
ARTICLE

Received 15 Jun 2016 | Accepted 22 Nov 2016 | Published 17 Jan 2017

High-throughput quantitation of inorganic
nanoparticle biodistribution at the single-cell level
using mass cytometry
Yu-Sang Sabrina Yang1,2, Prabhani U. Atukorale3,*, Kelly D. Moynihan2,3,*, Ahmet Bekdemir4, Kavya Rakhra1,2,3,

Li Tang1,2,3, Francesco Stellacci4 & Darrell J. Irvine1,2,3,5,6

Inorganic nanoparticles (NPs) are studied as drug carriers, radiosensitizers and imaging

agents, and characterizing nanoparticle biodistribution is essential for evaluating their efficacy

and safety. Tracking NPs at the single-cell level with current technologies is complicated by

the lack of reliable methods to stably label particles over extended durations in vivo. Here

we demonstrate that mass cytometry by time-of-flight provides a label-free approach for

inorganic nanoparticle quantitation in cells. Furthermore, mass cytometry can enumerate

AuNPs with a lower detection limit of B10 AuNPs (3 nm core size) in a single cell with

tandem multiparameter cellular phenotyping. Using the cellular distribution insights,

we selected an amphiphilic surface ligand-coated AuNP that targeted myeloid dendritic cells

in lymph nodes as a peptide antigen carrier, substantially increasing the efficacy of a model

vaccine in a B16-OVA melanoma mouse model. This technology provides a powerful new

level of insight into nanoparticle fate in vivo.
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I
norganic nanomaterials are employed clinically as imaging
contrast agents and are under development for a broad
range of additional biomedical applications1. Examples

include iron oxide2, platinum3 and bismuth4 based
nanoparticles used as contrast agents in MRI and X-ray
imaging; and gadolinium5 and gold nanoparticles6,7 being
developed as radiosensitizers and drug delivery systems8.
Understanding nanoparticle biodistribution in vivo is crucial for
these applications9. Many techniques can measure the total
accumulation of inorganic materials in tissues, but few methods
trace inorganic particles at the single-cell level10,11. Flow
cytometry and confocal microscopy rely on fluorescence,
however for nanoparticles that lack intrinsic fluorescence,
a suitable fluorophore must be attached. This introduces several
sources of error, due to label degradation, dissociation from NPs,
and altered in vivo behaviour.

Label-free approaches for detection of particles such as electron
microscopy and tomography suffer from low throughput12–14.
Laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) enables quantitation of metal contents at the
single-cell level with additional insights on sub-cellular
localization of NPs, however this image-based method also
suffers from low throughput (tens to hundreds of cells typically
analysed) and relatively low sensitivity (requiring millions of
atoms per cell)15–17. Single particle ICP-MS (SP-ICP-MS) is
another ICP-based method that utilizes time-resolved mode to
enable direct quantification of the number concentration, size
distribution of NPs, and their state of agglomeration18,19. It has
allowed for single-cell analysis of metal-containing cells when the
cell concentration was carefully optimized to avoid overlapping
cells at the detector20,21. However, SP-ICP-MS is only suitable for
NPs larger than 20 nm in diameter and is usually coupled with
other methods such as LA-ICP-MS to determine NP cellular
distribution and quantitation22. Currently there are no label-free
measurement techniques that can quantify inorganic
nanomaterials of arbitrary size/chemistry in single cells at high
throughput11.

Mass cytometry is a recently developed method merging
time-of-flight ICP-MS with flow cytometry23. Single-cell
suspensions are labelled with metal isotope-tagged antibodies or
other binding probes. Individual cells are then ionized in an
argon plasma followed by time-of-flight mass spectrometry,
which enumerates each metal species present in the resulting ion
cloud24,25. Current Helios mass cytometry instruments permit up
to 50 metal isotope labels (atomic weights ranging from
75 to 209) to be detected simultaneously on a single cell.
Such highly multiparametric detection has offered new insights
into the complexity of biology, in applications ranging from
deep phenotyping of tumours to immune system signalling
pathways26,27.

