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Holographic free-electron light source
Guanhai Li1,2, Brendan P. Clarke1, Jin-Kyu So1,3, Kevin F. MacDonald1 & Nikolay I. Zheludev1,3

Recent advances in the physics and technology of light generation via free-electron proximity

and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators,

metamaterials and antenna arrays) have enabled the development of nanoscale-resolution

techniques for such applications as mapping plasmons, studying nanoparticle structural

transformations and characterizing luminescent materials (including time-resolved

measurements). Here, we introduce a universal approach allowing generation of light with

prescribed wavelength, direction, divergence and topological charge via point-excitation of

holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron

injection to generate highly-directional visible to near-infrared light beams, at selected

wavelengths in prescribed azimuthal and polar directions, with brightness two orders of

magnitude higher than that from an unstructured surface, and vortex beams with topological

charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully

control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry

and sensing.
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A
diverse toolkit of meso-/macroscopic optical elements

exists to control and manipulate light, that is its
amplitude, polarization, photon energy and momentum,

in free-space and photonic waveguide systems. Recent advances
in nanofabrication technologies and improved understanding of
near-field light/matter/free-electron interactions are now enabling
the extension of such control to the nanoscale: the coupling of
light into well-defined free-space modes of photon energy,
momentum and polarization has been made possible with the
help of photonic crystals1, surface waves2–4, nanoantennas5–7 and
photonic metamaterials8,9. Specifically in relation to electron
beam excitations, plasmonic nanoantennas10–12, cylindrical
metal-dielectric ‘undulators’13 and collective oscillating meta-
molecule ensembles14 have been engaged to such ends. Regardless
of the mode of excitation, structures are typically constrained to
controlling the direction and polarization of emitted light.

Holography was originally conceived as a technique for
increasing the resolution of scanning electron microscopes15,
but has come to be widely recognized as the ultimate method of
achieving three-dimensional optical reconstruction of objects. In
essence, it relies on the encoding of an ‘object’ wavefront in a
recorded interference pattern produced with a ‘reference’ wave;

the object wave can then be reconstructed by illuminating the
interference pattern with the reference wave. Its conceptual
simplicity sees the technique employed routinely for wavefront
conversion of light16,17 and matter waves18,19, where the required
interferogram is computationally generated.

In this work, we propose a flexible means of precisely
controlling the wavefront of light emanating from a singular
nanoscale emitter by locating it in a nanostructured environment
designed according to holographic principles (Fig. 1). Surface
nanostructures are engineered to convert the divergent transition
radiation and surface plasmon polaritons emanating from the
impact point of an electron beam on a metal surface into light
beams with selected wavefronts, specifically directional plane-
waves and high-order optical vortex beams.

Results
Holographic design for electron-induced emission control.
A charged particle crossing the boundary between two different
media generates transition radiation (TR)20, with a spectral
distribution and intensity related to the relative permittivities of
the media and the electron energy. On metal surfaces such
impacts also generate surface plasmon polaritons (SPPs)
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Figure 1 | Holographic free-electron light source design. (a) The electromagnetic excitation resulting from normally incident free-electron impact on a

metal surface is computationally replicated by an electric dipole located in close proximity to the surface. The holographic mask required to couple this

excitation to a desired output beam is obtained via the interference of the dipole-generated near-field and the required output field, as schematically

illustrated for a collimated plane wave at an oblique angle to the surface-normal. (b) Binary version of the as-generated greyscale interference pattern

required to produce, from the impact of 30 keV electrons on a gold surface, an output beam at a wavelength of 800 nm directed at 30� to the surface-

normal. (c) False colour scanning electron microscope image of the pattern from panel (b) fabricated on an optically thick (140 nm) gold film (scale bar,

10mm).
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propagating radially from the impact point. Indeed, for certain
metals at certain frequencies and electron energies the efficiency
of coupling to SPPs may be greater than to TR, but SPPs can only
contribute to free-space (far-field) light emission in the presence
of a decoupling structure such as a grating; TR is otherwise
the dominant output component21,22. The TR from an
electron normally incident on a metal surface has a
cylindrically symmetric toroidal emission pattern (illustrated
schematically in Fig. 1a) very similar to that of a dipole aligned
with the surface-normal (at a distance from the surface hool,
where l is the light wavelength). Indeed, for numerical modelling
purposes, an electron impact excitation on a metal, including SPP
generation, can be accurately represented as such21–24.

