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The interplay between charge, orbital and lattice degrees of freedom in correlated electron 
systems has resulted in many proposals for new electronic phases of matter. An electron 
nematic breaks the point group symmetry of the host crystal, often from C6 or C4 rotational 
symmetry to C2. Electron nematics have been reported in several condensed matter systems 
including cuprate- and iron arsenic-based high-temperature superconductors, and they 
have been proposed to exist in many other materials. However, the combination of reduced 
dimensionality and material disorder typically limits the spatial range over which electron 
nematic order persists, rendering its experimental detection extremely difficult. Despite the 
tantalizing possible connection between the phase and high-temperature superconductivity, 
there is surprisingly little guidance in the literature about how to detect the remaining  
disordered electron nematic. Here we propose two protocols for detecting disordered  
electron nematics in condensed matter systems using non-equilibrium methods. 
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Signatures of electron nematic behaviour have been reported 
in a variety of materials, including Sr3Ru2O7 (ref. 1), GaAs/
AlxGa1 − x As heterostructures in field2,3, and a subset of 

cuprate superconductors4–10 such as YBa2Cu3O6 + x (refs 5–7), and 
Bi2Sr2CaCu2O8 + x (refs 8–10), as well as the iron arsenic based super-
conductor Ca(Fe1 − xCox)2As2 (ref. 11). The state has been proposed 
to exist in many more systems, such as AlAs heterostructures, the 
Si(111) surface, elemental bismuth, and both single layer and bilayer 
graphene4,12–14. When an electron nematic forms, there is a preferred 
orientation to the electronic degrees of freedom, but the system 
remains invariant, under a rotation by π. In the case where the elec-
tron nematic breaks the in-plane C4 (four-fold rotational) symmetry 
of the host crystal, there are two allowed orientations of the electron 
nematic, degenerate in energy. We therefore define a local nematic 
order parameter by σ =  ± 1, corresponding to the two allowed orien-
tations. (Fig. 1). In a system with short-range interactions, the ten-
dency for an electron nematic to form is described by a ‘ferromag-
netic coupling’ J between these variables. In the absence of material 
disorder, the ground state is a long-range ordered electron nematic.

However, many of the materials mentioned above exhibit novel 
phases upon doping, a process which introduces intrinsic disorder15. 
Even in nominally clean materials, there remains a thermodynami-
cally required concentration of defects at all non-zero temperatures. 
In any given region of such a sample, the pattern of dopant atoms 
or defects breaks rotational symmetry, and the resulting electric 
field gradients produce a locally preferred direction for the electron 
nematic. Because such disorder couples directly to the orientation 
of the electron nematic, we include its effects as a random field16:
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Here J|| is an in-plane ferromagnetic coupling between nearest 
neighbour (Ising) nematic variables σ, J represents the coupling 
between nematic variables in neighbouring planes, and the random 
field hi is chosen from a gaussian probability distribution centred 
about zero, with width ∆, which we will call ‘random field strength’. 
The effects of material disorder can also introduce local energy-
density disorder in the form of randomness in these couplings, 
but as long as the randomness does not introduce a finite density 
of frustrated plaquettes, the universal non-equilibrium behav-
iour is described by equation (1)17. (See the Methods section for  
more details.)

In the limit of zero random field strength, the model has a finite-
temperature continuous phase transition for dimension d ≥ 2. How-
ever, as shown schematically in Figure 2, for any finite random field 
strength, long-range electron nematic order is forbidden in two-
dimensional systems like graphene, surfaces and two-dimensional 
electron gases. Even in strongly layered materials (such as certain 
transition metal oxides), or highly anisotropic bulk materials (such 
as bismuth), the electron nematic may be forbidden to arise because 
of quenched disorder. However even in the disordered phase, the 
nematic domains will have a large characteristic size, if the disorder 
is sufficiently weak, and they will be correspondingly important for 
the macroscopic physics.