Here we show for the first time that when combined with
nanoparticle calibration, mass cytometry can also be used as a
powerful fluorophore label-free method to track inorganic
nanoparticles in tandem with highly multivariate cellular
phenotyping, enabling quantitative analysis of the in vivo fate
of inorganic nanomedicines. Using gold NPs (AuNPs) as a
representative inorganic nanomaterial with relevance for diverse
biomedical applications6,7,28–32, we demonstrate the capacity of
mass cytometry to enumerate nanoparticles in individual cells
with a sensitivity orders of magnitude greater than flow
cytometry. We show that mass cytometry overcomes challenges
in fluorescence-based analysis of autofluorescent tissue cells, and
illustrate the value of combined single cell NP detection with
antibody-based phenotyping, using insights derived from mass
cytometer analysis to select a nanoparticle composition that
accumulates in dendritic cells for vaccination.

Results
AuNP per cell quantitation via mass cytometry. We first
synthesized AuNPs with comparable inorganic core diameters
but three different surface chemistries expected to have distinct
biodistributions and cellular uptake in vivo (Fig. 1a): 3-mercapto-
1-propanesulfonate (MPSA) NPs, coated by a dense layer of short
sulfonate-terminated ligands that strongly interact with water;
11-mercapto-1-undecanesulfonate/1-octanethiol (MUS/OT) NPs
bearing an amphiphilic mixed ligand shell, which are water
soluble but strongly interact with cell membranes;33,34

and poly(ethylene glycol) NPs sterically stabilized by PEG to
reduce opsonization by serum components35. The particles
were relatively monodispersed with similar mean gold core
diameters 2.5–4 nm and negative zeta potentials (Fig. 1b,c and
Supplementary Table 1).

Pilot experiments established that gold was readily detected by
mass cytometry analysis of cultured cells incubated with AuNPs
using either CyTOF2 or Helios instruments. We first compared
the sensitivity of mass cytometry and flow cytometry for detecting
NP uptake, incubating BODIPY-labelled MUS/OT NPs36,37 with
RAW macrophages for 6 h, followed by flow cytometry or mass
cytometry. Calibration of the TOF detector (see Methods)
enabled a direct enumeration of gold ions, and thereby mean
numbers of nanoparticles accumulated per cell. Gold uptake by
macrophages was clearly detectable by mass cytometry across this
entire concentration range (with detector saturation occurring at
an upper detection limit of B1.5� 106 particles per cell, Fig. 2c),
whereas NPs at concentrations of 0.1 mgml� 1 or lower were not
detected in cells using flow cytometry (Fig. 2a,b). Using the bulk
analysis method of inductively coupled plasma atomic emission
spectrometry10 (ICP-AES) as an independent measure, we found
that the mass cytometer-determined count of AuNPs per cell
(averaged from 16,000 cells) was in close agreement with the
average gold content calculated from ICP-AES analysis of
107 cells (Fig. 2c). The lower limit of detection using the Helios
mass cytometer was first calculated as three times the standard
error of regression for the best fit to the dual counts versus
dilution data (Supplementary Fig. 1), which resulted in a
detection limit of B4.2 NPs per cell. However, the first particle
concentration to be statistically significant was B10 NPs per cell
(8±2 NP per cell at 0.005 mgml� 1 incubation concentration),
a dosage that could only be detected in ICP-AES using a 104-fold
greater number of cells. Overall, mass cytometry was B2,400
times more sensitive than flow cytometry in detecting 3 nm
BODIPY-labelled MUS/OT AuNP uptake, and provided a direct
quantification of total particles per cell.

