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Repression of RNA polymerase by the archaeo-viral
regulator ORF145/RIP
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Little is known about how archaeal viruses perturb the transcription machinery of their hosts.

Here we provide the first example of an archaeo-viral transcription factor that directly targets

the host RNA polymerase (RNAP) and efficiently represses its activity. ORF145 from the

temperate Acidianus two-tailed virus (ATV) forms a high-affinity complex with RNAP by

binding inside the DNA-binding channel where it locks the flexible RNAP clamp in one

position. This counteracts the formation of transcription pre-initiation complexes in vitro and

represses abortive and productive transcription initiation, as well as elongation. Both host and

viral promoters are subjected to ORF145 repression. Thus, ORF145 has the properties of a

global transcription repressor and its overexpression is toxic for Sulfolobus. On the basis of its

properties, we have re-named ORF145 RNAP Inhibitory Protein (RIP).
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V
iruses and bacteriophages have been valuable model
systems for studying gene regulation since the advent of
molecular biology1,2, and they play an important role in

evolution by facilitating lateral gene transfer3. Cellular organisms
belonging to the eukaryotes, archaea or bacteria are accompanied
by their cognate viruses (termed phages in bacteria)4. Viruses and
phages have coevolved with their hosts, are restricted to their
cognate domain of life and display only limited sequence
conservation. While phages have been studied since the 1950s,
and eukaryotic pathogenic viruses are the focus of much
biomedical research, the viruses accompanying the archaea have
not been comprehensively studied yet. Archaeal viruses exhibit
unique and diverse morphologies4,5. One example is the
Sulfolobales-infecting Acidianus two-tailed virus (ATV), which
has the ability to undergo morphological changes outside the host
cell, forming long bipolar tails that aid in host cell attachment in a
low-cell-density environment6. ATV is a temperate virus with
lysogenic and lytic life stages depending on environmental cues,
chiefly suboptimal growth temperatures6. Despite the growing
numbers of morphologic and genomic studies of archaeal viruses,
a detailed investigation of their molecular processes such as
replication and transcription as well as host–virus relationships
remain limited7. The ongoing battle between archaea and their
viruses is reflected in the high abundance of CRIPSR-Cas
adaptive immune systems in archaea8. In a systematic survey of
CRISPR-Cas systems in Sulfolobales, spacers directed against
ATV were identified in all genomes9.

In all three cellular domains of life, transcription is carried out
by highly conserved multisubunit RNA polymerases (RNAPs)10.
The archaeal RNAP and eukaryotic RNAPII require the basal
transcription factors TBP (TATA-binding protein) and TFIIB
(transcription factor IIB in RNAPII and TFB in archaea) to
preassemble on the TATA and BRE (B-recognition element)
motifs of the promoter prior to RNAP recruitment. A third
factor, TFE (TFIIE), stimulates transcription initiation by
facilitating DNA melting11–13. During this process, the flexible
RNAP clamp opens to allow the loading of the template strand
into the active site. In contrast, during elongation the clamp is
closed to prevent premature dissociation of the elongation
complex, while transcription termination is likely to require a
transient opening of the clamp. Interactions between general
transcription factors and RNAP modulate the position of the
clamp; TFE binding to RNAP favours opening of the clamp14.

While the minimal complement of basal transcription factors
in archaea mirrors the RNAPII system, gene-specific transcrip-
tion factors are diverse and employ regulatory mechanisms
prototypical for bacterial and eukaryotic factors. Known archaeal
transcription repressors act via promoter occlusion as in
bacteria15,16, while transcription activators act via augmented
recruitment of basal initiation factors TBP and TFB17,18,
reminiscent of some eukaryotic transcription activators. Viral
and phage transcription factors often appropriate their host’s
gene expression machinery for their own purposes1,19. A limited
number of archaeo-viral transcription factors have been identified
and functionally characterized including SvtR, AvtR and F55,
which are all DNA-binding and gene-specific20–23. In contrast,
several phages encode transcription factors that directly target
RNAP and have the power to influence transcription on a
genome-wide level24. For example, the phage T7-encoded gp2
protein is a global repressor. Gp2 is expressed during early T7
infection of Escherichia coli, where it binds to and represses the
host-encoded RNAP, thereby efficiently shutting down the entire
host transcriptome25,26. Other early expressed genes include the
T7 RNAP, which is inert against gp2 action and which directs
transcription of the middle and late-phage genes that are under
the control of T7 promoters27. Thus, the phage redirects the

remaining host resources for its own purposes. Apart from
chromatin proteins such as histones, global regulators of
transcription have not been found in archaea or their viruses,
and none of the sequenced archaeo-viral genomes encodes
(recognizable) RNAPs.

