe them we find photoresponsivities that can exceed 100mAW� 1.

Our results illustrate the great potential of shift current photovoltaics to compete with

conventional solar cells.
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C
ost-effective, high-performing solar cell technology
is an essential piece of a sustainable energy strategy.
Exploring approaches to photo-current generation beyond

conventional solar cells based on pn junctions is worthwhile
given that their performance is in practice constrained by the
Shockley–Queisser limit1. One of the most promising alternative
sources of photocurrent is the bulk photovoltaic effect (BPVE) or
‘shift current’ effect, a nonlinear optical response that yields net
photocurrent in materials with net polarization2–11. Contrary to
conventional pn junctions, the BPVE is able to generate an above
band-gap photovoltage12, potentially allowing the performance
of BPVE-based photovoltaics to surpass conventional ones.
However, closed-circuit currents generated via the BPVE
reported in the literature have typically been small compared
with those generated in pn junction photovoltaics13–15. Recent
interest in the BPVE also stems from the proposal that it may be
at work in a promising class of materials for photovoltaics known
as hybrid perovskites13, an extremely active field of research16–29.

The fundamental requirement for a material to produce a
current via the BPVE is that it breaks inversion symmetry,
allowing an asymmetric photoexcitation of carriers. But despite
considerable case-by-case study of the BPVE, the necessary
ingredients to optimize a BPVE-based solar cell are not
sufficiently well understood. As with conventional solar cells,
band gaps in the visible (1.1–3.1 eV)15,30 and large electronic
densities of states14,31 are always beneficial. In addition, to
produce a solar cell that responds to unpolarized sunlight, a
highly anisotropic material must be used, since otherwise there is
no preferred direction for the current to flow. But beyond these
natural requirements, our only guiding knowledge is that the shift
current depends explicitly on the nature of the electronic
wavefunctions31,32 and that it is not correlated with the
material polarization in any obvious way15 despite the fact that
both shift currents and polarization originate from inversion
symmetry breaking.

In the current situation, a more generic understanding of what
makes the BPVE strong is highly desirable. When tackling
complex material science problems, stripping off all complica-
tions and optimizing the simplest model that captures the
relevant physics often proves the best strategy, as shown for
example in thermoelectricity studies33–35. In this work, we
present simple design principles for BPVE optimization based
on the study of an effective model for the band edges. With this
model, the band edge shift current is given by the product of the
joint density of states (JDOS) and a matrix element, both given by
simple expressions in terms of a few model parameters. The
simplicity of the model allows us to derive the main principle that
band edges with semi-Dirac type of Hamiltonians are the best
starting point to obtain large band edge prefactors. In addition, by
relating the effective model parameters to realistic tight-binding
models, we can predict that several materials with the required
band structure have larger shift currents than any reported so far.

Results
Density of states in one- and two-dimensions. In our search for
materials we should look for large JDOS in systems where the
band edge is closely aligned with the peak of the solar spectrum,
around 1.5 eV. Since the band edge always induces a Van Hove
singularity in the density of states, the requirement of a large peak
in the photoresponse can be naturally better satisfied by low-
dimensional materials, which generically present stronger singu-
larities36. Materials of one and two dimensions are therefore the
focus of this work. Among one-dimensional materials,
ferroelectric polymers are suitable candidates for shift-current
photovoltaics: they strongly break inversion symmetry, some have
suitable band gaps for photovoltaics applications37–40, and they
can be produced in macroscopically oriented samples. For these
reasons, we consider solar cells consisting of such polymer films,
shown in Fig. 1a. Two-dimensional materials41 also have great
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Figure 1 | Schematics of proposed shift current photovoltaics: (a) Three-dimensional (3D) structure of a solar cell built by stacking one-dimensional

ferroelectric polymers. (b) Simplified two-band tight-binding model of a polymer. (c) 3D structure of a solar cell made by stacking two-dimensional

monolayers of a monochalcogenide. The inert spacers between layers prevent the restoration of bulk inversion symmetry. (d) Simplified two-band

tight-binding model for a monochalcogenide layer.
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potential for photovoltaics, as shown by demonstration of a pn-
junction photovoltaic effect in dichalcogenide heterostructures42–
44, and in few-layer black phosphorus45. However, these well
known two-dimensional (2D) semiconductors have vanishing
shift currents because of either inversion or rotation symmetry.
Group IV monochalcogenides have emerged in the past years as a
new familiy of inversion-breaking, anisotropic 2D materials with
fascinating properties46–50, and interest in growing as thin films
of all four members of the family, GeS51–54, GeSe53,54, SnS55,56

and SnSe57–59 has now been isolated experimentally. In this work,
we show that GeS is ideally suited to realize high values of the
BPVE. Their GeS structure is shown in Fig. 1c.