Label-free NP quantitation and cellular phenotyping in vivo.
We next compared CyTOF2 and flow cytometry for analysis of
AuNPs taken up by cells in vivo. BODIPY-labelled MUS/OT
particles, which we have previously shown exhibit cell penetrating
properties by dispersing through cell membranes33,34,36, were
administered intratracheally into the lungs of mice. Lung tissues
were collected 2 h later, stained with antibodies to CD326, and
then analysed by the two methods in parallel. A significant
autofluorescence signal from the tissue cells was observed in the
BODIPY channel, a common issue in flow cytometry (Fig. 3a).
However, AuNP uptake was clearly detected in a fraction of both
epithelial cells (CD326þ ) and CD326� cells, accounting for
B13% of all lung cells (black gates in Fig. 3a,b). By contrast,
CyTOF2 analysis revealed that by 2 h MUS/OT particles were
detectable in virtually all of the cells in NP-dosed lungs (Fig. 3a).
While distinct AuNPhi CD326þ and CD326� populations were
observed corresponding to the AuNPþ populations detected by
flow cytometry (black gates, Fig. 3a), the majority of the
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remaining epithelial and other lung cells were also clearly positive
for MUS/OT particles (Fig. 3a,b). We confirmed that this
result was not caused by Au retention in the instrument by
analyzing untreated cells (gold-negative cells) before and after
gold-containing cells, and found near-zero dual counts in both
gold-negative cell samples. To verify that this discrepancy was
due to a failure of flow cytometry to detect low level BODIPY-NP
signals above background cellular autofluorescence, we flow-
sorted 5� 106 CD326�BODIPY� cells from lung tissues (red
gate, Fig. 3a) and analysed their gold content via conventional
ICP-AES. The AuNP level in this cell population was non-
trivial—38,000 particles per cell on average (Fig. 3c)—a value that
was not statistically different from the mean AuNP content
determined by CyTOF2 in the CD326�AuNPlo population
(red gates in Fig. 3a,d).

We next intratracheally administered a low dose of MUS/OT
NPs (1 mg), recovered lung tissues 24 h later, and stained with
nine different metal-chelated antibodies to leukocyte cell surface
markers for mass cytometry analysis. Gating separately ‘Au low’
versus ‘Au high’ cells (Fig. 3e), CyTOF2 revealed a CD45þ

CD11b� lymphocyte population present only among the ‘Au
low’ cells, which included AuNPþ B-cells, CD4þ T-cells and
CD8þ T-cells (Fig. 3f–h). Alveolar macrophages (AMs), an
important target for antimicrobial drug delivery38, were located in
the ‘Au high’ population (Fig. 3i–k), and these cells contained 8-
fold more nanoparticles than dendritic cells (DCs) and 18-fold
more gold than B/T-cells (Fig. 3l). Notably, at 24 h no BODIPY
signal was detectable in any cell population by flow cytometry,
suggesting either degradation or loss of the fluorophore by this
time point. Thus, multiple issues associated with fluorescence
detection of nanoparticles can be overcome through mass
cytometer analysis.

Mass cytometry data-guided therapeutic development. We
finally tested the utility of mass cytometry for guiding the design
of novel AuNP-based therapeutics. Bulk ICP-AES analysis of
excised tissues showed that subcutaneous injection of MUS/OT
NPs resulted in striking accumulation in draining inguinal and
axillary lymph nodes (LNs), 13-fold higher than PEG NPs
(Fig. 4a). To evaluate the cellular biodistribution of these
particles, we carried out mass cytometry analysis of LNs. CyTOF
detected MUS/OT particles in B220þ B-cells, CD4þ and
CD8þ T-cells, CD11bþ /�CD11cþ dendritic cells, as well as
neutrophils and F4/80þ macrophages (Fig. 4b). However, the
greatest particle accumulation (B2-fold greater than CD11b�

CD11cþ DCs or T-cells) was detected in CD11bþCD11cþ

myeloid dendritic cells (Fig. 4c). Both PEG NPs and MPSA NPs
showed much lower accumulation in all cell types analysed
(Fig. 4c). The preferential accumulation of MUS/OT particles in
myeloid DCs revealed by mass cytometry prompted us to test
these particles for vaccine delivery. A fluorophore-labelled pep-
tide antigen derived from ovalbumin (SIINFEKL) was conjugated
to MUS/OT particles through an alkanethiol linker, providing
B9 peptides per particle (Fig. 4d and Supplementary Fig. 2).
C57Bl/6 mice were then vaccinated with free peptide or peptide-
MUS/OT NPs mixed with CpG DNA (as adjuvant). As shown in
Fig. 4e,f, MUS/OT-mediated peptide delivery greatly increased
the potency of the peptide vaccination, eliciting at peak B6-fold
more CD8þ T-cells than the equivalent dose of free SIINFEKL
peptide, and greater than a 5-fold higher dose of free peptide
or immunization with free FITC-SIINFEKL-linker construct
(Fig. 4f). MUS/OT-peptide-vaccinated mice challenged with
ovalbumin-expressing B16F10 melanoma tumour cells at day 150
exhibited robust cytokine-producing CD8þ T-cell responses,
and these animals were fully protected from tumour outgrowth,
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Figure 1 | Gold nanoparticle ligand chemistry and size distribution. (a) Schematics of MPSA (3-mercapto-1-propanesulfonate) coated AuNPs,

MUS (11-mercapto-1-undecanesulphonate) and OT (1-octanethiol) mixed ligand-coated AuNPs, and PEG (tetraethylene glycol)-coated AuNPs.

