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PI3 kinase inhibition improves vascular
malformations in mouse models of hereditary
haemorrhagic telangiectasia
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Mariona Graupera3, Minhong Yan5, Lawrence H. Young1, Paul S. Oh6 & Anne Eichmann1,7,8

Activin receptor-like kinase 1 (ALK1) is an endothelial serine–threonine kinase receptor for

bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause

hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by

excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that

inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade

both lead to AVM formation in postnatal retinal vessels and internal organs including the

gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1

deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2

receptor prevents excessive angiogenesis but does not fully revert AVM formation. In

contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts

established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation

that may be a novel target for the treatment of vascular lesions in HHT2.
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H
aemorrhagic telangiectasia (HHT) is an autosomal-
dominant inherited vascular disorder that affects B1 in
5,000 people. Patients develop multiple focal vascular

malformations including capillary telangiectasies and arteriove-
nous malformations (AVMs)1. These lesions are fragile and prone
to bleeding, and large calibre AVMs cause pulmonary and
systemic shunting that can be physiologically significant1. More
than 95% of HHT cases are caused by mutations in transforming
growth factor-b (TGF-b)/bone morphogenetic protein (BMP)
signalling pathway genes, including the surface receptors Endo-
glin (ENG, mutated in HHT1) and ACVRL1 (hereafter referred as
ALK1, mutated in HHT2), and the signalling pathway effector
SMAD4-juvenile polyposis2–5. ENG and ALK1 proteins are
expressed predominantly at the surface of endothelial cells,
where they bind members of the TGF-b/BMP family, including
TGF-b, BMP9 and BMP10 (refs 6–8). ENG acts as an auxiliary
co-receptor that promotes signalling through ALK1 (ref. 9).
Ligand binding activates cytoplasmic regulatory SMADs 1, 5 and
8, which subsequently complex with SMAD4 and translocate into
the nucleus to regulate gene expression7. Thus, HHT is caused by
mutations leading to deregulation in this signalling pathway, but
how these mutations induce vascular malformations remains
unclear. Identifying such mechanisms could provide novel
approaches to prevent vascular malformations in HHT patients.

Mouse models have provided insights into Eng and Alk1
function. Heterozygous mutations in either gene give rise to
vascular lesions, but these form at low frequency and late in life,
making them inconvenient to study10,11. Homozygous global
Eng10 and Alk1 gene inactivation in mice6 and zebrafish12 leads to
embryonic death due to AVMs, again rendering the study of
molecular mechanisms difficult. However, postnatal tamoxifen
(Tx)-inducible, endothelial-specific homozygous deletion of
either gene combined with angiogenic or pro-inflammatory
stimuli induces HHT-like vascular malformations including
excessive angiogenesis, enlarged veins and AVMs13–16. Thus,

loss of both copies of endothelial Alk1 or Eng genes in the context
of active angiogenesis is thought to engender vascular lesions.

Here we investigate AVM formation in the retina and
gastrointestinal (GI) tract using Cdh5-CreERT2 mice17 crossed
with Alk1fl/fl (Alk1iDEC) mice14,18 in which endothelial-specific
homozygous deletion of Alk1 can be induced postnatally with Tx
and blocking antibodies (blABs) against the BMP9/10 ligands19.
We show that blocking BMP9-ALK1 signalling enhances
pro-angiogenic signalling induced by vascular endothelial
growth factor (VEGF), the major angiogenic growth factor
known to date20, but also enhances phosphatidyl inositol 3-kinase
(PI3K)-AKT signalling independently of exogenous VEGF. We
show that targeting Vegfr2 prevents angiogenesis in Alk1iDEC

mice but does not rescue normal vascular patterning and AVM
formation, whereas PI3K inhibition rescues vascular malfor-
mations in BMP signalling-deficient retinas and GI tract, identi-
fying PI3K pathway inhibition as a novel putative treatment
approach for HHT patients.

Results
Blocking BMP9/10 signalling leads to vascular malformations.
We used postnatal day 5 (P5) Cdh5-CreERT2;Alk1fl/fl mice
(Alk1iDEC) treated with a single dose of 50 mg Tx at P3 and mice
treated with BMP9/10 blAB19 (10 mg kg� 1, intraperitoneal (i.p.))
between P2 and P4 (Fig. 1a and Supplementary Fig. 1a).
Tx-injected Cre-negative littermates and uninjected wild-type
(no antibody) littermates were used as controls. Efficient Alk1
gene deletion was verified by quantitative PCR (qPCR) from
mouse lung endothelial cells (mLECs; Supplementary Fig. 1b) and
loss of endothelial staining with an anti-Alk1 antibody (Supple-
mentary Fig. 1c,d). BMP9/10 blockade did not affect Alk1
expression (Supplementary Fig. 1c,e).

At P5, the morphology of retinal and organ vasculature was
analysed by injection of latex dye (Fig. 1). Control retinas and the
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Figure 1 | Blocking BMP9/10-Alk1 signalling induces vascular malformations. (a) Schematic representation of the experimental strategy used to delete

Alk1 or to block BMP9/10 ligands (P0–P5). Arrowheads indicate intra-gastric injection of 50mg Tx at postnatal day 3 (P3) and i.p. administration of BMP9/

10 blAB, (10 mg kg� 1) at P2–P4. (b–g) P5 mouse retinas containing latex dye injected into the left ventricle of the heart. Vascular staining with latex dye

(black in single images in b,d,f and white in merged images in c,e,g) and IB4, (green) in c,e,g of retinal flat mounts from control (Ctrl) (b,c), Alk1iDEC (d,e)

and BMP9/10 blAB-injected (f,g) mice. Red arrowheads indicate retinal AVMs. (h–m) Vascular staining with latex dye of small intestine (blue) in Ctrl (h,i),

Alk1iDEC (j,k) and BMP9/10 blAB-injected (l,m) P5 mice. i,k,m are magnified areas of boxed areas in h,j,l. Red arrowheads indicate latex-perfused veins.

(n) Quantification of AV shunt number in the retinas. Each dot represents a retina. n¼ 7 Retinas per group. Error bars: s.e.m., *Po0.05 and ***Po0.001,

Mann–Whitney U-test. (o) Quantification of latex-perfused veins at the surface of the small intestine. Each dot represents a perfused vein. n¼ 5–8

intestines. Error bars: s.e.m., ***Po0.001, Mann–Whitney U-test. Scale bars, 100mm in b–g and 10 mm in h,j,l. a, artery in red; v, vein in blue.
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GI tract showed staining of arterial but not venous vessels,
because latex cannot perfuse capillaries (Fig. 1b,c,h,i). In contrast,
both Alk1iDEC- and BMP9/10 blAB-treated mice exhibited latex
dye staining of veins in retinas (Fig. 1d–g) and the GI tract
(Fig. 1j–m). Counterstaining of retinal vessels with IsolectinB4
(IB4) showed that latex perfused AVMs with blood flowing
directly from an artery into a vein without an intervening
capillary bed (Fig. 1d–g). Quantification revealed an average of
three latex-perfused AVMs per retina in Alk1iDEC- and two
AVMs in BMP9/10 antibody-treated mice (Fig. 1n). The GI tract
surface of mutants showed an average of seven in Alk1iDEC and
four in BMP9/10 blAB perfused veins per 10 mm gut length,
whereas no perfused veins were seen in control mice (Fig. 1o).