This study focuses on a novel regulator encoded by ATV.
ORF145 encodes an abundant 145 amino-acid (16.8 kDa) protein
that was identified as a virion protein and putative RNAP
interactor in a screen of ATV-encoded gene products6. Here we
undertake a multidisciplinary structural and functional
characterization of ORF145 to unravel its role in transcription
regulation. Our results demonstrate that the protein (i) directly
binds to RNAP with high affinity, which (ii) prevents the
formation of transcription pre-initiation complexes (PICs),
(iii) represses abortive and productive initiation and (iv)
represses transcription elongation. We propose a mechanism by
which ORF145 is wedged into the DNA-binding channel of
RNAP and locks the otherwise flexible clamp into one fixed
position. In agreement with its in vitro characteristics, the
homologous expression of ORF145 in Sulfolobus is highly toxic.
On the basis of its properties we name ORF145 RNAP inhibitory
protein, RIP for short and we refer to the protein as ORF145/RIP
throughout the manuscript.

Results
Formation of a high-affinity complex with Sso RNAP. The
ATV ORF145/RIP gene product was initially identified as RNAP-
binding protein in an interaction screen of unannotated ATV
proteins. In order to validate and characterize this interaction, we
produced recombinant ORF145/RIP and tested its interaction
with purified Sulfolobus solfataricus (Sso) RNAP using size
exclusion chromatography (SEC). ORF145/RIP elutes as a single
peak corresponding to a molecular weight of B17 kDa demon-
strating that ORF145/RIP is monomeric (Fig. 1a, red trace).
When ORF145/RIP was pre-incubated with RNAP and subjected
to SEC, an additional peak appeared in the high molecular weight
range corresponding to B400 kDa in good agreement with the
size of the Sso RNAP (406.8 kDa; Fig. 1a, blue trace). Immuno-
detection confirmed the presence of both Sso RNAP and
ORF145/RIP in fractions corresponding to the B400 kDa peak
(Fig. 1a and Supplementary Fig. 1A), indicating the formation of
ORF145/RIP–RNAP complexes. In order to quantify the binding
affinity, we produced a 32P-labelled variant of ORF145/RIP and
tested its interaction with RNAP in electrophoretic mobility shift
assays (EMSA). 32P-ORF145/RIP is resolved as a single distinct
high-mobility band, while incubation with increasing amounts of
RNAP led to the upshift of the signal to a new low-mobility band
in a dose–response dependent manner (Fig. 1b). Quantification of
this signal presented in a saturating binding curve yielded a
dissociation constant of 12.6±1.9 nM indicative of a high-affinity
interaction (Fig. 1b).

To test whether electrostatic interactions facilitated the
ORF145/RIP binding to RNAP, we performed EMSAs with
increasing concentrations of salt (Supplementary Fig. 1B).
The ORF145/RIP–RNAP complexes were resistant to high ionic
(2 M NaCl) strengths, indicating that the ORF145/RIP–RNAP
interaction is not exclusively based on electrostatic interactions.

ORF145/RIP interacts with the RNAP clamp. In order to
identify which of the 13 subunits of the Sso RNAP contribute to
the ORF145/RIP binding, we carried out far-western blotting
experiments. The subunits of purified Sso RNAP, as well as a
cell-free Sso extract were resolved by SDS–polyacrylamide
gel electrophoresis (SDS–PAGE), transferred to a membrane,
incubated with ORF145/RIP, washed and subsequently probed