To understand how to optimize the photoresponse, we first
discuss how the shift current can be computed for a tight-binding
model, and then we proceed to apply this formalism to describe a
generic band edge and the response of particular materials.

Shift current. In this work we consider the shift current
contribution to the BPVE and we shall use both terms
interchangeably (note the BPVE can have other contributions as
well6). With electric field Eb(o) at frequency o and linearly
polarized in the b direction, the shift current is a DC response of
the form6

Ja ¼ sabb oð ÞEb oð ÞEb �oð Þ: ð1Þ
Defining an intensity for each polarization, I0;b ¼ cE0 Ebj j2=2, we
define the photoresponsivity kabb as the current density generated
per incident intensity Ja¼ kabbI0,b, which gives kabb ¼ 2sabb=cE0.
Note that in conventional solar cells the current is also linear with
intensity. For a D-dimensional system, kabb takes the form7,9

kabb ¼ C
Z

dkD

2pð ÞD
X
n;m

fnmI
abb
nm d onm �oð Þ; ð2Þ

where C ¼ 4gspe3=‘
2E0c, with c being the speed of light, E0 the

vacuum permittivity and gs¼ 2 accounts for the spin degeneracy.
In what follows we set :¼ 1. Summation of indices is explicitly
indicated using the summation symbol. The sum is over all Bloch
bands, with onm¼ En� Em the energy difference between bands
n and m and fnm¼ fn� fm the difference of Fermi occupations,
which we take at zero temperature. The integrand is

Iabbnm¼ Im rbmnr
b
nm;a

� �
; ð3Þ

where ranm are the inter-band matrix elements of the
position operator (or inter-band Berry connections), defined as
ranm ¼ i nj@kamh i for na m and zero otherwise, where nj i is the
eigenstate of band n. A semicolon denotes a generalized derivative
rbnm;a ¼ @ka r

b
nm � i xann � xamm

� �
rbnm, where xann ¼ i nj@kanh i is the

diagonal Berry connection for band n.

Generic two-band model. With the aim of describing the shift
current response of the band edge of a semiconductor, next we
consider the shift current of a generic two-band model.
The Fourier transform of the real space Hamiltonian is
performed with the choice of phases cm;k xð Þ ¼ 1

N

P
R;i e

ik Rþ xið Þf
x�R� xið Þ mj ik;i, where f(x) is a localized orbital and xi is the
position of site i in the unit cell. This choice is made in order to
naturally incorporate the action of the position operator, see
refs 60–62. The Hamiltonian matrix takes the form

H ¼ E0s0 þ
X
i

sifi; ð4Þ

where s0 is the identity matrix, si¼ sx, sy, sz are the Pauli
matrices and E0 and fi¼ fx, fy, fz are generic functions of momenta
k (the momentum label is omitted to simplify notation).
The conduction and valence bands are given by E1¼ E0 þ E,

E2¼ E0 � E, respectively and E ¼ ð
P
i
fifiÞ1=2. Note that this basis

choice implies that the Hamiltonian matrix elements are not
periodic in the Brillouin Zone, Hij(kþG)aHij(k) with G a
reciprocal lattice vector.

To compute the shift current, the direct use of equation (3)
requires the evaluation of derivatives of Bloch functions, which
can be difficult to compute numerically. Previous works4,7,9 have
addressed this problem with the use of identities that replace
wavefunction derivatives with sums over all states of matrix
elements of Hamiltonian derivatives. These identities are known
as sum rules and rely on the fact that momentum and velocity
operators are proportional in the plane wave basis p¼mv, which
is not true in the tight-binding formalism. In this work we derived
a generalized sum rule appropriate for tight-binding models
(see Methods section), from which the integrand equation (3) can
be evaluated for any two-band model in terms of the Hamiltonian
derivatives only. The result is