Additional analysis of IB4-stained retinas confirmed previous
results15,21 that AVMs were usually located in the centre of the
retina, close to the optic nerve, whereas increased vessel area and
branching were observed at the vascular front in both Alk1iDEC-
and BMP9/10 blAB-treated mice (Supplementary Fig. 1f–k).

Sorting of endothelial cells from Alk1iDEC retinas showed that
Alk1-deficient cells display enhanced cell cycle progression, with a
significant reduction of cells in G1 phase and a concomitant
increase of endothelial cells in S/G2/M (Supplementary Fig. 2a).
Staining of BMP signalling-deficient retinas for smooth muscle
actin (SMA) showed a decrease in arterial and an increase in
venous SMA coverage when compared with control retinas, in
particular in veins engaged in AVMs (Supplementary Fig. 2b–d).
qPCR analysis on mLECs isolated from Alk1iDEC showed
unchanged levels of Vegfr2 but downregulation of Alk1, Eng
and Vegfr1, as well as of Notch signalling components Notch1 and
Jag1 (Supplementary Fig. 2e), in agreement with a previous
report15. Arterial markers Unc5b and Efnb2 (refs 17,22) were
decreased, whereas expression of the venous marker EphB4 was
upregulated in Alk1 mutant cells (Supplementary Fig. 2e). Anti-
body staining confirmed that Alk1 mutant cells lose expression of
Vegfr1 (Supplementary Fig. 2f,g), a negative regulator of VEGF
signalling, and of the Notch ligand Jagged 1 (Supplementary
Fig. 2h,i)20,23, suggesting that reduced Notch and enhanced
VEGF signalling could contribute to AVM formation in Alk1
mutant cells.

Vegfr2 deletion prevents vascular development in Alk1 mutants.
To study VEGF signalling in ALK1-deficient cells, we transfected
human umbilical vein endothelial cells (HUVECs) with ALK1
small interfering RNA (siRNA), which decreased ALK1
messenger RNA levels by 490% (Fig. 2a). Compared with Ctrl
siRNA, ALK1-depleted cells displayed equal levels of total
VEGFR2 but showed an increase in VEGFR2 phosphorylation
and activation of downstream pERK and pAKT in response to
10 ng VEGFA (Fig. 2b,c). Of note, pAKT was already increased at
baseline in ALK1 knockdown cells (Fig. 2b,c) in the absence of
exogenous VEGF.

We reasoned that blocking the Vegf signal-transducing
receptor Vegfr2 (ref. 20) might prevent vascular malformations
in Alk1 mutant retinal vessels. To block Vegfr2 genetically, we
used Vegfr2fl/fl mice24 intercrossed with Alk1iDEC mice. One
hundred micrograms of Tx was administered at P3 and P4, and
Alk1;Vegfr2iDEC mice were analysed at P5 (Fig. 2d). Tx-injected
Cre-negative littermates were used as controls (Fig. 2d,e).
Compared with control mice, combined deletion of both Vegfr2
and Alk1 produced varying degrees of vascular defects that
correlated with the extent of Vegfr2 deletion (Fig. 2e–k).
Alk1;Vegfr2iDEC mice had a reduced number of AVMs when
compared with Alk1iDEC single mutants, but many retinas
still exhibited AVMs (Fig. 2f,l), despite loss of Alk1 expression
(Fig. 2i).

Western blot analysis of Vegfr2 expression (Fig. 2j) in the lungs
corresponding to the retinas in Fig. 2e–h showed that mice with
inefficient Vegfr2 deletion (33%) could display close to normal
retina vascular patterning (Fig. 2g,i). In contrast, mice with
efficient Vegfr2 deletion (88%) had strongly reduced retinal
angiogenesis, in some cases displaying barely any vasculature
(Fig. 2h). Quantification of 16 retinas showed that overall vascular
density and branching in double mutants was significantly lower
than untreated controls (Fig. 2l), indicating that Vegfr2 inhibition
was dominant over Alk1 loss of function and, if complete,
prevented retinal vascular development.

Increased PI3K signalling in Alk1-deficient endothelial cells.
As ALK1 knockdown HUVECs exhibited increased AKT phos-
phorylation in the absence of VEGF stimulation (Fig. 2b,c), we
investigated activation of the PI3K/AKT pathway in HUVECs
(Fig. 3a,b) and mLECs (Fig. 3c,d) treated with BMP9. Two
hours after treatment, AKT phosphorylation at serine 473 and
phosphorylation of downstream FOXO1 were both strongly
decreased compared with untreated cells (Fig. 3a–d). Upstream of
PI3K-AKT, we found that phosphorylation of the Ser380/Thr382/
Thr383-inactive form of the lipid phosphatase and tensin
homologue (PTEN)25,26 was decreased in BMP9-stimulated
HUVECs and mLECs (Fig. 3a–d), suggesting that AKT activity
might be repressed by stabilizing PTEN at the cell membrane.
Total PTEN levels were also decreased by BMP9 treatment
(Fig. 3a,c). We next confirmed that BMP9/ALK1 signalling
regulates AKT activation by using ALK1-depleted HUVECs and
mLECs or cells treated with anti-BMP9/10 blABs (Fig. 3e–h).
Cells were cultured in medium complemented with 2% fetal calf
serum containing BMP9 proteins21. ALK1-depleted cells and
BMP ligand blockade both increased pAKT, pFOXO1 and
pPTEN levels (Fig. 3e–h).

In line with the western blotting results, immunostaining of
Alk1iDEC mLECs showed an increase in PI3K-Akt signalling.
Compared with control cells, pFoxo1 was increased in Alk1iDEC

cells (Fig. 3i,j), whereas nuclear Foxo1 staining, which is inhibited
by phosphorylation27, was decreased (Fig. 3k,l). pPten immuno-
staining in Ctrl mLECs revealed both nuclear and membrane
staining, whereas we observed an increase in nuclear and a
decrease in membrane staining in Alk1iDEC cells (Fig. 3m,n),
suggesting that BMP inhibits PI3K-Akt activity via regulation of
Pten localization and activity25,26.