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13595

2 NATURE COMMUNICATIONS | 7:13595 | DOI: 10.1038/ncomms13595 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


with polyclonal antibodies raised against ORF145/RIP (Fig. 1c).
The far-western blot shows a single band with a mobility of
B100 kDa in lanes containing purified RNAP or cell extract,
which corresponds to the largest RNAP subunit Rpo10 (Fig. 1c).
We tested the species specificity of the Rpo10–ORF145/
RIP interaction using recombinant Rpo10 protein from the
euryarchaeon Methanocaldococcus jannaschii (Mja) in far-
western blots. Both Sso and Mja RNAP Rpo10 yield a comparable
signal, which suggests that the ORF145/RIP-binding site resides
in a highly conserved domain of Rpo10 (Fig. 1c). A negative
control experiment excluding incubation with ORF145/RIP ruled
out nonspecific binding of the antibody (Supplementary Fig. 1C).

Rpo10 is the largest RNAP subunit and includes among other
motifs the universally conserved triple-aspartate loop of the active
site, the RNAP clamp and part of the DNA-binding channel. The
clamp is a regulatory ‘hotspot’ and binding site for the DNA
template and for the basal factors TFE and Spt4/5 (refs 12,14). In
order to test whether ORF145/RIP interacts with the clamp, we
generated a synthetic recombinant RNAP clamp composed of
fragments of the Rpo10, Rpo100 and Rpo2 subunits expressed as a
single polypeptide chain11,28. The clamp elutes as a broad peak
from a SEC column centred at an elution volume of 14.3 ml

(Fig. 1d, red trace). Combining ORF145/RIP and the clamp prior
to SEC leads to a shift of the peak to 12.8 ml (Fig. 1d, blue trace).
Sypro-Ruby-stained SDS–PAGE analysis shows that ORF145/RIP
is co-eluting symmetrically with the RNAP clamp, suggesting that
they form a stable complex at room temperature (Fig. 1d).

ORF145/RIP binds in the DNA-binding channel. To further
map the interaction of ORF145/RIP with RNAP, we used a
combination of chemical crosslinking and mass spectrometry.
This method has been successfully applied to identify the binding
site of TFIIF on yeast RNAPII (ref 29,30). Recombinant ORF145/
RIP and purified RNAP were incubated to allow complex
formation and chemically crosslinked using the lysine-specific
crosslinker bis(sulfosuccinimidyl) suberate (BS3) that preferen-
tially reacts with the side chains of lysine residues but also those
of serine, threonine and tyrosine, albeit to a lesser extent. The
crosslinked material was subjected to SDS–PAGE and yielded a
single band with low electrophoretic mobility compared with the
(uncrosslinked) individual polypeptides of ORF145/RIP and
RNAP (Fig. 2a). The crosslinked complex was isolated from the
gel and treated with trypsin, and the resulting peptide fragments
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Figure 1 | ORF145/RIP binds to the Sso RNAP via the Rpo10 clamp. (a) SEC of ORF145/RIP and ORF145/RIP–RNAP complexes. Ultraviolet elution profiles

of ORF145/RIP (red trace) and ORF145/RIP pre-incubated with Sso RNAP (blue trace). Western blot analysis of SEC peak fractions detecting ‘free’ ORF145/

RIP (elution volume 19–21 ml), and co-elution of ORF145/RIP with Sso RNAP (elution volumes 15–17 ml). (b) EMSA of the ORF145/RIP–RNAP complex using

radiolabelled ORF145/RIP. The gel bands were quantified and then plotted with the tight binding equation (see Methods for further details) from which a Kd of

12.6±1.9 nM was calculated. (c) A far-western blot was conducted by immobilizing purified RNAP and cell extract samples, probing first with recombinant