It is therefore crucial to understand how to detect local elec-
tronic nematic behaviour, especially in the disordered phase. Sig-
nificant progress has recently been made via scanning tunnelling 
microscopy9,10,18. However, probes limited to the surface cannot 
address the question of whether similar physics arises in the bulk 
of the material. Furthermore, such imaging techniques are not 
available for two-dimensional electron gases. For this reason, it is 
vital to develop new ways to detect disordered electron nematics  
using bulk macroscopic measurement techniques. The methods 
described here can be applied to macroscopic measurements as well 
as to local probes.

(1)(1)

The degree of electron nematic order in the system is described 
by the orientational order parameter, N = (1/V)Σiσi where V is the  
number of sites in the system. The order parameter (nematicity) 
is N = 1 when all nematic domains are aligned along, for exam-
ple, the x axis, and it is N =  − 1 when all domains align along the 
y axis. The external field h represents any applied field which 
breaks orientational symmetry. An example is an applied magnetic 
field 


H H H Hx y z= ( , , ), which maps to the orientational field as 

h H Hxy x y= ( )2 2c − , where χxy is proportional to the diamagnetic ani-
sotropy. See Tables 1 and 2 for experimentally accessible orienting 
fields, as well as experimental measures of electron nematic order.

In this paper, we propose two non-equilibrium protocols for 
detecting electron nematicity via hysteresis in nematicity versus 
applied orienting field (Tables 1 and 2). The first is an extension 
of the usual field-cooling protocol for ferromagnets to the case of 
nematics (with some subtleties explained below), whereas the sec-
ond is an entirely new protocol for distinguishing nematics from 
magnetic domains.

Results
Nonequilibrium protocols for electron nematicity. Below a 
crossover temperature T* (denoted by the red dashed line in Fig. 2), 
the macroscopic nematic order exhibits ‘hysteresis’ with respect to 
the applied orienting field, signalling proximity to the ordered phase. 
Unfortunately, hysteresis loops are closed in thermal equilibrium. 

� = +1

� = +1 � = –1

� = +1

Figure 1 | Mapping of electron nematic orientations to Ising variables. 
(a) Fully ordered stripe state. Arrows represent spins residing within each 
crystalline unit cell, and circles represent charges. Because the charge 
component runs vertically, this is mapped to σ =  + 1. (b) Partially melted 
stripe state, with disordered spins. The charge component is the same as 
in part (a) mapping to σ =  + 1. (c) Nematic stripe state, oriented vertically. 
Large blue circles represent charge degrees of freedom. Small dark dots 
represent atomic positions with lower excess charge. A small concentration 
of dislocation defects in the charge-density wave are present, but the 
charge degrees of freedom maintain an overall orientation or nematicity. 
(d) Nematic stripe state, oriented horizontally. Disorder within any given 
region locally breaks the rotational symmetry of the host crystal, favouring 
one or the other nematic orientation, and thus presenting a random field on 
the nematic variable.
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Fortunately, equilibrium is hard to achieve in this model. Because 
the phase transition is controlled by a zero-temperature fixed point, 
the energy barriers to equilibration diverge at the critical disorder 
as temperature decreases in the thermodynamic limit19. In fact, for 
any finite sweep rate Ω of the externally applied orienting field, 
hysteresis loops remain open (and the system is out of equilibrium) 
for |H| < Hneq(T,Ω). Therefore, for any given sweep rate Ω and field 
sweep amplitude Ho there exists a crossover temperature, as shown in 
Figure 2, below which the hysteresis loops will be open over the entire 
range  − Ho to Ho, indicating the presence of a disordered nematic.

In the case of the (low-temperature) saturation hysteresis loop, 
the sign of the order parameter does not change until the coercive 
field strength is achieved. However, the coercive field strength is a 
nonuniversal property which varies from material to material. In 
cases where the low-temperature coercive-field strength is either 
unknown a priori or unachievable, it is important to design new 
methods capable of revealing the hysteresis even at low strength of 
the orienting field.