Iabb12 ¼ �
X
ijm

1
4E3

fmfi;bfj;ab � fmfi;bfj;a
E;b
E

� �
Eijm; ð5Þ

where the compact derivative notation fi;a � @ka fi and E;b � @kbE
is used. Equation (5) is one of the main results of this work.
Several general principles to maximize the band edge shift current
can be derived from this expression. A straightforward one is that,
since this expression does not depend on E0, particle–hole
asymetry does not influence the shift current at all. Therefore E0 is
set to zero from now on. The additional term that appears only
for tight-binding models in this more general sum rule is fm fi,b
fj,ab, which is absent in previous formulations. For a direct band
gap, this term dominates the response exactly at the band edge,
since to lowest order in k the first term always has constant
contribution, while the second one is at least linear in k for any
model due to the energy derivative E;b. For this term to be finite,
the three Pauli matrices in the Hamiltonian must have constant,
linear and quadratic coefficients, in any order. Satisfying this
low-energy constraint can be taken as another general principle in
the search for materials with large shift current.

More explicit guidelines can be obtained by considering an
explicit low-energy model with a direct band gap at a time
reversal invariant momentum. Expanding the Hamiltonian
around it we get

H ¼ dþ axk2x þ ayk2y þ axykxky
� �

sx

þ vFkxsy þ Dþbxk
2
x þbyk

2
y þbxykxky

� �
sz:

ð6Þ

Time reversal symmetry H*(� k)¼H(k) prevents quadratic
terms in sy, and we have taken the linear term to be in the x
direction without loss of generality. Note this type of linear term
requires the breaking of any Cn rotation symmetry with n42.
The band gap of this model is Eg ¼ 2Ek¼0. Evaluating equation (5)
we get

Ixxx12 oð Þ ¼ 4vF
o3

axD�bxdð ÞþO k2
� �

; ð7Þ

Ixyy12 oð Þ ¼ 2vF
o3

axyD� bxyd
� �

þO k2
� �

; ð8Þ

while Iyxx12 ¼ Iyyy12 ¼ 0þO k2ð Þ. Also note that in order to have a
non-zero shift current quadratic terms in sx or sz are required. In
2D, the fact that Ixyy is in general non-zero means that the current
need not be in the direction of the electric field polarization.

The shift current close to the band edge can now be obtained
by substituting equations (7) and (8) into equation (2),
which gives

kabb oð Þ ¼ C Iabb12 oð ÞN oð Þ; o�Eg
� �

=Eg � 1 ; ð9Þ
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where N oð Þ ¼
R
dkD d o12 �oð Þ= 2pð ÞD is the JDOS.

Equation (9) provides an analytical formula for o close to the
band edge for a very general class of models. This simple
expression allows one to disentangle the contributions of the shift
current integrand and the JDOS and hence to optimize them
independently.

To maximize the response we therefore require band structures
where the JDOS has a strong singularity. It is well known that in
the one-dimensional (1D) case, the generic JDOS diverges as a
square root, N(o)p(o�Eg)� 1/2. 1D systems such as polymers
or nanowires or systems in the quasi-1D limit will in general have
a large response. In 2D, the band edge JDOS has a finite jump of
N(o)¼ (mxmy)1/2/2p, where mi are the average effective masses
for valence and conduction bands. A singular N(o) thus occurs in
2D when the inverse effective mass vanishes. In the effective
model in Equation (6), this happens when d¼ 0, which realizes
what we may call a gapped semi-Dirac dispersion63, since the
coefficients of sy and sx are linear and quadratic in momentum,
respectively. In such a case we have N(o)p(o�Eg)� 1/4

(full expressions for N(o) may be found in the Methods section).
For materials with large JDOS, the current can be further

enhanced by appropriately tuning the parameters in Equations
(7) and (8). This is most easily discussed if these parameters can
be related to microscopic lattice models. In the next section, we
discuss tight-binding models for simple materials that realize the
described types of band structures.

Material realizations and lattice models. As a realization of the
1D case, we consider ferroelectric polymers that break inversion
symmetry such as polyvinylidene fluoride or disubstituted
polyacetilene39,40,64. This system is described by the tight-binding
model schematically shown in Fig. 1b, defined in terms of two
types of hoppings, t1 and t2, alternating on-site potentials ±D,
and orbital centres at x¼ 0 and x¼ x0. With our choice of
basis functions, the Hamiltonian is specified by fx þ ify ¼
� t1eikxx0 þ t2e� ikx a� x0ð Þ� �

and fz¼D, where a¼ 10Å is the
lattice constant and the distance between closest neighbours is
ref. 64 x0¼ 0.48a. For estimates of the tight-binding parameters,
we consider the example of disubstituted polyacetilene that was
experimentally realized in ref. 39, with a band gap of 2.5 eV. For
regular polyacetilene, where D¼ 0, the hopping parameters and
band gap have been estimated as ref. 64 t1¼ 2.85 eV, t2¼ 2.15 eV,
Eg¼ 1.4 eV. Assuming the same hopping for the disubstituted
version, we use D¼ 1.0 eV to match the observed band gap. Note
that the dispersion does not depend on x0.