(b) Representative TEM image of MUS/OT NPs (scale bar 10 nm). (c) Size distributions of MPSA, MUS/OT and PEG NPs determined from TEM.
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in contrast to free peptide-immunized controls (Fig. 4g–i and
Supplementary Fig. 3). While much remains to be done to fully
understand the mechanisms, this example illustrates the power of
single-cell inorganic NP analysis coupled with multiparameter
phenotyping to develop novel nanomedicines.

Discussion
Inorganic nanoparticles are being designed for diverse biomedical
applications1–8. A key issue for any novel nanomedicine is
characterization of the fate of the materials in vivo, at the tissue
and cellular levels. Fluorescence-based methods such as confocal
microscopy and flow cytometry are well established in tracking
nanomaterial biodistributions at the single-cell level10,11.
However, for nanomaterials that do not intrinsically fluoresce,
achieving stable association of dyes with the particles in vivo is a
significant challenge. Surface-functionalized labelling molecules
may degrade or disassociate from nanomaterials, decreasing
the intensity, reliability and accuracy of biodistribution
outcomes. Methods that directly detect nanoparticle core atoms
may overcome the above-mentioned technical issues. Here
we demonstrated that mass cytometry could be used to
simultaneously provide a quantitative measurement of
nanoparticle uptake on thousands of single cells, together with
measurement of expression levels of a large panel of cellular
proteins provided by antibody-based markers that provided
detailed identification of each cell analysed. Mass cytometry
was 2,400-fold more sensitive than fluorescence labelling/flow
cytometric detection of gold nanoparticle uptake in cells in vitro,
and in vivo, this method provided sensitive detection of

nanoparticles in conditions where tissue autofluorescence and
dye loss made traditional fluorescence-based tracking impossible.

Analytical tools are most powerful when used in
combination39, and we illustrated this here by analysing how
the surface chemistry of gold nanoparticles impacted the tissue-
and cell-level biodistributions of gold nanoparticles. Using mass
cytometry, which provides detailed single-cell level analysis,
together with ICP-AES, which can readily provide quantitative
measurements of total inorganic nanomaterial content in a tissue,
we analysed the biodistribution of three types of gold
nanoparticles with distinct organic surface ligands. This
combined analysis identified amphiphilic MUS/OT ligand
compositions that led to very high total lymph node
accumulation (at the tissue level) and preferential uptake in
myeloid dendritic cells (at the cellular level). This prompted us to
evaluate these amph-NPs as a platform for enhanced vaccine
delivery. We showed that amph-NPs drastically improved peptide
vaccine responses and were effective in protecting against tumour
outgrowth.

This paper provides the first proof of concept demonstration
that using mass cytometry, a fast, accurate, high-sensitivity
screening of suitable inorganic nanoparticles for a particular
application can be performed in a high-throughput manner.
Compared with LA-ICP-MS scanning speeds of B8 mm per sec
(B1 cell per second)15 and SC-ICP-MS analysis at B3 cells
per second, mass cytometry offers detection speeds of B2,000
events per second. Thus, in a 3.5 h typical experiment (including
the time for tissue isolation, cellular staining and analysis)
900,000 cells can be readily analysed at the single-cell level. This
method should be applicable to the sensitive detection of many
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leukocyte populations (b) and mean number of NPs per cell for lymph node cell populations (c). (d) Schematic structure of SIINFEKL peptide construct and

coupling to MUS/OT NP surface. (e–i) C57Bl/6 mice (n¼ 5 per group) were immunized s.c. on days 1 and 14 with 8mg CpG mixed with SIINFEKL-

conjugated MUS/OT NPs (10 mg peptide), 50mg SIINFEKL peptide, 10mg SIINFEKL peptide or 10mg SIINFEKL peptide construct. Animals were then

challenged with 2.5� 105 B16-OVA tumour cells s.c. in the flank on day 150. Shown are representative flow cytometry plots of SIINFEKL tetramer staining