Extension of field-cooling protocol. We, therefore, focus here on 
universal properties of hysteresis, applicable to disordered electron 
nematics in any system. The first protocol we propose is an extension 
of the idea of field-cooling ferromagnets (as used, for example, to 
prepare commercial permanent magnets)20 to the case of disordered 

nematics in condensed matter systems. Using a magnetic field as 
orienting field h H Hx y∝ −2 2 and transport anisotropy N xx yy∝ −r r  
as a measure of nematic order, the method we propose is as follows 
(Steps 1–4 are shown schematically in Fig. 3a): Start from a high-
temperature equilibrium configuration (Step 1 in the figure). Apply 
a magnetic field parallel to the x axis, 


H x||  (Step 2 in the figure). 

Cool in field (Step 3 in the figure). Turn off the applied field (Step 4 in 
the figure). Measure the nematic order parameter via, for example, 
ρxx − ρyy. Zero-field warm the sample to the starting high tempera-
ture. Apply the magnetic field parallel to the y axis, 


H y|| , and field 

cool to the same temperature as before. Turn off the applied field. 
Measure again the macroscopic anisotropy, for example, ρxx − ρyy. 
Our prediction is that ρxx − ρyy will switch sign under this protocol, 
if the system has nematic domains which locally break C4 symme-
try to C2 symmetry. If hysteresis is detected, several more extensive 
hysteresis tests can be applied to gain more information about the 
nature of the interactions, as discussed in the Discussion Section. 
(There are slight modifications needed for the case of breaking a C6 
symmetry down to C2 symmetry.)

In Figure 3 we show the maximum possible remanent nema-
ticity, both for the method described here, and for a remanent 
nematicity obtained after zero-field cooling and then training in 
field. One can see that at low applied fields, the nematic order 
parameter is enhanced by at least one power of h for field cooling 
over zero-field cooling, and it is enhanced even more near criti-
cality (see below). A major advantage to this protocol is the abil-
ity to detect nematicity even with weak applied fields, that is, the 
principles apply even in cases where the coercive field strength 
is either unknown or inaccessible experimentally. Furthermore, 
because we have focused on universal behaviour, the principles 
apply to disordered electron nematics in any condensed matter 
system, with any combination of applied orienting field and meas-
ure of nematicity.

There are two important things to notice about Figure 3. First, 
starting from the (disordered) thermal equilibrium configuration, 
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Figure 2 | Schematic phase diagram of electron nematics from two to 
three dimensions. The solid region (yellow to green) denotes the ordered 
phase, with yellow corresponding to 2D systems, and green corresponding 
to 3D systems. In two dimensions (J/J|| = 0), appropriate to graphene 
and interfaces such as surfaces and quantum Hall systems, the critical 
disorder strength is ∆c

2D = 0, and consequently in any real 2D system the 
electron nematic is disordered. An ordered electron nematic is possible 
in 2D only, when the material has zero defects. In bulk materials, there 
is a finite critical disorder strength, below which the system shows an 
ordered nematic at low temperature. Strongly layered materials such as 
cuprate superconductors are closer to the 2D regime than the 3D limit, 
and thus have a smaller region where the electron nematic may be long-
range ordered than in the fully 3D limit. Dashed lines indicate the disorder 
dependent crossover temperature T*(∆,Ω) marking a change in behaviour 
of hysteresis loops in electronic nematicity versus applied orienting field. 
At high temperatures, hysteresis is not observable, and the system shows 
the equilibrium paramagnetic behaviour as an external orienting field is 
changed. For a given field, sweep amplitude Ho and sweep rate Ω at which 
the external field is changed, T*(∆,Ω) marks the crossover temperature 
below which the system can no longer equilibrate, marked by open 
hysteresis loops.

Table 1 | Orienting fields. 

Applied field Orienting field h

Magnetic field

H ∝H Hx y

2 2−

Electric field

E ∝E Ex y

2 2−

Current  

I ∝ I Ix y

2 2−

Uniaxial stress  

s ∝s sxx yy−

Orienting fields that may be applied to orient electron nematics.

Table 2 | Order parameters.