Using Equations (2) and (5) we can now compute the shift
current for this 1D model. Expanding about the low energy
momentum kx¼ p/a and performing a constant rotation of the
Pauli matrices, we obtain an effective model as equation (6)
with parameters ky¼ 0 and d¼ t1� t2, vF¼ (t1� t2)x0þ t2a,
ax¼ [t2(a� x0)2� t1x20]/2.

To be able to compare the responsivity of these materials to
that of a three-dimensional system, we consider a stack of
polymers as depicted in Fig. 1a, separated by a distance d which
we take to be equal to the lattice constant of the polymer d¼ a.
The photoresponsivity is then kabb3D ¼ kabb1D =d2. The typical
photoresponsivity spectrum of this model with this convention
is shown in Fig. 2a.

For the 2D case, we require a layered material that breaks both
inversion and rotational symmetries. The most popular of the
recently isolated 2D semiconductors break either inversion
(BN, MoS2) or rotational symmetries (black phosphorus65, ReS2
(ref. 66)), but not both. An inversion symmetry breaking version
of the strongly anisotropic black phosphorus, a group V element,
can be obtained combining elements of the IV and VI groups.

These group IV monochalcogenides, such as GeS, are predicted to
be stable in the monolayer form with the orthorhombic structure
of black phosphorus46,47.

These materials can be described with a tight-binding model
similar to the one used for black phosphorus67–69. While the GeS
unit cell contains two Ge–S pairs at different heights, a unit cell
with a single Ge–S pair can be used when the physics to be
probed is insensitive to the heights of the atoms (see Methods for
a detailed explanation). The two band Hamiltonian is specified by
fx þ ify ¼ � e� ix0�k t1 þ t2F kð Þþ t3F� kð Þ½ �, where x0¼ (x0, 0)
and F kð Þ ¼ ðeia1�k þ eia2�kÞ, and fz¼D. a1 and a2 are the lattice
vectors. See Fig. 1d for the definition of the hopping integrals.
Again note the dispersion is independent of x0. The specific
values of the tight-binding parameters for GeS have been
obtained by fitting an ab-initio calculation as described in the
Methods section, where the coefficients of the low-energy model
near the band edge are also shown. Note in this lattice structure
there is a mirror symmetry y-� y, which is represented as the
identity, and restricts axy¼ bxy¼ 0. (This is so because both
conduction and valence bands are even under the symmetry, as it
also happens in black phosphorus. This is also the result of our
ab-initio calculation.) This symmetry still allows a linear term of
the form kxsy, crucial for the semi-Dirac type of band structure.
In this model, the semi-Dirac limit is realized when
t1¼ � 2(t2þ t3)70.

We consider a stack of monolayers separated by d¼ a, as
shown in Fig. 1c. In this case, we consider an inert spacer layer
between the GeS layers to avoid the restoration of inversion
symmetry that would occur if we were to stack GeS into its
natural bulk form. The three-dimensional photoresponsivity of
this model, given by kabb3D ¼ kabb2D =d, is computed using equations
(2) and (5). To make contact with the 1D case we consider a
stacking distance d¼ a�(|a1|þ |a2|)1/2 and x0¼ 0.18a. The
results are shown in Fig. 2b. We see that both kxxx and kxyy

are in general finite, and the polarization average is also finite due
to the strong anisotropy.

The response of the monochalcogenides is large because
they are close in parameter space to the gapped semi-Dirac
Hamiltonian. This is best illustrated by considering the evolution
of a fictitious system where the hoppings are tuned (with t3¼ 0
for simplicity) to the semi-Dirac case |t1|/t2¼ 2, where the
divergence of the response is clearly appreciated. This evolution is
shown in Fig. 2c.