We select an emission design wavelength l¼ 800 nm for the
present study, which in experiment utilizes 30 keV electrons
normally incident on gold surfaces. The corresponding numeri-
cally simulated distribution of electromagnetic field in the
gold/vacuum interface plane is employed as the ‘reference’ field
(in holographic parlance) to generate an interference pattern with
an ‘object’ light field corresponding to the desired output
wavefront, which by inversion defines the 2D surface structure
required to regenerate the object (output) beam from an electron-
impact excitation. For example, a plane-wave object beam propa-
gating at a polar angle of 30� to the surface-normal produces the
pattern of offset concentric oval rings shown inset to Fig. 1a. The
interference pattern obtained is converted to a binary mask25,26

(Fig. 1b) for ease of fabrication by focused ion beam milling on an
optically thick (140 nm) polycrystalline gold film (Fig. 1c)
deposited by resistive evaporation. It should be noted that the
computed holographic (interference) patterns are two-dimen-
sional, that is they provide no information on the required height/
depth of surface-relief features for optimal coupling efficiency,
which will generally depend on the relative efficiencies of SPP and
TR generation21, emission wavelength and polar angle27. In the
present case, features are etched to a depth of 60 nm, which is
found, both computationally (in simulations of a binary gold
surface-relief hologram driven by a dipole source at h¼ 50 nm,
constrained to a 10 mm� 10mm xy domain) and experimentally,
to maximize 800 nm emission intensity at y¼ 30�.

Directional plane-wave emission. Electron-induced radiation
emission spectroscopy and imaging have emerged in recent years
as powerful tools, variously with nanometre spatial and picose-
cond temporal resolution, for the characterization of plasmonic
modes, crystallographic defects, carrier dynamics, luminescence
lifetimes and the local density of optical states in photonic and
optoelectronic nanostructures14,21,22,28–33. In the present case, the
spectral and directional distribution of electron-induced light
emission from holographic structures is characterized in a
scanning electron microscope operating in fixed-spot mode,
with an electron energy of 30 keV and beam diameter of 50 nm.
Emitted light is collected by a parabolic mirror located above the
sample and directed to either a VIS/NIR spectrometer or a CCD
camera configured to image the parabolic mirror surface, that is
to map the angular distribution of light emission (Fig. 2a).

Figures 2b,c present the 800±20 nm light emission distribu-
tions for electron injection, at a beam current of 12 nA,
respectively on the unstructured gold surface and at the
centre of the holographic nanostructure shown in Fig. 1c.
(The asymmetry seen in the broadly divergent transition
radiation pattern from the unstructured surface—Fig. 2b—is an
instrumental artefact related to mirror alignment imperfection
and does not depend on sample rotation or polycrystalline
domain orientation.) In stark contrast to the flat gold surface, the
holographic nanostructure produces strongly directional emission

at y¼ 30�, as per design (Fig. 2c) with a peak emission intensity
in the selected direction that is increased by around two orders of
magnitude.

The holographic nanostructure is essentially a diffractive
element, which implies that it should exhibit a dispersive
response for light emission at wavelengths other than the design
wavelength. This is illustrated in Fig. 3a, where emission intensity
integrated over all azimuthal angles is plotted as a function
of polar angle for emission wavelengths, 600, 700, 800
and 900±20 nm. Shorter/longer wavelengths are directed at
smaller/larger polar angles respectively, with peak emission
intensity falling on either side of the structural design wavelength
as the phase mismatch among waves scattered at different
locations on the structure grows. One would also expect the
performance of holographic nanostructures to depend on their
size, that is on the number of constituent scattering elements, and
this is clearly seen to be the case: Fig. 3b shows peak 800 nm
emission intensity and spot size as functions of in-plane pattern
size for a set of hologram dimensions from 10 mm� 10mm
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Figure 2 | Angle-resolved spectroscopy of electron-induced light

emission. (a) Schematic of the scanning electron microscope-based

system for angle-resolved electron-induced light emission spectroscopy.