PI3K inhibition improves AVMs in Alk1 mutants. The data
suggested that inhibition of PI3K signalling might improve
vascular malformations in Alk1iDEC mice. To test this hypothesis,
we injected 50mg Tx into P3 Alk1iDEC mice and administered
Wortmannin (PI3Ki, 0.4 mg kg� 1, i.p.) at P3, P4 and P5 (Fig. 4a).
Tx-injected Cre-negative littermates were used as controls and
retinas were analysed at P5. Western blotting on whole lung lysates
showed that PI3Ki efficiently inhibited AKT phosphorylation,
without affecting total AKT levels (Fig. 4b). PI3Ki induced a
decrease of retinal vasculature density and the number of branch
points when compared with untreated Ctrl mice (Fig. 4c,d). PI3Ki
also efficiently normalized the vasculature of Alk1 mutants (Fig. 4f
compared with Fig. 4e). Quantification showed that PI3Ki treat-
ment prevented AV shunt formation in Alk1iDEC retinas and
normalized vessel density, as well as the number of branch points
close to control levels (Fig. 4g). We also found that PI3K inhibition
in Alk1iDEC normalized the increased proliferation of the endo-
thelial cells, which was assessed by PH3 staining (Fig. 4h).

We next tested the efficiency of PI3Ki in rescuing AVM
formation in the internal organs. In latex-perfused control
versus Alk1iDEC mice, PI3Ki efficiently reduced the number of
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latex-perfused retinal AVMs and veins on the surface of the GI
tracts (Fig. 4i–o).

To confirm the effects of PI3K pathway inhibition in rescuing
AVMs in Alk1iDEC mice we used another PI3K inhibitor, Pictilisib
(PI3Ki 2)28. Alk1 deletion was induced at P3 with 50 mg Tx and
20 mg kg� 1 of PI3Ki2 was administered i.p. at P3–P5 and retinal
vasculature was analysed at P5 (Supplementary Fig. 3a). Staining
for IB4 shows that inhibition of PI3K activity with PI3Ki2
efficiently prevented the development of AV shunts and rescued
vascular defects in Alk1iDEC retinas (Supplementary Fig. 3b–d).

PI3Ki treatment also prevented vascular defects induced by
BMP9/10 blockade (Fig. 5a–d). BMP9/10 blAB and PI3Ki were
administered at P3 and P4, and P3–P5, respectively, and the

retinal vasculature was analysed at P5 (Fig. 5a). Staining for IB4
showed that inhibition of PI3K activity efficiently prevented the
development of AV shunts and rescued vascular defects induced
by BMP9/10 blAB (Fig. 5b–d).

To confirm the efficacy of PI3K inhibition in vivo, treated
versus untreated controls, versus Alk1iDEC and BMP9/10
blAB-injected mice retinas were labelled for PI3K downstream
signalling components (Fig. 6a–m). Endothelial nuclear Foxo1
staining29 was strongly decreased in Alk1 mutant and BMP9/10
blAB-treated mice (Supplementary Fig. 4a–d). Staining with
phospho-S6 (ref. 30), which is positively regulated by PI3K-AKT
signalling was strongly increased in BMP9/10 blAB- (Fig. 6b,c)
and Alk1iDEC-treated retinas (Fig. 6e,h) when compared with
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control retinas (Fig. 6a,d). PI3Ki treatment decreased the
expression of phospho-S6 in controls (Fig. 6f,h) and in Alk1
mutant retinas (Fig. 6g,h). Furthermore, Eng, which is induced by
Alk1 signalling15 and repressed by PI3K (ref. 31), was decreased
in Alk1 mutant retinal vessels (Fig. 6j,m) when compared with
control retinas (Fig. 6i,m) and the expression was rescued by
PI3Ki treatment (Fig. 6l,m).

PI3K inhibition reverts established AVMs in Alk1 mutants. To
address whether inhibition of PI3K was able to revert already
established AVMs, we first determined the time course of AVM
formation in Alk1iDEC- and BMP9/10 blAB-treated retinas. Fifty
micrograms of Tx or BMP9/10 blABs were administered at P3 in
Alk1iDEC or control pups, respectively, and retinas were analysed
24 (P4) or 40 h later (P5) (Fig. 7a). Seventy per cent of Alk1iDEC
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retinas and 87% of BMP9/10 blAB-treated retinas exhibited at
least one AV shunt 24 h after injection (Fig. 7b). Staining for
the endothelial nuclear Erg1,2,3 transcription factor32 and
Ve-Cadherin showed an increase in the number of endothelial
cells specifically at branches of retinal veins (Fig. 7c–g). In control
retinas, these branches contained a single cell (Fig. 7c), whereas
Alk1iDEC or BMP9/10 blAB-treated mice showed two to three
cells (Fig. 7d–f). At 40 h, both arterial and venous branches in
mutant AVMs exhibited more than three cells compared with one
cell in controls (Fig. 7c–g), suggesting that AVMs arise from the
enlargement of capillaries and an increase in the cell number at
venous and arterial branch points.

Having established that AVMs were present at P4, we next
induced gene deletion with 50 mg Tx at P3 and administered
PI3Ki 24 and 40 h later. Pups were killed at P5 (Fig. 7h).
Analysis of retinal vasculature showed that PI3Ki efficiently
rescued vascular anomalies in Alk1iDEC retinas (Fig. 7i–k).
Likewise, PI3Ki treatment at P4 after induction of BMP9/10
blockade at P3 and P4 also reduced vascular defects (Fig. 7l–o),
suggesting that inhibition of PI3K pathway reverts already
established AVMs.

Discussion
The major novel finding reported here is that inhibition of BMP9
and 10 signalling through the Alk1 receptor leads to over-
activation of the PI3K-Akt pathway and that inhibition of PI3K
activity rescues vascular malformations in mouse models of
HHT2 (Fig. 8). The PI3K/Akt pathway stimulates endothelial cell
proliferation, migration and survival downstream of various
angiogenic growth factors33. We show that pharmacological
inhibition of PI3K signalling using two different inhibitors
prevents and even rescues abnormal features in BMP signalling-
deficient retinas and the GI tract. Inhibition of PI3K in wild-type
retinas closely mimics the retinal angiogenesis phenotype in mice
lacking the PI3K110a isoform or Akt1 gene34,35 confirming
treatment specificity. However, PI3K inhibition rescued excessive

retinal endothelial cell proliferation, providing one possible
mechanism for its effects in vivo. In addition, a recent study
showed that AVM formation in zebrafish Alk1 mutants was due
to altered endothelial cell migration36, which in mouse retinas is
dependent on the PI3K110a isoform34. Therefore, with increased
endothelial cell proliferation, altered migration is likely to be
implicated in the Alk1 mutant phenotype and may be targeted by
PI3K inhibition. This pathway therefore represents an attractive
potential therapy for Alk1-mediated HHT2 disease.