Further optimization. After describing the representative tight-
binding models with large JDOS, we may now address a more
systematic analysis of the photoresponsivity. First, we consider
exploring the phase diagram of the monochalcogenides by
sweeping |t1|, t2 in parameter space while the band gap is fixed at
1.89 eV by choosing D appropriately and t3¼ 0 for simplicity.
Figure 3a shows the polarization averaged photoresponsivity,
�kx ¼ kxxx þ kxyyð Þ=2, for the parameters x0¼ 0.18a and y¼ 0.69.
This phase diagram summarizes nicely the most physically
relevant regimes where the shift current is large due to a divergent
JDOS, namely the 1D limit where t1j j � t2, and the semi-Dirac
regime where t1j j � 2t2. In this phase diagram, the point
corresponding to t1 and t2 of GeS is shown as a white circle with
blue outline.

Next we illustrate a very important feature of the behaviour
of the shift current integrand. Equations (7) and (8) depend
generically on the hoppings and lattice parameters. The energy
does not depend on the parameter x0, but the wavefunctions do.
In Fig. 3b, we show the peak photoresponsivity as a function of
|t1|/t2 and x0. A large response is observed in the semi-Dirac limit
t1j j=t2 � 2. However, a very strong dependence on x0 and even a
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sign change is also observed. The dependence on x0 dramatically
illustrates the fact that the shift current depends not only on the
band structure but also on the wavefunctions. This can be seen
explicitly in the fact that the effective mass m� 1

x ¼ 4a2xt1t2=Eg is
independent of x0, but the combination vFax appearing in the
shift current integrand is not. In particular ax vanishes for
x0 ¼ ax=½1þ t1=2t2j jð Þ1=2�, which means that regardless of the
JDOS, the band edge response can actually be zero. This
behaviour is characteristic of Berry connections, which depend
explicitly on the positions of the sites in the unit cell.

Discussion
In this work, we have shown how an effective model for the band
edge enables a clean separation of the two factors that contribute
to a large shift current: the standard JDOS and the shift current
matrix element. This model also allows us to readily identify
materials with semi-Dirac-like Hamiltonians as those where both
factors can be made large. Several other general conclusions can
be drawn from the form of the effective shift current integrand in

equations (7) and (8). First, since the 1/o3 factor becomes 1/E3
g at

the band edge, materials with smaller gaps are expected to have
larger shift currents. A second conclusion is that while looking for
materials with large JDOS is a good guiding principle, the shift
current integrand depends on other microscopic details that can
change the response dramatically. Within our simple model, the
shift current can be maximized by bringing the two sites of the
unit cell closer together, which is a requirement that the
monochalcogenides satisfy well. Materials that may perform even
better than GeS may be searched for exploring different chemical
compositions, alloying or by strain engineering.

Our results were made possible by the derivation of a new sum
rule appropriate for tight-binding models. With this sum rule,
our work can be easily extended to tight-binding models with
more than two bands, or systems where the minimum direct
gap is not at a time-reversal invariant momentum. We expect
that the formalism developed here will provide the necessary
link to combine ab-initio methods with effective models,
allowing for more in-depth, systematic study of shift current
photovoltaics.
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Our results should be compared with known ferroelectric
materials that have been recently studied. In the visible range of
frequencies, op3 eV, we find peak values of 0.1mAW� 1 in
BiFeO3 (ref. 30), 1mAW� 1 in hybrid perovskites13 and a
maximum 10mAW� 1 in BaTiO3 (ref. 14) or NaAsSe2 (ref. 15).
The realistic materials that we propose present larger
responsivities, with the additional advantage that the peak is by
construction at the band edge. Moreover, as Figs 2c and 3b show,
peak responses on the order of several hundreds of mAW� 1

could be achieved with materials closer to the semi-Dirac regime.
To compare with conventional photovoltaic mechanisms, the
total current per intensity of a crystalline Si solar cell exposed to
sunlight is about 400mAW� 1 (ref. 71).

Given these numbers, our work is a sign that shift current
photovoltaics capable of surpassing conventional solar cells may
be close at hand, and a push to investigate their full potential
using methods discussed in this work—along with established
techniques—is warranted. We believe that the simple principles
derived in our work will serve as a guide for both theory and
experiment in the development and optimization of the next
generation of shift current photovoltaics.