Electrons impinge on samples through a small hole in a parabolic mirror,

which collects and collimates emitted light, the beam being subsequently

directed to either a spectrometer or imaging CCD (for simplicity, lenses/

mirrors/apertures in these paths are not shown). (b,c) Angular distribution

of 800±20 nm light emission induced by electron-beam impact (b) on an

unstructured gold surface and (c) at the centre of a 30mm� 30mm

holographic mask in gold, designed to produce a plane wave 800 nm output

beam at y¼ 30� (the azimuthal angle j being arbitrarily set by in-plane

sample rotation beneath the incident electron beam; signals are integrated

over a 20 s sampling period).
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to 50 mm� 50 mm. With increasing pattern size, Emission
intensity and spot size (c.f. beam divergence) increase and
decrease respectively at a rate consistent with the B25 mm
exponential propagation length of SPPs on polycrystalline gold
surfaces at the design wavelength34,35.

Vortex beam generation. The holographic design approach can
readily be applied to generate more complex wavefronts than the
plane-wave considered thus far. To illustrate this, we fabricated
holographic nanostructures encoded with optical vortex beams36.
Such beams have a phase that varies in a corkscrew-like manner
along the direction of propagation, described by azimuthal phase
dependence eilj, where j is the azimuthal angle with respect to
the beam axis and l is an integer known as the topological charge
(l¼ 0 representing a plane wavefront). They are non-diffracting,
have a characteristic ring-shaped intensity profile and carry

orbital angular momentum that can be transferred to illuminated
objects, making them particularly interesting for optical trap
and tweezers applications37,38. Holographic structures were
designed to generate optical vortex beams of varying topological
charge, again at a polar angle y¼ 30� and a wavelength of
800 nm, for an electron energy of 30 keV. These comprise
patterns of interlocking spiral arms, with the number of arms
corresponding to the topological charge, as illustrated in Fig. 4a
for l¼ 3, 6 and 9. Fig. 4b shows the far-field distribution of the
light emitted from holographic nanostructures of l¼ 3, 6 and 9
respectively. The observed ring-shaped intensity profile, with a
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Figure 3 | Performance of gold surface holographic light sources.

(a) Emission intensity as a function of polar angle y (integrated over all

azimuthal angles) in 40 nm wavelength bands centred at 600, 700, 800

and 900 nm, for a 30 mm� 30mm pattern engineered for 800 nm emission

at y¼ 30� (electron beam current¼6.1–6.3 nA; integration time¼ 30 s).

(b) Peak intensity and 3 dB full-width half-maximum spot size of

800±20 nm light emission (evaluated at the brightest pixel and as solid

angle around said pixel respectively) as functions of the in-plane dimen-

sions of the holographic structure in microns (beam current¼ 5.0–5.2 nA;

integration time¼ 30 s; dashed trend lines are exponential curves with a

growth/decay constant of 20mm; Error bars for intensity are evaluated as

the difference between the peak pixel intensity and the peak of a Gaussian

fit to the polar cross-section through that pixel; and for spot size by

including ±1 pixel either side of the 3 dB boundary, weighted for relative

brightness, in the evaluation of solid angle). Sections of angular emission

intensity distributions are shown inset for holograms with centre-edge

distances of 5, 15 and 25 mm (polar and azimuthal grids are in 15� and 30�
steps respectively).
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Figure 4 | Generation of optical vortex beams. (a) Central portions of