(e) and mean SIINFEKL tetramerþ CD8þ T cells in blood on day 29 (f), representative intracellular cytokine staining flow cytometry (g) and mean

percentages of cytokineþ T cells (h) 6 days after tumour challenge, and tumour size measurements over time (i). Shown are means±s.e.m. *Po0.05;

**Po0.01, ***Po0.001 by one-way ANOVA with Bonferroni post tests.
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other inorganic nanomaterials ranging from 75 to 209 a.m.u.,
including elements already used in biomedical nanoparticles
such as platinum3, bismuth4, gadolinium5, palladium8 and
lanthanides40. Exceptions will likely be elements that have high
endogenous concentrations in vivo, such as molybdenum41 and
selenium42, though the mass range of current mass cytometry
instruments was explicitly designed to exclude elements prevalent
in vivo (generally o75 a.m.u.), which would otherwise saturate
the TOF detector. An important consideration is the maximum
number of metal atoms that can be present in a single cell without
saturating the detector. In the case of gold as studied here,
this limit was approximately 1.3� 109 gold atoms per cell,
corresponding to B1.5� 106 nanoparticles 3 nm in diameter, but
would equate to 42,906 particles 10 nm in diam. or 343 particles
50 nm in diam. Thus, the dynamic range in particle enumeration
will be highest for the smallest particle sizes. These limitations
still make the method quite valuable since gold particles
in biomedical applications are most commonly r50 nm in
diameter.

In conclusion, single-cell mass cytometry by time of
flight allows sensitive quantification of inorganic nanoparticle
biodistributions in conjunction with highly multivariate
phenotypic analysis. A limitation of this approach is the inability
of mass cytometry to distinguish the precise physical state
of nanomaterials (for example, aggregation state); like any
other measurement approach complementary analytical
techniques should be employed to obtain a complete picture of
nanomaterials’ fate in vivo. However, the ability to track the
cellular distribution of diverse inorganic nanomaterials will
facilitate our understanding of nanomaterial toxicology9,43 and
the development of new diagnostics and therapeutics.

Methods
Synthesis of gold nanoparticles. MUS was synthesized following the previously
reported methods34. All other chemicals were purchased from Sigma-Aldrich and
used without further purification. 0.9mmol gold(III) chloride trihydrate (99.9%)
was dissolved in 150ml of ethanol and 0.75mmol of ligands (MUSOT: MUS and
1-octanethiol; MPSA: sodium 3-mercapto-1-propanesulfonate) with a desired
molar ratio were added to the solution. After 15min of stirring at 900 r.p.m., an
ethanolic solution of sodium borohydride (NaBH4—10 times molar excess of gold
salt in 150ml ethanol) was added dropwise to the previous solution at 25 �C. Black
precipitates were almost immediately observed. The final solution was stirred for
an additional 3 h to ensure reduction of the gold salts. The reaction was quenched
by removing the solvent with centrifugation. To remove unreacted chemicals,
additional washes with acetone and ethanol were carried out. Finally, water-soluble
salts and any residual free ligands were removed using a centrifugal dialysis
membrane (Amicon, MWCO 30 kDa). PEGylated gold nanoparticles coated by
thiol-terminated poly(ethylene glycol; molecular weight 282.35 gmol� 1) were
purchased from NanoPartz.

Nanoparticle size and zeta potential characterization. Nanoparticles in water
were deposited on carbon-coated copper grids and images were acquired via JEOL
2010 FEG Analytical Electron Microscope (200 kV). Size distributions of AuNPs
were characterized by ImageJ size analysis tools. For zeta-potential measurements
carried out in the instrument Malvern Zetasizer NanoZS, NPs were dissolved in
10mM NaCl solution, sonicated for 5min and filtered through 0.20 mm syringe
filters prior to measurements. The concentration of all nanoparticle solutions
was 0.2mgml� 1. Error bars in zeta potential values represent three individual
measurements of the same solution.