Mechanistically, we found that enhanced PI3K-Akt pathway
activation following BMP9 signalling blockade involves the
upstream lipid phosphatase Pten (Fig. 8). BMP9 was previously
shown to decrease Pten expression levels in mouse embryonic
fibroblasts37, which prompted us to investigate Pten as a possible
upstream regulator of PI3K-Akt phosphorylation. We confirmed
changes in total Pten levels and additionally found more dramatic
effects on the C-terminal Pten phosphorylation. Pten catalyses the
conversion of phosphatidylinositol 3,4,5-trisphosphate into
phosphatidylinositol 4,5-bisphosphate, thereby counteracting
PI3K-Akt signalling at the cell membrane. When phos-
phorylated, Pten assumes a closed conformation with an
inactive phosphatase domain that is unable to bind the cell
membrane and to dephosphorylate PI3K substrate, thereby
increasing PI3K activity25,38.

Our in vitro experiments show that BMP9 treatment decreases
carboxy-terminal PTEN phosphorylation in HUVECs and
mLECs, thereby increasing PTEN activity at the cell membrane,
leading to reduced phosphorylation of AKT and of downstream
FOXO1 transcription factor. Conversely, loss-of-function experi-
ments using Alk1 knockout mLECs or knockdown HUVECs, or
BMP9/10 blAB-treated mLECs and HUVECs show the reverse
effect: increased PTEN phosphorylation led to increased AKT and
FOXO1 phosphorylation. This points to regulation of C-terminal
PTEN phosphorylation by BMP9 as the critical step for AKT
activation (Fig. 8). We are currently investigating the mechanistic
basis for this effect. BMP9/ALK1 might signal via SMAD proteins
to repress transcription of PTEN and/or induce kinases targeting
the PTEN C terminus.

PTEN mutations in humans cause vascular anomalies39,
suggesting PTEN as a major hub to maintain the proper balance
between BMP and PI3K signalling pathways. Likewise,
overactivation of the PI3K/AKT/mammalian target of rapamycin
pathway has been shown to cause vascular anomalies. Activating
mutations of AKT/Protein kinase B (ref. 40), TIE2 receptor (ref. 41)
or PIK3CA (ref. 42) have been associated with the development of
vascular anomalies in mice and humans. Interestingly, the absence
of AV shunts in these pathologies, or in Pten-deficient mice retinas
suggests that an increase in PI3K signalling by itself is not sufficient
to trigger AVMs28. One could speculate that increased PI3K
signalling leads to AVMs only in the context of reduced Smad or
Notch signalling. Regardless of the precise mechanism, the data
shown here demonstrate that blocking BMP9/10 signalling induces
an increase in PI3K signalling and identify PI3K signalling pathway
inhibition as a putative novel therapeutic approach for HHT2
patients.

PI3K signalling is activated by various growth factors,
including VEGF43. Our data show that VEGF signalling is
increased in ALK1 mutant cells. Several possible causes for
enhanced VEGF signalling exist: first, hypersprouting and AVM
formation in BMP9/10-Alk1 signalling-deficient retinas probably
leads to hypoxia, which is known to increase Vegf levels, and
VEGF levels are also increased in human HHT patients44.
Second, we and others have previously shown that BMP9
treatment leads to an increase in the expression of Notch
signalling components Hey1 and Hey2, as well as in Vegfr1, and
Notch and Vegfr1 counteract Vegf signalling through Vegfr2 in

PI3Ki

B
M

P
9/

10
 b

lA
B

PI3Ki

P5P3P0

BMP9/10 blAB

a b c

d

IB4

PBS

a aa vv va

n=4 n=5 n=6 n=5 n=4 n=5 n=6 n=5

n=4 n=4

2,500

2,000

1,500

1,000

500

0B
ra

nc
h 

po
in

ts
 p

er
 m

m
2

V
as

cu
la

r 
de

ns
ity

 (
%

)

A
V

 s
hu

nt
s/

B
M

P
9/

10
bI

A
B

 r
et

in
as

60

40

20

0

12

8

4

0

PBS

PBS

No AB No AB
BMP9/10 bIAB BMP9/10 bIAB

****

PI3Ki

PI3Ki PBS PI3Ki

*

Figure 5 | PI3K inhibition prevents AVM formation in BMP9/10 blAB-

treated mice. (a) Schematic representation of the experimental strategy to

assess the effects of PI3K inhibition on the retinal vasculature of BMP9/10

blAB injected mice. Arrowheads indicate the time course of injection of

BMP9/10 blAB and PI3Ki or PBS. (b,c) IB4 staining of retinal flat mounts

from mice treated with BMP9/10 blAB (b) and BMP9/10 blAB and

PI3Ki (c). Red arrowheads in b indicate AV shunts. Scale bars, 200mm in

b,c. (d) Quantification of AV shunt number, vascular density and number of

branch points. n¼4–6 Retinas per group. Each dot represents one retina.

Error bars: s.e.m., *Po0.05, Mann–Whitney U-test. a, artery in red; v, vein

in blue.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13650 ARTICLE

NATURE COMMUNICATIONS | 7:13650 | DOI: 10.1038/ncomms13650 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


retina vessels15,45–47. Chromatin immunoprecipitation sequen-
cing analysis had shown that Smad1,5 binding to the promoter of
Hey1 and Hey2 was increased after BMP9 treatment of
HUVECs48, suggesting that BMP9-Smad directly activates
Notch signalling components. We and others15 also observe
that Alk1 mutant endothelial cells show a corresponding decrease
in Vegfr1 and Notch signalling components. Although we did not
see effects on Vegfr2 levels, Hey2 (HESR1) was previously shown
to decrease VEGFR2 promoter-luciferase reporter activity49.
Decreased VEGFR1 levels may be sufficient to account for the
enhanced VEGF signalling shown in Fig. 2b; alternatively,
VEGFR2 levels may change transiently at different time points.

We tested whether blocking excessive VEGF could rescue
vascular defects in Alk1 mutants. Administration of Vegf blAB in
temporally inducible Alk1 mouse mutants has been shown
to block progression of cutaneous AV shunts50. Furthermore,
VEGF-blAB is currently tested in clinical trials in HHT
patients51–53. We show that deletion of Vegfr2, the main signal
transducing receptor for Vegf, prevents angiogenesis, but does
not fully rescue normal vascular patterning and AVM formation.