Methods
Shift current. To make contact with previous work, we note the shift current
integrand in equation (3) is sometimes expressed in terms of the phase of the
inter-band matrix element rbnm ¼ rbnm

�� ��eifb
nm as Iabbnm ¼ rbnm

�� ��2Ra;b
nm where

Ra;b
nm ¼ @kaf

b
nm � xann þ xamm; ð10Þ

is known as the shift vector. The response to a natural light source such as sunlight,
which is unpolarized, is obtained by averaging kabb over polarization. Taking
~E yð Þ ¼ Ej j cos y; sin yð Þ we have

�Ja ¼
Z

dy
2p

Ja ¼
1
2

kaxx þ kayyð ÞI0 ¼ �kaI0: ð11Þ

Sum rule. The expression for the shift current presented in the main text can be
obtained by the use of a sum rule for the quantity ranm;b , which is obtained from the
identity

@kb@ka n Hj jmh i ¼ dnm@kb@ka En: ð12Þ
Evaluating both sides explicitly for nam, the identity can be expressed as

ranm;b ¼� 1
ionm

vanmD
b
nm þ vbnmD

a
nm

onm

"

�wab
nm þ

X
p 6¼ n;m

vanpv
b
pm

opm
�

vbnpv
a
pm

onp

 !35; n 6¼ m

ð13Þ

where vbnm ¼ n @kbHj jmh i are the velocity matrix elements, Db
nm ¼ vbnn � vbmm ,

wba
nm ¼ n @kb@kaHj jmh i and onm¼ En� Em. In the evaluation, we used

ramn

� ��¼ ranm; ð14Þ

vann ¼ @ka En; ð15Þ

vanm ¼ iranmonm: n 6¼ m ð16Þ
The first equality follows from @k n mjh i ¼ 0 if man, while the last two follow from
@ka n Hj jmh i ¼ dnm@ka En . Note this sum rule contains the extra term wab

nm compared
with ref. 9, where H¼ p2/2mþV(x) and wab

nm ¼ dnmdab/m, which has no off
diagonal component. Quite importantly, the term wab

nm in tight-binding models is
the one responsible for all band edge contributions. Also note that it has been
argued before that Ixxx¼ 0 for a two-band model4, which is actually only true
if wab

nm ¼ 0.

Two-band model. For the case of two bands, m¼ 1, n¼ 2 the use of the sum rule
for the shift current integrand in equation (3) leads to the simplified expression

Iabbnm ¼ 1
o2

12
Im

� vb21v
a
12 vb11 � vb22
� �
2E

þ vb21w
ba
12

	 

: ð17Þ

To evaluate this expression we compute the wave functions of H

cn ¼ 1ffiffiffiffiffi
2E

p � Z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E� Zfz

p
; eifk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ Zfz

p� �
; ð18Þ

with n¼ 1, 2, Z¼ (� 1)n, and fk¼ arctan(fy/fx). The required matrix elements are

va21 ¼ c2h j E0;a
�

I þ
X
i

si fi;a c1j i ¼
X
i

fi;as
�
i ; ð19Þ

wab
12 ¼ c1h j E0;ab

�
I þ

X
i

si fi;ab c2j i ¼
X
i

fi;absi; ð20Þ

where the off diagonal matrix element si ¼ c1 sij jc2h i is

si ¼ fz
Ecosfk þ i sinfk ;

fz
Esinfk

�
� i cosfk ; �

f 2x þ f 2yð Þ1=2
E

�
;

ð21Þ

and the diagonal velocity matrix elements are computed from equation (15). The
imaginary part in equation (17) can be taken using Im s�i sj

� �
¼ �

P
m
Eijmfm=E and

this leads to equation (5) in the main text.

Joint density of states. To compute the JDOS, we first start with the 1D case.
Close to the band edge, we expand the energies of conduction and valence bands as

2.5

2.0

1.5

1.0

E
 (

eV
)

0.5

0.0

–0.5

–0.2 –0.1

2� 2�

kx a kx b

0.0 0.1 0.2

→→

Figure 4 | Tight-binding fit to ab initio for GeS. Dispersion of conduction

and valence bands of GeS near G computed ab initio (red dots). A black line

shows the tight-binding fit for comparison.

Table 1 | Ab initio and tight-binding parameters for GeS.