Modification of gold nanoparticles with a fluorescent tag. Fluorescent dye
BODIPY 630/650-X NHS Ester (Invitrogen) and thiol linker (11-mercaptoundecyl
amine hydrochloride; Prochimia, Poland) were used as received. 3mg BODIPY dye
and 1.5mg thiol linker were dissolved in argon-purged amine-free dimethyl
formamide and stirred for 6 h in the dark. 3ml water was added to the solution
and stored at 4 �C as a stock solution. To label the nanoparticles with thiol-
functionalized Bodipy dye, 10mg gold nanoparticles were dissolved in 0.75ml of
water in which 15 ml BODIPY stock solution was added. The reaction was left
stirring for 48 h in the dark at 25 �C. Finally, 10ml acetone was added to the
reaction and NPs were washed at least three times to remove unreacted dye via
centrifugation for 5min at 14,000 r.p.m. in a tabletop centrifuge.

Cell culture and in vitro treatment conditions. RAW-Blue cells derived from
RAW 264.7 macrophages were purchased from InvivoGen and cultured in
DMEM-based cell culture media according to manufacturer’s instructions. An
ATCC mycoplasma testing PCR kit was used to ensure that all of the cells used in
this study were mycoplasma free. BODIPY-conjugated MUSOT NPs were dis-
solved in cell culture media at 100 mgml� 1 and diluted to various concentrations
indicated in Fig. 2 and Supplementary Fig. 1. One and a half million cells per well
were seeded overnight and the next day cells were treated with NP solution for 6 h
at 37 �C with 5% CO2. Six hours later, excess NP solution was removed and cells
were washed in PBS three times. Cells were collected and split into three tubes for
three separate analyses: flow cytometry, mass cytometry (using either a CyTOF2 or
Helios mass cytometer instrument, both from Fluidigm), and ICP-AES.

Cell isolation and antibody staining for mass cytometry. C57BL/6 mice used in
this study were 6–8 weeks old. All animal work was conducted under the approval
of the Massachusetts Institute of Technology (MIT) Division of Comparative
Medicine in accordance with federal, state and local guidelines. Cells from mouse
lymph nodes were isolated by enzyme digestion method. Briefly, fresh enzyme
mix was prepared by dissolving 0.8mgml� 1 of collagenase/dispase (Roche
Diagnostics) and 0.1mgml� 1 DNase I (Roche Diagnostics) in RPMI-1640
medium. Each lymph node was pierced by a forcep and incubated in enzyme mix
at 37 �C on a shaker for 30min. Cells and tissue fragments in enzyme mix were
mixed vigorously with a 1ml syringe (without needle) for 30 s and quenched by
adding 10ml of ice-cold PBS with 1% BSA and centrifuged at 1,700 r.p.m. for
5min. Cell pellets were resuspended in staining buffer followed by antibody
staining and fixing: cells were incubated with a selected antibody cocktail
(anti-mouse CD45 (30-F11)-147Sm; anti-mouse CD3e (145-2C11)-152Sm;
anti-mouse CD8a (53-6.7)-168Er; anti-mouse CD4 (RM4-5)-172Yb; anti-mouse
CD45R/B220(RA36B2)-176Yb; anti-mouse CD11b (M1/70)-148Nd; anti-mouse
Ly-6G (Gr-1) (RB6-8C5)-174Yb; anti-mouse CD11c (N418)-142Nd; anti-mouse
F4/80 (BM8)-159Tb; anti-mouse NK1.1 (PK136)-170Er; anti-mouse CD64
(X54-5/7.1)-151Eu; anti-mouse CD326 (EpCAM) (G8.8)-165Ho) at 25 �C for
30min, excess antibodies were removed by centrifugation, and cells were stained
with cell-ID Intercalator-Ir in fix and perm solution (detailed protocol available
from Fluidigm website. https://www.fluidigm.com/productsupport/cytof-helios).
Prior to analysis, fixed cells were washed in MaxPar staining buffer twice and
MaxPar water once to remove excess iridium. Cells were resuspended at 0.5–1
million per ml in 1:10 calibration beads (EQ Four Element Calibration Beads,
Fluidigm) in MaxPar water and 250–500 ml samples were analysed by a Fluidigm
CyTOF2 at a flow rate of 0.045mlmin� 1 or Helios at a flow rate of
0.030mlmin� 1).