In fact, the severity of the vascular phenotype in Alk1;Vegfr2iDEC

mice was Vegfr2 dose dependent. We found that Cdh5-CreERT2-
mediated Vegfr2 excision was highly variable between mice, as
described previously54. Proper interpretation of the results thus
required correlating Vegfr2 protein levels in mouse lungs to the
retinal vascular phenotype in each mouse. Using this approach,
we found that strong inhibition of Vegfr2 expression severely
impaired the development of retinal vasculature in Alk1 mutants,
as previously shown on a wild-type background54. Vegfr2 deletion
completely abolished the hypervascular phenotype resulting from
Alk1 deletion, indicating that Vegf signalling inhibition is
dominant and overrides lack of Alk1 signalling. However, the
retinas of the Alk1;Vegfr2iDEC pups still displayed AV shunts,
suggesting that additional signalling components may be involved
in AVM formation. This idea is also supported by in vitro studies
with HUVECs and mLECs, where PI3K signalling is increased in
the absence of exogenous VEGF treatment. Thus, the data
support the existence of a specific disease-causing enhanced
PI3K activity downstream of Alk1 deficiency that is at least
partially VEGF independent. Nevertheless, our data show that
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down-modulation of excessive Vegf signalling normalizes
vasculature, supporting potential clinical benefits of anti-VEGF
treatment in HHT2 patients.

Finally, our data confirm that BMP9/10 are physiological Alk1
ligands in mice. In previous studies, blocking of BMP10 in BMP9
mutants or ligand sequestration by Alk1-Fc treatment induced
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retina hypervascularization, but not AVM formation45,47, leaving
open the possibility that additional Alk1 signalling mechanisms
might protect from AVM formation. In these studies, treatments
were administered to pups at P1, a stage when retina
vascularization begins, and arteries and veins have not yet
formed55. When receptor deletion and ligand blockade are done
at P3, a stage when retina arteries and veins have formed and
carry flow56, AVMs develop, suggesting that flow is required for
AVM formation in mice21. Furthermore, subjecting endothelial
cells to laminar shear stress potentiates signalling induced by low
concentrations of BMP9 in vitro21. In zebrafish embryos,
arresting flow prevents AVM formation in Alk1 mutants57,
demonstrating that flow is an evolutionary conserved trigger of
AVM formation. AVMs always form between the larger arteries
and veins close to the optic nerve that carry most blood flow,
whereas less perfused vasculature towards the angiogenic front
develops hypervascularization. Thus, existing data suggest that
BMP9/10 signalling through Alk1 protects vasculature from
hypervascularization in low flow conditions and at the same time
prevents AVM development induced by higher flow. AVMs form
via enhanced cell cycle progression and enlargement of capillary
connections between retinal arteries and veins. Simply put, it
appears that BMP9/10 signalling through Alk1 protects capillary
size at vessel branch points, thereby allowing proper branching
morphogenesis of the vasculature.

Methods
Mice. All animal experiments were performed under a protocol approved by
Institutional Animal Care Use Committee of Yale University.

Eight weeks old Alk1iDEC and Alk1;Vegfr2iDEC mice of mixed genetic
background were intercrossed for pups. Offsprings of both genders were used.
Gene deletion was induced by intra-gastric injections with 50 mg Tx (Sigma, T5648;
1 mg ml� 1) into Alk1iDEC and 100 mg Tx into Alk1;Vegfr2iDEC pups at P3 and P4.
Tx-injected Cre-negative littermates were used as controls. BMP9/10 blABs
(10 mg kg� 1 per day) and the PI3K inhibitors were injected i.p.: BMP9/10 blABs
between P2–P4, Wortmannin (0.4 mg kg� 1 per day) or Pictilisib (20 mg kg� 1 per
day) once at P3, twice at P4 and once at P5.

Latex dye injection. P5 pups were anaesthetized on ice, and abdominal and thoracic
cavities were opened. The right atrium was cut, blood was washed out with 2 ml PBS
and 1 ml of latex dye (Blue latex, BR80B; Connecticut Valley Biological Supply Co.)
was slowly and steadily injected into the left ventricle with an insulin syringe. Retinas
and GI tracts were washed in PBS and fixed with 4% paraformaldehyde (PFA)
overnight. Retinas were stained with Isolectin B4 and GI tracts were cleared in 10%
glycerol, 4 M urea and 0.1% Triton for 1–2 weeks before imaging.

Reagents and antibodies. For immunodetection: anti-Alk1 (AF 770, 1 mg ml� 1,
R&D systems), anti-Eng (AF1320, 1 mg ml� 1, R&D systems), anti-Jagged1 (AF599,
1 mg ml� 1, R&D systems), anti-Vegfr1 (AF471, 2 mg ml� 1, R&D systems),
anti-Erg1/2/3 (SC353, 2 mg ml� 1, Santa Cruz), anti-a-SMA CY3 (CY3-SMA,
C6198, 1:200 working solution, Sigma), anti-phosphoS6 (5364, 1:200 working
solution, Cell Signalling), anti-CD144 (555289, 2 mg ml� 1, BD Pharmingen),
IB4 (121412, 10 mg ml� 1, Life Technologies), anti-pFOXO1 (9464, 1:100
working solution, Cell Signalling), anti-FOXO1 (2880, 1:100 working solution,

Cell Signalling), anti-pPTEN (9549, 1:100 working solution, Cell Signalling),
anti-PTEN (9188, 1:100 working solution, Cell Signalling) and Dapi (D1306,
1 mg ml� 1, Life Technologies).

For western blotting: anti-Vegfr2 (9698, 1:2,000 working solution, Cell
Signalling), anti-pVegfr2 (2478, 1:2,000 working solution, Cell Signalling),
anti-pAKT (4060, 1:1,000 working solution, Cell Signalling), anti-AKT (4060,
1:1,000 working solution, Cell Signalling), anti-p-p44/42 mitogen-activated protein
kinase (phospho-ERK, 9106, 1:2,000 working solution, Cell Signalling), anti-p44/42
mitogen-activated protein kinase (total ERK, 9102, 1:2,000 working solution, Cell
Signalling), anti-pFOXO1 (9464, 1:1,000 working solution, Cell Signalling),
anti-FOXO1 (2880, 1:1,000 working solution, Cell Signalling), anti-pPTEN (9549,
1:1,000 working solution, Cell Signalling) and anti-PTEN (9188, 1:1,000 working
solution, Cell Signaling). Appropriate secondary antibodies were fluorescently
labelled (Alexa Fluor donkey anti-rabbit, Alexa Fluor donkey anti-goat, Alexa Fluor
donkey anti-rat, 1:400 working solution, Invitrogen) or conjugated to horseradish
peroxidase (Anti-Rabbit IgG (Hþ L), 1:8,000 working solution, Vector
Laboratories).

BMP9/10 blABs were from Genentech and PI3K inhibitors Wortmannin S2758
and Pictilisib S1065 were purchased from Selleckchem.