Macroscopic probe Nematic order parameter

Resistivity ρxx − ρyy

 London penetration depth λx − λy

 Critical Current Density j jx
rit

y
ritc c−

 Nernst Effect νx − νy

 Neutron Scattering I Q I Qx y( ) ( )
 

−

 Scanning Tunnelling Microscopy (ref. 10) M Q M Qx y( ) ( )
 

−

The table shows macroscopic measurements that are proportional to the degree of electron 
nematic order.
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the nematicity rises as N ∝ χh upon application of a weak field in 
thermal equilibrium, with a susceptibility that diverges at the criti-
cal point as χ ∝ h1/δ − 1, corresponding to the dotted green line in Fig-
ure 3c. Because the model (equation (1)) has a wide critical region17, 
the susceptibility is large in a wide region of parameters, leading to 
a rapid increase of N as h is applied, N ∝ h1/δ. For the finite disorder 
critical point of the three-dimensional random field Ising model 
(RFIM, equation 1), βδ = 1.81 ± 0.32 and β = 0.035 ± 0.028 (ref. 21). 
Although the uncertainty on 1/δ itself is high, the value of 1/δ is 
low (it is roughly 1/δ = 0.019 ± 0.16), so that when following the 
equilibrium (paramagnetic) magnetization curves, the nematicity 
rises dramatically (as N∝h0.019) as a weak field is applied. Materials 
which are layered will also have a regime of two-dimensional scal-
ing, before reaching the 3D-scaling regime22. For 2D-RFIM scaling, 
1/δ goes to zero, and the rise in nematicity with weak applied field 
is even faster.

Second, the nematicity increases as the temperature is lowered in 
weak applied field (Fig. 3a). The low-field slope of the equilibrium 
nematicity versus applied orienting curve is controlled by the suscep-
tibility of the RFIM, which increases as |T − Tc|β(1 − δ) near the critical 
point. Note that application of a field reduces the barriers to equili-
bration, so that the magnetization tracks the equilibrium magnetiza-
tion curves throughout much of the field-cooling process. Once the 
system is cooled below the temperature T*(∆) at which it falls out 
of equilibrium (that is, when the nematicity plateaus), the orienting 
field should be turned off (Step 4), and the remanent magnetization 
measured.

This method is sensitive to locally oriented objects of any type, 
including orientational defects in a lattice as well as magnetic 

domains. Many forms of magnetic broken rotational symmetry can 
be more easily detected by other means, such as net magnetization, 
neutron scattering, or superconducting quantum interference device 
magnetometry. However, some forms of magnetism are more sub-
tle23,24, such as those which break time-reversal symmetry without 
breaking the translational symmetry of the host crystal. Note that 
the response of magnetic domains to our method will not directly 
induce a sign change in ρxx − ρyy . Rather, the response of magnetic 
domains to this protocol causes My∝ρxz − ρzx and Mx∝ρyz − ρzy to 
exchange values. Furthermore, while magnetoresistance is a stand-
ard phenomenon, it is not generically hysteretic. On the other hand, 
effects such as magnetostriction can couple in-plane magnetic 
moments to in-plane lattice distortions, inducing a (weak) second-
ary response in ρxx − ρyy .

Distinguishing nematics from magnetic domains. Nematic 
domains can be distinguished from subtle time-reversal symme-
try breaking by extending the method as follows (Fig. 4). After 
following steps (1)-(4) above with, for example, 


H x||  to achieve a 

(non-equilibrium) field-cooled configuration, then apply step (5a): 
ramp the field back up to its maximum value and measure ρxx − ρyy 
in field. Next, turn off the field, raise the temperature, and follow 
steps (1)–(4) again, also with 


H x|| . At this point, apply step (5b): 

ramp the field to the same maximum magnitude, but in the oppo-
site direction (that is, 