Ab-initio input parameters
Eg mx,v mx,c my,v my,c @y O gxx
1.89 eV �0.064 eV� 1 Å� 2 0.079 eV� 1 Å� 2 �0.340 eV� 1 Å� 2 0.171 eV� 1 Å� 2 3.565Å3 2.529Å2

Tight-binding parameters
D t1 t2 t3 t01 t02 x0
0.41 eV � 2.33 eV 0.61 eV 0.13 eV 0.07 eV �0.09 eV 0.52Å

First row: input ab-initio parameters and the second row: tight-binding parameters obtained from the fitting.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14176

6 NATURE COMMUNICATIONS | 8:14176 | DOI: 10.1038/ncomms14176 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


EiEEi(0)þ k2x/2mi,x, so that o12¼E1� E2EEgþ k2x/2mx where the total effective
mass m� 1

x ¼ jm1;x j� 1 þ jm2;x j� 1 is given by

m� 1
x ¼ 4 v2F þ 2axdþ 2bxD

� �
=Eg; ð22Þ

and solve for k oð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mx o�Eg

� �q
. Rescaling 2mx we get

N1D oð Þ ¼
ffiffiffiffiffiffiffiffiffi
2mx

p R
dk
2p

d k
 k oð Þð Þ
2kj j

¼
ffiffiffiffiffiffi
2mx

p

2p
y o� Egð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o� Egð Þ
p ;

ð23Þ

where we get the expected 1D singularity. For the generic 2D case, again we expand
o12EEgþ k2x/2mxþ ky2/2my, where mx is still given by equation (22) and

m� 1
y ¼ 8 aydþbyD

� �
=Eg; ð24Þ

We consider the case when mx40, my40, so that the minimum does lie at~k¼ 0.
By rescaling 2mx and 2my we get in polar coordinates

N2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mxmy

p R
kdkdy
2pð Þ2

d k� k oð Þð Þ
2kj j

¼
ffiffiffiffiffiffiffiffiffi
mxmy

p

2p y o� Eg
� �

;
ð25Þ

which is the expected constant result. Finally, the semi-Dirac case occurs in 2D
when m� 1

y ¼ 0, which in the absence of second neighbour hopping occurs exactly
at d¼ 0. In this case, we keep the complete expression for o12¼ ((axk2x þ ayky2)2

þ vF2k2x þD2)1/2. In polar coordinates we have

NSD ¼
Z

kdkdy
2pð Þ2

d k� k oð Þð Þ
@ko12j j : ð26Þ

We now rescale ax, ay instead, solve for k

k oð Þ ¼ � v2F=ax cos
2y
 v4F=a

2
x cos

4yþo2 � E2
g

� �1=2	 

=2;

and get

NSD ¼ o
4
ffiffiffiffiffiffiffiaxay

p
R

dkdy
2pð Þ2

d k� k oð Þð Þ
v4F=a

2
x cos

4yþo2 � E2gð Þ1=2

¼ G 1
4

� �
4G 3

4

� �
2pð Þ3=2 axj j ffiffiffiffiayp

vF

oy o� Egð Þ
o2 � E2

gð Þ1=4 :
ð27Þ

Ab-initio calculation and tight-binding fit for GeS. Owing to the lack of
tight-binding models for monochalcogenide materials46,47, we have derived the
tight-binding parameters by fitting the electronic structure of GeS ab initio.
We used the PBE72 approximation to the exchange correlation functional, ultrasoft
pseudopotentials73, Quantum-ESPRESSO74 and Wannier90 (ref. 75) computer
packages. The cutoff for electron wavefunction is set to 40 Ry and cutoff for
electron density to 200 Ry. Internal coordinates and in-plane lattice constants were
fully relaxed. Vacuum region between repeating images of GeS monolayers is 17Å.
Wannier functions were constructed from a 12� 12 regular k-mesh grid. The
maximally localized Wannier functions were constructed in a standard way by
projecting into hydrogenic s-like and p-like orbitals on both Ge and S atoms along
with two s-like orbitals in the vacuum region that are needed to represent the
vacuum states. The frozen window for the disentanglement procedure spans up to
6.2 eV above the Fermi level. The crystal structure of GeS is orthorombic with space
group Pnma (No. 62) and lattice vectors~l1 ¼ (l1, 0) and~l2 ¼ (0, l2), with l1¼ 4.53 Å
and l2¼ 3.63Å and contains two Ge and two S atoms. The structure can be seen as
two GeS zigzag chains separated by a height of h¼ 2.32Å. The ab-initio results for
the conduction and valence bands near the G point are shown in Fig. 4 and have
mostly pz character.

This system can be effectively described with a two site tight-binding model.
This can be done because the lattice structure has glide symmetries with mirror
reflection z-� z and translations~a1 ¼ (ax, ay) and~a2 ¼ (ax, � ay), with ax¼ l1/2
and ay¼ l2/2. When the out of plane positions of the atoms are not relevant for the
problem of interest, one can define a smaller two site unit cell where the glides play
the role of lattice vectors (as it is done in black phosphorus69). The Ge and S sites in
this effective tight-binding model are located at (0, 0) and (x0, 0), with x0¼ 0.62Å.
This is the tight-binding model employed in the main text. The parameters of this
model are obtained from the ab-initio calculation as follows.