Fluorescence-activated cell sorting. Retinas were harvested at P5, dissected in
cold PBS and digested in 1 mg ml� 1 Collagenase type II (Sigma) in DMEM
(Sigma). Cells were incubated with CD31-APC (BD 551262, 2 ng ml� 1) and
CD45-FITC (11-0452-85, 5 ng ml� 1, eBioscience), Hoechst (B2261, 25 mg ml� 1,
Sigma Aldrich) and Pyronin Y (P9172, 200 ng ml� 1, Sigma Aldrich). CD31þ /
CD45� endothelial cells were isolated by FACS and further analysed for their cell
cycle distribution by two-dimensional analysis of Hoechst and Pyronin Y fluor-
escence signal.

mLECs isolation. MLECs were isolated from collagenase-digested lung tissue using
rat-anti-mouse CD31 monoclonal antibody-coated Dynabeads (11035, Invitrogen).
Primary mLECs were cultured in DMEM supplemented with 10% fetal bovine serum
(FBS), 100 U ml� 1 penicillin, 100mg ml� 1 streptomycin, 100mg ml� 1 endothelial
cell mitogen (Biomedical Technologies, Inc.) and 10 U ml� 1 heparin for 10 days.

Immunostaining. The eyes of P5/P6 pups were prefixed in 4% PFA for 20 min at
room temperature (rt). Retinas were dissected, blocked for 30 min at rt in blocking
buffer (1% fetal bovine serum, 3% BSA, 0.5% Triton X-100, 0.01% Na deox-
ycholate, 0.02% Na azide in PBS at pH 7.4) and then incubated with specific
antibodies (mentioned above) in blocking buffer overnight. The following day
retinas were washed and then incubated with IB4 and corresponding secondary
antibody for 1 h at rt and mounted in fluorescent mounting medium (DAKO,
Carpinteria, CA, USA).

Endothelial cells in culture were fixed in 4% PFA for 15 min, permeabilized in
0.1% Triton X-100 in PBS for 10 min, blocked in 3% BSA (AB01088-00100,
AmericanBIO) and incubated with the indicated primary antibodies overnight at
4 �C (mentioned above) followed by 1 h incubation with appropriate secondary
antibodies at rt.

High-resolution pictures were acquired using a Leica SP5 confocal microscope
with a Leica spectral detection system (Leica 15 SP detector) and the Leica
application suite advanced fluorescence software. Quantification of retinal
vasculature was done using ImageJ.

Cell culture and siRNA transfection. HUVEC cells were obtained from the Yale
University Vascular Biology and Therapeutics Core Facility and cultured in EGM2-
Bullet kit medium (CC-3156 & CC-4176, Lonza). Depletion of ALK1 was achieved
by transfecting 25 pmol siRNA (Qiagen, mixture of S102659972 and S102758392)
with Lipofectamine RNAiMax (Invitrogen), following the manufacturer’s instruc-
tions. Transfection efficiency was assessed by western blotting and qPCR.

Figure 7 | PI3K inhibition rescues established retinal AVMs. (a) Schematic representation of the experimental strategy to assess Alk1 deletion or BMP9/10

blockade. Arrowhead indicates injection of 50mg Tx or BMP9/10 blAB. (b) Quantification of AV shunt number 24 h after Tx or BMP9/10 blAB administration.

n¼8–10 Retinas per group. Error bars: s.e.m. **Po0.01 and ***Po0.001, Mann–Whitney U-test. (c–e) Ve-Cadherin and Erg1/2/3 staining of retinal flat

mounts from Ctrl (c), Alk1iDEC- (d) and BMP9/10 blAB- (e) treated P4 mice. Yellow arrowheads in d,e indicate AV shunts. Numbers of ERG1/2/3þ endothelial

cell nuclei at branches of retinal veins and arteries are indicated in yellow. (f,g) Quantification of the number of nuclei at the connection of capillaries with veins

(f) or arteries (g) in P4 and P5 retinal vessels. n¼6 retinas per group. Error bars: s.e.m., **Po0.01 and ***Po0.001, Mann–Whitney U-test. (h) Schematic

representation of the experimental strategy to assess the effects of PI3K inhibition on Alk1iDEC vasculature 24 h post Tx injection. Arrowheads indicate the time

course of Tx (50mg) and PI3Ki injections. (i,j) IB4 staining of retinal flat mounts from Alk1iDEC P5 mice treated with PBS (i) or PI3Ki 24 h post Tx injection (j).

Yellow arrowheads in i,m indicate AV shunts. (k) Quantification of AV shunt number, vascular density and number of branchpoints. n¼ 10–11 Retinas per group.

Error bars: s.e.m. **Po0.01 and ***Po0.001, Mann–Whitney U-test. (l) Schematic representation of the experimental strategy to assess the effects of PI3K

inhibition on the retinal vasculature 24 h post BMP9/10 blAB-treated mice. Arrowheads indicate the time course of BMP9/10 blAB and PI3Ki administration.

(m,n) IB4 staining of retinal flat mounts from mice treated with BMP9/10 blAB and 24 h later with PBS (m) or PI3Ki (n). Yellow arrowheads indicate AV shunts.

(o) Quantification of AV shunt number, vascular density and number of branch points. n¼6 Retinas per group. Error bars: s.e.m., *Po0.05 and **Po0.01,

Mann–Whitney U-test. Scale bars, 100mm in c–e,i,j,m,n. a, artery in red; v, vein in blue.
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Experiments were performed 48 h post transfection and results were compared
with siRNA Ctrl (ON-TARGETplus Non-targeting Pool D-001810-10-05)

Western blotting. Cells were lysed with Laemmli buffer including phosphatase
and protease inhibitors (Thermo Scientific, 78420, 1862209). Twenty micrograms
of proteins were separated on 4–15% Criterion precast gel (567-1084, Bio-Rad)
and transferred on nitrocellulose membrane (Biorad). Western blottings were
developed with chemiluminescence horseradish peroxidase substrate (Millipore,
WBKLS0500) on a Luminescent image Analyser, ImageQuant LAS 4000 mini
(GE Healthcare). Bands were quantified using ImageJ. See Supplementary Fig. 5
for the uncropped immunoblots.

Quantitative real-time PCR. RNAs from HUVEC or from mLECs were purified
using RNeasy-kit (Qiagen). One RNA was reverse transcribed using SuperScript III
(Invitrogen) and quantitative PCR were assayed using the corresponding primers
(Qiagen): MmAcvrl1 (QT00161434), MmEng (QT00148981), MmUnc5b
(QT00167846), MmFlt1 (QT00096292), MmNotch1 (QT00156982), MmJag1

(QT00115703), MmEfnb2 (QT00139202) and MmEphB4 (QT00120295). The
expression levels were normalized to MmActin (QT00095242) and MmCdh5
(QT00110467).

Data availability. The authors declare that the data supporting the findings of this
study are included within the article and its Supplementary Information files, or are
available from the authors upon request.