binary holographic masks for electron-beam induced generation of optical

vortex beams with topological charge l¼ 3, 6 and 9 and (b) corresponding

angle-resolved emission intensity distribution maps (electron beam

current¼ 5.5–6.1 nA; integration time¼ 30 s). (c) Mean radius of the ring-

shaped vortex beam intensity profile (averaged over polar and azimuthal

directions with s.d. error bars) as a function of topological charge l, with a

fitting of the form A(lþ 1)1/2. The factor A is employed here as a fitting

parameter, taking a value 3.937� (analytically40 it should depend on

wavelength and propagation distance from the vortex beam source).
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central intensity null arising as a consequence of the phase
singularity on the beam axis, is a defining characteristic of vortex
beams. The expected increase in ring radius with topological
charge, as B[lþ 1]1/2 (analytically derived in ref. 39), is very
clearly seen in Fig. 4c.

Discussion
In summary, we have shown experimentally that holographically
nanostructured surfaces can be employed to control the
wavefront of light emission from nanoscale sources. The concept
is demonstrated in application to the transition radiation and
surface plasmon polaritons generated by electron beam impact on
a metal (gold) surface, with holographic patterns engineered to
produce directed, low-divergence, directional plane wave and
optical vortex beams. Brightness (evaluated in photons per unit
solid angle per electron) at the design wavelength is enhanced
by as much as two orders of magnitude in the present
case, and stronger enhancement may be achieved at shorter
wavelengths where electron-induced excitation of SPPs is more
efficient.

The control of energy transfer and conversion, in particular the
generation of light, in nanoscale systems is a technological
challenge of great and growing importance. With micron-
scale dimensions and the freedom to fully control radiation
parameters, holographic free-electron light sources offer novel
applications in such areas as nano-spectroscopy, nano-chemistry
and sensing. With an appropriate reference field model, the
approach can be adapted to a variety of nanoscale ‘point source’
emitters, for example quantum dots and fluorescent molecules, to
other substrate media, and to higher electron energy domains.
The use of continuously-variable-depth, as opposed to binary,
holographic nanostructures and phase-gradient metasurface
patterns40 may add additional degrees of freedom to the
control of emission spectrum/wavefront and device efficiency
without the complications of multilayer device architectures.

Methods
Numerical simulation of electron-induced fields. For the purposes of designing
holographic surface structures, the distribution of electromagnetic field in the gold/
vacuum interface plane resulting from free-electron injection are computed using
the model of a fixed dipole above the surface21–24, via the finite element method
(in COMSOL Multiphysics). We select a surface–dipole separation h¼ 50 nm
(l/16) that is small enough to correctly reproduce the electron-induced fields
(there is negligible variation in the transition radiation distribution among values
of hol/8, that is o100 nm in the present case) whilst being larger than the
local finite element mesh size (20 nm), so as to avoid anomalies in simulated
electromagnetic field distributions. The gold and vacuum are assumed to be semi-
infinite in the z-direction, with material parameters for gold taken from ref. 41.

Electron-induced light emission mapping. Light emitted as a consequence of
electron interaction with samples is collected by a parabolic mirror located
above the sample, so as to be confocal with the incident electron beam (which
passes through a small hole in the mirror), and directed to either a VIS/NIR
spectrometer (Horiba iHR320 imaging spectrometer with nitrogen-cooled detector
array) or a CCD camera configured to image the parabolic mirror surface, that is to
map the angular distribution of light emission. Band-pass filters may be optionally
inserted in the latter, imaging beam path. In this work we present as-recorded
angle-resolved emission data for all samples, converted directly from the square
CCD array to spherical coordinates without background subtraction or post-pro-
cessing correction for instrumental asymmetry (the x/y/z position of the mirror is
routinely adjusted to correctly centre and frame the CCD emission map image, but
no tip/tilt adjustment is available for fine-tuning) – the need of which is negated by
the brightness and directionality of holographic sample emission. The self-con-
sistency of data sets (such as in Figs 3 and 4) against instrumental alignment
artefacts is ensured through the use of fixed azimuthal and/or polar angles in
each case.

Data Availability. The data from this paper can be obtained from the University
of Southampton ePrints research repository, DOI: 10.5258/SOTON/383663.
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