Since our aim is to model faithfully only the low-energy bands around the
Gamma point, it will suffice to consider a single pz orbital per site in the tight-
binding model. The minimal model parameters are the on-site potential difference
D between Ge and S pz orbitals and the three nearest neighbours hoppings ti, with
i¼ 1, 2, 3, which are all between Ge and S atoms. In addition, to reproduce the
small particle–hole asymmetry of the gap, we also consider two further neighbour
hoppings t01 and t02, which connect Ge–Ge or S–S pairs (we assume the same values
for both species to simplify).

The tight-binding Hamiltonian takes the form H¼ E0 þSisifi(k) with
coefficients

E0 ¼ � 2t01 cos a1 � kþ cos a2 � kð Þ
� 2t02cos a1 � a2ð Þ � k; ð28Þ

fx þ ify ¼ � e� ix0 �k t1 þ t2F kð Þþ t3F� kð Þ½ �; ð29Þ

fz ¼ D; ð30Þ
where, as defined in the text, F kð Þ ¼ eia1 �k þ eia2 �k

� �
. Our tight-binding fit is

intended to reproduce faithfully the bands and wavefunctions close to the band
edge, where the effective low-energy model applies. This model is given by

H ¼ gxk
2
x þ gyk

2
y

� �
I þ dþ axk2x þ ayk2y

� �
sx

þ vFkxsy þDsz ;
ð31Þ

where a constant term is omitted as it can be absorbed in the chemical potential.
The effective model parameters are related to the tight-binding parameters as

gx ¼ 2t01a
2
x ; ð32Þ

gy ¼ 2t01 þ 402
� �

a2y ; ð33Þ

d ¼ t1 � 2t2 � 2t3; ð34Þ

vF ¼ � 2ax t2 � t3ð Þ� t1 � 2t2 � 2t3ð Þx0; ð35Þ

ax ¼ t2 ax � x0ð Þ2 � t1x
2
0=2þ t3 ax þ x0ð Þ2; ð36Þ

ay ¼ t2 þ t3ð Þa2y : ð37Þ
The key to obtain a reliable tight-binding parametrization is that, since the shift

current depends sensitively on the actual wavefunctions, the tight-binding model
should be fitted to wavefunction-dependent quantities in addition to the band
energies. The simplest gauge invariant quantity that depends on wavefunction
phases is the bracket of two covariant derivatives

Qmn ¼ Dmuk Dnukj i;


ð38Þ
with Dm¼ qm� iAm, with Am ¼ i ukj@muk

 �
the Berry connection. The real and

imaginary parts of this tensor are known as the Berry curvature and the quantum
metric. A fit that reproduces this tensor correctly in addition to band energies
ensures that the wavefunction structure around the G point is correctly accounted
for, so that any other gauge invariant quantity computed in the effective model
should be the same as that computed ab initio.

The Berry curvature O(k) is defined as

O kð Þ ¼ EmnIm @muk @nukj
 �� �

¼ r�A: ð39Þ
The Berry curvature around G for the tight-binding model is given by

O ¼
vF ayD� byd
� �
D2 þ d2
� �3=2 ky : ð40Þ

Since O vanishes at the origin, we take qyO as one extra input for the fit. The
quantum metric is defined as

gmn¼ Re @muk @nukj
 �� �

�AmAn; ð41Þ
The only non-vanishing component of the quantum metric at k¼ 0 is given by

gxx ¼
v2F

4 D2 þ d2
� � ; ð42Þ

so we take gxx as another extra input for the fit.
In summary, we take as ab-initio input parameters the gap, the four effective

masses and the lowest order Berry curvature and quantum metric, qyO and gxx. The
difference in effective masses for electron and hole bands, accounted for the term
E0, can be fitted independently with the hoppings t01 and t02. Since E0 has no impact
in the shift current response, the hoppings t01 and t02 are not considered in the main
text. The rest of the input is fitted with t1, t2 and t3, the on-site potential D and x0,
and the results of the fit are shown in Table 1. While x0 is in fact known from
the lattice structure of GeS to be 0.62 Å, obtaining it independently from the
tight-binding fit, which gives a close value of 0.52 Å provides an additional check of
the validity of the model.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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