References
1. Shovlin, C. L. Hereditary haemorrhagic telangiectasia: pathophysiology,

diagnosis and treatment. Blood Rev. 24, 203–219 (2010).
2. McDonald, J. et al. Hereditary hemorrhagic telangiectasia: genetics and

molecular diagnostics in a new era. Front. Genet. 6, 1 (2015).
3. McAllister, K. A. et al. Endoglin, a TGF-beta binding protein of endothelial

cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet.
8, 345–351 (1994).

4. Johnson, D. W. et al. Mutations in the activin receptor-like kinase 1 gene in
hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13, 189–195 (1996).

5. Gallione, C. J. et al. A combined syndrome of juvenile polyposis and hereditary
haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4).
Lancet 363, 852–859 (2004).

6. Oh, S. P. et al. Activin receptor-like kinase 1 modulates transforming growth
factor-beta 1 signaling in the regulation of angiogenesis. Proc. Natl Acad. Sci.
USA 97, 2626–2631 (2000).

7. Morrell, N. W. et al. Targeting BMP signalling in cardiovascular disease and
anaemia. Nat. Rev. Cardiol. 13, 106–120 (2016).

8. David, L., Mallet, C., Mazerbourg, S., Feige, J. J. & Bailly, S. Identification of
BMP9 and BMP10 as functional activators of the orphan activin receptor-like
kinase 1 (ALK1) in endothelial cells. Blood 109, 1953–1961 (2007).

9. Lebrin, F. et al. Endoglin promotes endothelial cell proliferation and TGF-
beta/ALK1 signal transduction. EMBO J. 23, 4018–4028 (2004).

10. Bourdeau, A., Dumont, D. J. & Letarte, M. A murine model of hereditary
hemorrhagic telangiectasia. J. Clin. Invest. 104, 1343–1351 (1999).

11. Srinivasan, S. et al. A mouse model for hereditary hemorrhagic telangiectasia
(HHT) type 2. Hum. Mol. Genet. 12, 473–482 (2003).

12. Roman, B. L. et al. Disruption of acvrl1 increases endothelial cell number in
zebrafish cranial vessels. Development 129, 3009–3019 (2002).

13. Mahmoud, M. et al. Pathogenesis of arteriovenous malformations in the
absence of endoglin. Circ. Res. 106, 1425–1433 (2010).

14. Park, S. O. et al. Real-time imaging of de novo arteriovenous malformation in a
mouse model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 119,
3487–3496 (2009).

15. Tual-Chalot, S. et al. Endothelial depletion of Acvrl1 in mice leads to
arteriovenous malformations associated with reduced endoglin expression.
PLoS ONE 9, e98646 (2014).

16. Garrido-Martin, E. M. et al. Common and distinctive pathogenetic features of
arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and
hereditary hemorrhagic telangiectasia 2 animal models—brief report.
Arterioscler. Thromb. Vasc. Biol. 34, 2232–2236 (2014).

17. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and
lymphangiogenesis. Nature 465, 483–486 (2010).

18. Aspalter, I. M. et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular
sprouting downstream of Notch. Nat. Commun. 6, 7264 (2015).

19. Chen, H. et al. Context-dependent signaling defines roles of BMP9 and BMP10
in embryonic and postnatal development. Proc. Natl Acad. Sci. USA 110,
11887–11892 (2013).

20. Koch, S. & Claesson-Welsh, L. Signal transduction by vascular endothelial
growth factor receptors. Cold Spring Harb. Perspect. Med. 2, a006502 (2012).

21. Baeyens, N. et al. Defective fluid shear stress mechanotransduction mediates
hereditary hemorrhagic telangiectasia. J. Cell Biol. 214, 807–816 (2016).

22. Koch, A. W. et al. Robo4 maintains vessel integrity and inhibits angiogenesis by
interacting with UNC5B. Dev. Cell 20, 33–46 (2011).

23. Atri, D., Larrivee, B., Eichmann, A. & Simons, M. Endothelial signaling and the
molecular basis of arteriovenous malformation. Cell Mol. Life Sci. 71, 867–883
(2013).

24. Haigh, J. J. et al. Cortical and retinal defects caused by dosage-dependent
reductions in VEGF-A paracrine signaling. Dev. Biol. 262, 225–241 (2003).

25. Vazquez, F., Ramaswamy, S., Nakamura, N. & Sellers, W. R. Phosphorylation of
the PTEN tail regulates protein stability and function. Mol. Cell Biol. 20,
5010–5018 (2000).

26. Vazquez, F. et al. Phosphorylation of the PTEN tail acts as an inhibitory switch
by preventing its recruitment into a protein complex. J. Biol. Chem. 276,
48627–48630 (2001).

27. Salih, D. A. & Brunet, A. FoxO transcription factors in the maintenance of
cellular homeostasis during aging. Curr. Opin. Cell Biol. 20, 126–136 (2008).

28. Serra, H. et al. PTEN mediates Notch-dependent stalk cell arrest in
angiogenesis. Nat. Commun. 6, 7935 (2015).

Notch

BMP9/10 VEGF

Vegfr2
Other growth

factors

PI3KPTENpPTEN

AKT

pS6 Foxo1 OthersEndoglin

AngiogenesisVascular quiescence

Vegfr1

Alk1

Notch

BMP9/10 VEGF

Vegfr2
Other growth

factors

PI3KPTENpPTEN

AKT

pS6 Foxo1 OthersEndoglin

Excessive angiogenesis, AVMs

BMP9/10 bIABs

Alk1i�EC

Vegfr1

Alk1

a

b

Figure 8 | Model for BMP9/10 signalling in maintenance of vascular

quiescence. (a) BMP9/10 signalling through the Alk1 receptor in

endothelial cells synergizes with Notch to induce expression of the anti-

angiogenic receptor –Vegfr1 thereby repressing Vegf signalling and

angiogenesis. Alk1 signalling also represses PI3K activation downstream of

Vegfr2 and other growth factors, through inhibition of Pten expression and

phosphorylation. PI3K promotes angiogenesis via Akt and downstream

activation of ribosomal S6 (pS6), inhibition of Foxo1 and regulation of other

downstream effectors. (b) Blocking BMP9/10-Alk1 signalling results in

increased Pten expression and phosphorylation, and consequently in an

excessive PI3K signalling, thereby inducing vascular defects. Blocking PI3K

with PI3K inhibitors rescues excessive angiogenesis and vascular

malformations in BMP signalling deficient mice.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13650 ARTICLE

NATURE COMMUNICATIONS | 7:13650 | DOI: 10.1038/ncomms13650 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


29. Wilhelm, K. et al. FOXO1 couples metabolic activity and growth state in the
vascular endothelium. Nature 529, 216–220 (2016).

30. Dufner, A. & Thomas, G. Ribosomal S6 kinase signaling and the control of
translation. Exp. Cell Res. 253, 100–109 (1999).