H x|| − ) and measure ρxx − ρyy in field. Mag-

netic domains respond quite differently in the two cases, whereas 
the nematic order parameter responds exactly the same way in both 
extended versions. Furthermore, in the extended protocol, mag-
netic order parameters respond smoothly through H = 0, whereas 
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Figure 3 | Remanent nematicity under different protocols. (a) Field-cooling method to maximize remanent nematicity. Steps 1–4 are described in the 
text. (b) The outer loop (thin blue line) is the saturation hysteresis loop at low temperatue, accessible only if the coercive field strength is attainable. The 
smaller curve (thick red line) shows the response upon application of a weak orienting field, starting from a zero field cooled configuration. With zero 
field cooling, the maximum achievable remanent nematicity for a given maximum applied field is bounded by the Rayleigh law, and is therefore weak. 
(c) Comparison of the maximum remanent nematicity in the field cooling (solid green line) and zero-field cooling (solid red line) methods, for the same 
maximum applied orienting field. The green dotted line is the asymptotic behaviour in the field cooling case, as the temperature is lowered to the critical 
point. The maximum remanent nematicity is significantly higher in the field-cooling method (by one or more powers of h), as compared with the zero field 
cooling case, especially for weak applied fields.
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nematic domains show a kink at H = 0 for slow enough sweep rates. 
The following inequalities also apply: 

N a N b N(5 ) = (5 ) > (4);  
M a M M b( ) ( ) ( ) .5 4 5  < <

where N(4) and M(4) represent, for example, the nematicity and 
magnetization, respectively, at the end of step 4. These techniques 
can be used to illuminate the connection between electron nema-
ticity and high temperature superconductivity, as well as to address 
the question of whether the phase is present in the wide variety 
of materials for which this exotic electronic phase of matter has 
been proposed yet remains undetected. Furthermore, rather than 
requiring ultraclean materials, the methods described here are 
only helped by the disorder which is surely present in all macro-
scopic samples.

Discussion
The protocols described above are tuned to the case where the orig-
inal crystal structure has two equivalent axes, say a and b, along 
which nematicity may develop. Then, upon entering an electron 
nematic phase, the symmetry between a and b directions is spon-
taneously broken. A good candidate material in the cuprates for the 
proposed protocols is BSCCO. Although there is a supermodulation 
present, the lattice modulation is along the diagonal to the copper–
oxygen bonds within the Cu-O planes, and it does not couple to the 
nematic director. The cuprate superconductor YBCO has an explic-
itly broken rotational symmetry due to the Cu–O chains which 
reside between planes. This effect can be captured within our model 
as a static, constant internal orienting field, ho. Upon applying any 
of the protocols here to YBCO, care must be taken to remember that 
the system starts with an intrinsic orienting field ho. It may be possi-
ble to counteract this intrinsic crystalline effect by application of an 
appropriately chosen external orienting field he, such that ho + he = 0 
and the total orienting field cancels. For the cuprate family LSCO, 
such a cancellation is not possible, since the effective internal field 
changes sign from one Cu–O plane to the next. This can be cap-
tured within equation (1) with an intrinsic orienting field ho which 
changes sign from plane to plane, however such a model has not  
yet been studied in detail.

Other good candidate systems include those for which electron 
nematicity is predicted to arise from valley degeneracy breaking of 
otherwise four-fold symmetric valleys, such as in AlAs heterostruc-
tures and the Si(111) surface12. Note that in contrast to AlAs heter-
ostructures, where the valley symmetry is discrete and its breaking 
can be described by an Ising order parameter, in GaAs/AlxGa1 − x As 
heterostructures the development of the nematic has been linked 
to an XY model (rather than Ising model), in a weak symmetry- 
breaking field25–27.

(2)(2)

If the protocols described above give a positive result, several 
more extensive hysteresis tests can be applied28: For example, the 
model predicts that subloops should close at low temperature, and 
also exhibit return point memory. Two different subloops between 
the same extremal fields but with ‘different histories’ should be 
incongruent if the domains interact, whereas a collection of inde-
pendent hysteretic switchers yields congruent subloops. Hysteresis 
can also be explored as a function of angle within the plane. Because 
h H Hx y∝ −2 2 , if an applied magnetic field is rotated within the xy 
plane, the nematic order parameter responds with a period which is 
half that of a magnetic order parameter.