Calculation of number of nanoparticles per cell. The mean Au ion intensity in a
cell population of interest measured by mass cytometry is termed the ‘mean dual
counts’. This value is proportional to the number of Au atoms per cell—and it is
the product of the integral over time of detector intensity multiplied by the dual
count coefficient of 197Au. Conversion of dual counts to the number of gold atoms
per cell was determined by a calibration using the transmission coefficient:

Number of Au atoms per cell ¼
197Aumean dual counts
193Ir transmission factor

ð1Þ

The transmission coefficient for 197Au cannot be directly measured in the
cytometer, but can be measured for 193Ir, which should have a degree of ionization
very similar to gold (Ir and Au have ionization energies of 8.9760 and 9.2255 eV,
respectively). The 193Ir transmission coefficient was calculated as the dual counts of
193Ir detected for the instrument tuning solution divided by the number of 193Ir
atoms introduced in the 0.25 p.p.b. Ir tuning solution (Fluidigm CAT#201072)
determined as:

193Ir transmission factor ¼
193Ir dual counts

Ir atoms introducedð Þ� 193Ir natural abundanceð Þ

¼
193Ir dual counts

193Ir atoms introduced
ð2Þ

193Ir atoms introduced

¼ Ir concentrationð Þ flow rateð Þ integration timeð Þ natural abundanceð Þ Avogadros numberð Þ
Isotopemass

ð3Þ

Using the variables tuning solution Ir concentration (2.5� 10� 13 g ml� 1), flow
rate (0.75 ml s� 1 for CyTOF2 or 0.5 ml s� 1 for Helios), the integration time
(CyTOF2: 2.666 s; Helios: 4 s), the natural abundance of 193Ir (0.627), Avogadro’s
number 6.02� 1023, and isotope mass (193 gmol� 1). The number of Au atoms
per NP was calculated based on the assumption that AuNPs are monodispersed
spheres with an FCC lattice structure (Au lattice constant¼ 0.40758 nm).
As a result, a 2.8 nm AuNP contains B677 atoms. Finally, the number of NPs
per cell was calculated by the number of atoms per cell divided by the number of
atoms per NP.
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Limit of detection analysis. To assess the detection limit of 3 nm MUS/OT
AuNPs per cell on the Helios instrument, RAWblue cells were treated with
BODIPY-MUS/OT AuNPs at 0.1, 0.01, 0.005, 0.0025 and 0.00125 mgml� 1 for 6 h
at 37 �C in 10%FBS-containing DMEM. Cells were washed with PBS twice prior to
fixation in the presence of Ir cell-ID (1:1,000) DNA stains. Cells were resuspended
at 0.5 million per ml in 1:10 calibration beads (EQ Four Element Calibration Beads,
Fluidigm) in MaxPar water and 200 ml samples were analysed by a Fluidigm Helios
at a flow rate of 0.5 ml s� 1. Events double positive for the 193Ir and 191Ir DNA
stains were gated, and singlets (excluding debris and doublets) were gated using a
191Ir versus event length plot. The mean number of particle per cell (determined
from the entire population of both NPþ and NP� cells) was calculated using the
193Ir transmission factor as described in the previous method section. The
mean±s.d. number of particles per cell for each condition was determined by
triplicate analysis of the same cell samples.

Bulk measurement of AuNP in cells via ICP-AES. Cells or tissue samples were
dissolved in 1ml freshly prepared aqua regia for 3 days to dissolve AuNPs. The
solution was then diluted in 3–4ml of 2% nitric acid immediately prior to ICP-AES
analysis on a Horiba Activa.

Peptide conjugation and quantification. SIINFEKL peptide constructs were
custom synthesized by LifeTein with the following structure: (N terminus)
FITC-aminohexanoic acid (Ahx)-SIINFEKL-Ahx-cysteamide (C terminus), with
purity 4 95%. Lyophilized peptide was dissolved in DMF at 1mgml� 1. A mass
ratio of gold:peptide of 4:1 in DMF was mixed in a glass vial and placed on a
shaker to allow coupling reaction for 4 days. To remove uncoupled peptide, the
MUS/OT-peptide solution was first diluted in water (o5% DMF) and spun at
3,500 r.p.m. for 15min in an Amicon 10 kDa MWCO centrifugal tube. The
above-mentioned washing step was performed repeatedly for a total of four times.
To quantify peptide conjugation efficiency, 20 ml beta-mercaptoethanol (14.3M
stock solution) and 20mL DMF were added to an aliquot (0.1mg in 60 ml H2O) of
purified MUSOT-peptide conjugates and allowed to react for 48 h on a shaker at
25 �C. Peptide conjugation efficiency was determined by fluorescence readout
of FITC at excitation of 488 nm and emission of 520 nm using a standard curve
made using uncoupled MUSOT particles doped with known amounts of peptide
construct subjected to the same reaction conditions. The mass ratio of conjugated
peptide to gold was determined to be B 51mg peptide per mg gold, which
corresponds to B9 peptide constructs per NP.