31. Mouta-Bellum, C. et al. Organ-specific lymphangiectasia, arrested lymphatic
sprouting, and maturation defects resulting from gene-targeting of the PI3K
regulatory isoforms p85alpha, p55alpha, and p50alpha. Dev. Dyn. 238,
2670–2679 (2009).

32. Birdsey, G. M. et al. Transcription factor Erg regulates angiogenesis and
endothelial apoptosis through VE-cadherin. Blood 111, 3498–3506 (2008).

33. Graupera, M. & Potente, M. Regulation of angiogenesis by PI3K signaling
networks. Exp. Cell Res. 319, 1348–1355 (2013).

34. Graupera, M. et al. Angiogenesis selectively requires the p110alpha isoform of
PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

35. Lee, M. Y. et al. Endothelial Akt1 mediates angiogenesis by phosphorylating
multiple angiogenic substrates. Proc. Natl Acad. Sci. USA 111, 12865–12870
(2014).

36. Rochon, E. R., Menon, P. G. & Roman, B. L. Alk1 controls arterial endothelial
cell migration in lumenized vessels. Development 143, 2593–2602 (2016).

37. Huang, J. et al. The role of COX-2 in mediating the effect of PTEN on BMP9
induced osteogenic differentiation in mouse embryonic fibroblasts.
Biomaterials 35, 9649–9659 (2014).

38. Rahdar, M. et al. A phosphorylation-dependent intramolecular interaction
regulates the membrane association and activity of the tumor suppressor
PTEN. Proc. Natl Acad. Sci. USA 106, 480–485 (2009).

39. Tan, W. H. et al. The spectrum of vascular anomalies in patients with PTEN
mutations: implications for diagnosis and management. J. Med. Genet. 44,
594–602 (2007).

40. Phung, T. L. et al. Pathological angiogenesis is induced by sustained Akt
signaling and inhibited by rapamycin. Cancer Cell 10, 159–170 (2006).

41. Limaye, N. et al. Somatic mutations in angiopoietin receptor gene TEK cause
solitary and multiple sporadic venous malformations. Nat. Genet. 41, 118–124
(2009).

42. Limaye, N. et al. Somatic activating PIK3CA mutations cause venous
malformation. Am. J. Hum. Genet. 97, 914–921 (2015).

43. Tsuji-Tamura, K. & Ogawa, M. Inhibition of the PI3K-Akt and mTORC1
signaling pathways promotes the elongation of vascular endothelial cells. J. Cell
Sci. 129, 1165–1178 (2016).

44. Cirulli, A. et al. Vascular endothelial growth factor serum levels are elevated in
patients with hereditary hemorrhagic telangiectasia. Acta Haematol. 110, 29–32
(2003).

45. Larrivee, B. et al. ALK1 signaling inhibits angiogenesis by cooperating with the
Notch pathway. Dev. Cell 22, 489–500 (2012).

46. Moya, I. M. et al. Stalk cell phenotype depends on integration of Notch and
Smad1/5 signaling cascades. Dev. Cell 22, 501–514 (2012).

47. Ricard, N. et al. BMP9 and BMP10 are critical for postnatal retinal vascular
remodeling. Blood 119, 6162–6171 (2012).

48. Morikawa, M. et al. ChIP-seq reveals cell type-specific binding patterns of
BMP-specific Smads and a novel binding motif. Nucleic Acids Res. 39,
8712–8727 (2011).

49. Taylor, K. L., Henderson, A. M. & Hughes, C. C. Notch activation during
endothelial cell network formation in vitro targets the basic HLH transcription
factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc. Res.
64, 372–383 (2002).

50. Han, C. et al. VEGF neutralization can prevent and normalize arteriovenous
malformations in an animal model for hereditary hemorrhagic telangiectasia 2.
Angiogenesis 17, 823–830 (2014).

51. Bose, P., Holter, J. L. & Selby, G. B. Bevacizumab in hereditary hemorrhagic
telangiectasia. N. Engl. J. Med. 360, 2143–2144 (2009).

52. Oosting, S., Nagengast, W. & de Vries, E. More on bevacizumab in hereditary
hemorrhagic telangiectasia. N. Engl. J. Med. 361, 931-932 (2009).

53. Bose, P., Holter, J. L. & Selby, G. B. Bevacizumab in hereditary hemorrhagic
telangiectasia. N. Engl. J. Med. 360, 2143–2144 (2009).

54. Zarkada, G., Heinolainen, K., Makinen, T., Kubota, Y. & Alitalo, K. VEGFR3
does not sustain retinal angiogenesis without VEGFR2. Proc. Natl Acad. Sci.
USA 112, 761–766 (2015).

55. Simons, M. et al. State-of-the-art methods for evaluation of angiogenesis and
tissue vascularization: a scientific statement from the American Heart
Association. Circ. Res. 116, e99–e132 (2015).

56. Bernabeu, M. O. et al. Computer simulations reveal complex distribution of
haemodynamic forces in a mouse retina model of angiogenesis. J. R. Soc.
Interface 11, 1–17 (2014).

57. Corti, P. et al. Interaction between alk1 and blood flow in the development of
arteriovenous malformations. Development 138, 1573–1582 (2011).

Acknowledgements
We thank Ralf Adams for Cdh5-CreERT2 mice. This project was supported by grants
from NHLBI (1R01HLI125811) and NEI (1R01EY025979-01). R.O. and A.D. were
supported by AHA postdoctoral fellowships 15POST25560114 and 14POST20380207,
respectively.

Author contributions
R.O. provided experimental design, acquired and analysed data, drafted the manuscript.
A.D., J.R.K., J.H., J.S.F., F.Z., B.L., M.L., A.A.U. and G.G. acquired data. K.K.H., W.C.S.,
F.V.C., M.G., M.Y., L.H.Y. and S.P.O. provided essential reagents. A.E. provided
experimental design, analysed data and drafted the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Ola, R. et al. PI3 kinase inhibition improves vascular
malformations in mouse models of hereditary haemorrhagic telangiectasia.
Nat. Commun. 7, 13650 doi: 10.1038/ncomms13650 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13650

12 NATURE COMMUNICATIONS | 7:13650 | DOI: 10.1038/ncomms13650 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia
	Introduction
	Results
	Blocking BMP9/10 signalling leads to vascular malformations
	Vegfr2 deletion prevents vascular development in Alk1 mutants
	Increased PI3K signalling in Alk1-deficient endothelial cells
	PI3K inhibition improves AVMs in Alk1 mutants
	PI3K inhibition reverts established AVMs in Alk1 mutants

	Discussion
	Methods
	Mice
	Latex dye injection
	Reagents and antibodies
	Fluorescence-activated cell sorting
	mLECs isolation
	Immunostaining
	Cell culture and siRNA transfection
	Western blotting
	Quantitative real-time PCR
	Data availability

	Additional information
	Acknowledgements
	References