Methods
Mapping electron nematics to ising variables with disorder. One way that 
electron nematics arise is by melting a stripe phase29 as shown in Figure 1. (For 
some other ways, see for example, ref. 30.) A fully ordered stripe phase is a uni-
directional, interleaved charge and spin density wave (Fig. 1a). As temperature or 
quantum fluctuations are increased in such a system, spin order is generally lost 
before charge order (Fig. 1b). As temperature or quantum fluctuations increase, 
dislocations in the charge stripe order lead to a nematic phase. (Fig. 1c). In each 
of these examples, there is orientational order present in the charge degrees of 
freedom, and it is this directionality which locks to the crystalline direction.  
Figure 1a–c have the charge component of the stripes running vertically,  
mapping to Ising variable σ =  + 1. (See equation (1) in the main text.) Figure 
1d has the charge orientation running horizontally, mapping to Ising variable 
σ =  − 1.

Effects of material disorder. Thermodynamics requires that in any given material, 
there is a finite concentration of defects, driven by the entropy of mixing. Although 
the effects of disorder may have several different manifestations in the microscopic 
physics, at the level of an order parameter description, there are two classes of 
disorder: random field disorder, and local energy-density disorder (also known 
as random Tc disorder)31. In equation (1) of the main text, we have introduced the 
effects of material disorder (such as dopant atoms) in the form of a random field on 
the Ising variable. This is because in general, the local pattern of disorder induced 
by material defects breaks rotational symmetry, and, therefore, by symmetry, it 
must couple linearly to the order parameter. Material disorder can also induce the 
second type of disorder at the order-parameter level, namely local energy-density 
disorder. This may directly enter the model as randomness in the couplings Jij, or as 
randomness in the local strength of the nematic order parameter, which may then 
be subsumed into randomness in the couplings Jij. As long as the mean value of the 
random couplings remains positive, the universal non-equilibrium behaviour of 
this type of random bond Ising model is the same as that of the random field Ising 
model for non-equilibrium phenomena, because application of an orientating field 
explicitly breaks the σ =  ± 1 symmetry32. Furthermore, if both types of disorder are 
present, the universal equilibrium behaviour is also that of the random field Ising 
model. If the disorder is purely of the local energy-density type (such as random 
bond disorder with no random field disorder), then in the equilibrium phase 
diagram, the ordered phase becomes more stable. In particular, the ordered phase 
remains stable against weak random bond disorder in two dimensions. However, 
sufficiently strong disorder of either type (random bond or random field) can lead 
to the destruction of the long-ranged nematic phase, in which case the protocols 
described here can be used to test for local nematic behaviour. The behaviour of the 
system under our protocols is controlled by the non-equilibrium behaviour, and 
the universal non-equilibrium properties in the presence of either type of disorder 
are described by equation (1) in the main text.
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Figure 4 | Extended protocol. (a) Behaviour of magnetic domains under extended protocol (see text for description). Magnetic domains respond very 
differently when following steps (1)–(5a) versus following steps (1)–(5b). (b) Behaviour of nematic domains under extended protocol (see text for 
description). In sharp contrast to magnetic domains, nematic domains respond in the same way whether following steps (1)–(5a) or steps (1)–(5b).
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Phase transition line in the T = 0 plane. As shown in Figure 1, at zero temperature, 
there is a disorder-driven phase transition from the ordered nematic phase into a 
disordered phase. In three dimensions, this obtains at a critical disorder strength  
of Dc

D3 2 27= . J (ref. 33), whereas in two dimensions the critical disorder strength 
is Dc

D2 0=  (ref. 34), and there can be no nematic phase in a 2D system with any 
finite material disorder strength. In a strongly layered system with J/J1 (ref. 22),  
the critical disorder strength is a logarithmic function of interlayer coupling: 

Dc
J J c Jo 

= −

⊥

1
s log( / )

where σ ≈ 0.29 (ref. 35), and co is a constant of order 1(ref. 22). Near the 3D limit, 
1 − J/J1 and the critical disorder strength is a linear function of interlayer 
coupling22:

D D
D

c c
D

c
DJ J

J

c
J J

 


=









 − −










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3 2

1
3 21

2
1
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where c1 is a constant of order 1. 
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