Vaccine delivery and antigen-specific CD8þ T cells. Eight-week-old female
C57BL/6 mice were immunized (primed on day 1, boosted on day 14) with 8 mg of
CpG (ODN 1826 VacciGrade, InvivoGen) mixed with SIINFEKL peptide (10mg
peptide-conjugated AuNP, 10 mg free peptide, 50mg free peptide or 10mg free
peptide construct). Vaccines were formulated in 100ml sterile saline with half of the
volume injected subcutaneously on either side of the tail base. To monitor antigen-
specific T cells, mice were bled, and blood samples were processed as follows: 100 ml
of blood was incubated with 500ml ACK lysis buffer at 25 �C for 5min followed by
centrifugation, then this process was repeated for a second round of lysis. Cells
were incubated in tetramer staining buffer (PBS, 1% BSA, 5mM EDTA, 50 nM
dasatinib), Fc block, and OVA tetramer (iTAg Tetramer/PE-H-2Kb OVA, MBL) in
the dark for 45min at 25 �C. Anti-CD8a (53-6.7) APC antibody (1:200) was added
to cell solutions and incubated for an additional 15min at 4 �C. Cells were washed
twice in flow cytometry buffer containing 100 nM DAPI, and run on a BD FACS
LSR Fortessa. Data were analysed using FlowJo.

Tumour cell culture and tumour inoculation in vivo. B16-OVA cells were a kind
gift from Dr Glenn Dranoff at the Dana–Farber Cancer Institute. B16-OVA cells
were cultured in complete DMEM (DMEM supplemented with 10% FBS, 100 units
per ml penicillin, 100 mgml� 1 streptomycin and 4mM L-alanyl-L-glutamine),
maintained at 37 �C and 5% CO2, and passaged when 70–80% confluent. A
challenge of 2.5� 105 B16-OVA cells was injected subcutaneously on the right
flank of previously immunized mice in 50 ml of sterile saline. Tumour size was
measured (longest dimension� perpendicular dimension) three times weekly, and
an area was calculated by multiplying these dimensions. Mice were killed when
tumour area exceeded 100mm2. All animal work was conducted under the
approval of the Massachusetts Institute of Technology (MIT) Division of
Comparative Medicine in accordance with federal, state and local guidelines.

Intracellular cytokine staining. Peripheral blood mononuclear cells were isolated
from immunized mice and cultured in RPMI supplemented with 10% FBS, 100
units per ml penicillin, 100mgml� 1 streptomycin and 4mM L-alanyl-L-glutamine
with 10 mgml� 1 SIINFEKL peptide. After 2 h, Brefeldin A (1/1,000, eBiosciences)
was added to inhibit cytokine secretion. After 6 h total incubation with peptide,
cells were washed, stained extracellularly with anti-CD8a (53–6.7, eBioscience),
fixed and permeabilized (BD Cytofix/Cytoperm), and stained intracellularly with
anti-IFN-g (XMG1.2, eBioscience) and anti-TNF-a (MP6-XT22, eBioscience).
Cells were run on a BD FACS LSR Fortessa and data was analysed using FlowJo.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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Erratum: High-throughput quantitation of inorganic
nanoparticle biodistribution at the single-cell level
using mass cytometry
Yu-Sang Sabrina Yang, Prabhani U. Atukorale, Kelly D. Moynihan, Ahmet Bekdemir, Kavya Rakhra, Li Tang,

Francesco Stellacci & Darrell J. Irvine

Nature Communications 8:14069 doi: 10.1038/ncomms14069 (2017); Published 17 Jan 2017; Updated 14 Aug 2017

In Fig. 4d of this Article, the schematic was incorrectly illustrated with one SIINFEKL peptide detached from a MUS/OT nanoparticle
surface. The correct version of Fig. 4 appears below as Fig. 1.
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