ORF145/RIP protein followed by anti-ORF145/RIP polyclonal serum and finally anti-rabbit secondary antibody. ORF145/RIP interacts with the Rpo10 subunit

from the purified 13-subunit Sso RNAP, Sso cell extract, as well as purified recombinant Mja Rpo10 subunit. (d) SEC analysis of the recombinant RNAP clamp

domain (red trace) and the ORF145/RIP–clamp complex (blue trace). Error bars represent standard deviation from three technical repeats.
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were analysed using mass spectrometry. In total, 88 crosslinked
residue pairs were identified at 5% false discovery rate, of which
the majority fell within RNAP. The intra-RNAP crosslinks were
used to validate the data by verifying known RNAP subunit
interactions (Supplementary Fig. 2A). Furthermore, a comparison
of the C–a distance distribution for experimentally observed
residue pairs and a random distribution within the RNAP
ascertain the high quality of the data (Fig. 2b). The approximate
crosslink limit for BS3 is 27.4 Å (maximum C–a distance); the
vast majority of observable residue pairs (71 residue pairs) fall
below this limit and are in good agreement with the X-ray
structure of the Sso RNAP (pdb 4B1O). We detected six cross-
links between ORF145/RIP and RNAP (Fig. 2c) that were
structurally consistent with each other (Fig. 2d and
Supplementary Fig. 2B). Four of these crosslinks mapped to the

inside of the clamp domain, thus corroborating the results of the
far-western and the SEC. The two further crosslinks map to
the Rpo2 lobe that is positioned opposite the clamp in the
DNA-binding channel (Fig. 2d). An additional single crosslink
was observed between ORF145/RIP and Rpo8 (Fig. 2c), which is
located distal to all other crosslinks and is likely an artefact of the
crosslinking reaction. In summary, ORF145/RIP binds in the
RNAP–DNA-binding channel between the clamp and protrusion
motifs, and suggests that it may sterically occlude DNA binding.

Inhibition of PIC formation. To assess how binding of ORF145/
RIP within the DNA-binding channel may affect the formation of
DNA–TBP–TFB–TFE–RNAP transcription PIC, we performed
EMSA experiments using 32P-labelled SSV1 T6 promoter
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templates (Fig. 3). In EMSAs the recruitment of Sso RNAP to the
promoter is strictly dependent on the basal factors TBP and TFB,
while TFE increases the stability of the PIC11. Since closed PICs
are inherently unstable in Sso, we used a pre-melted template
with four non-complementary base pairs at positions � 4 to � 1.
Note, however, that this template does not alter the requirement
for both TBP and TFB in RNAP recruitment (Fig. 3a and
Supplementary Fig. 3A)11. The addition of ORF145/RIP decreases
the PIC signal in a dose–response manner both in the absence
and presence of TFE. Moreover, almost all PICs have disappeared
at an eightfold molar excess of ORF145/RIP (Fig. 3b). In order to
further elucidate the competitive nature of the ORF145/RIP
inhibition, we reversed the order of addition of the components
in the EMSAs. If PICs were allowed to form prior to the addition
of ORF145/RIP, a higher molar excess of ORF145/RIP was
required to obtain efficient inhibition, and even at 16-fold excess
a significant fraction of PICs could still be observed (Fig. 3b). TFE
binds to the outside of the RNAP clamp, and in the presence of
TFE lower ratios of ORF145/RIP to RNAP were required to
inhibit PIC formation. This suggests that TFE-bound RNAP
increases the apparent affinity of ORF145/RIP, which could be
caused by TFE’s clamp-opening activity14. Native gel-binding
experiments did indeed reveal that TFE subtly increases the
binding affinity between ORF145/RIP and RNAP (Supplementary
Fig. 3B). In summary, ORF145/RIP interferes with the formation
and/or stability of the PIC.

ORF145/RIP locks the RNAP clamp in a singular fixed position.
Considering its binding site within the DNA-binding channel, we
explored the impact of ORF145/RIP on the conformation of the
clamp. We have recently developed a single-molecule Förster
Resonance Energy Transfer (FRET) assay that can monitor
distance changes between a fluorescent donor–acceptor dye pair
engineered into two residues that are located opposite of each
other across the DNA-binding channel (Fig. 4a, Rpo10-257 and
Rpo200-373 are highlighted as green and red spheres, respec-
tively)14. Recombinant 12-subunit RNAPs were assembled
from the two fluorescently labelled Rpo10 and Rpo200 subunits,

a biotinylated variant of Rpo11 for immobilization and wild-type
variants of the remaining 10 subunits. Labelled RNAPs are able to
engage with general transcription factors and are catalytically
active. Our set-up uses the archaeal Mja RNAP, which interacts
with ORF145/RIP to the same extent as Sso (Fig. 1c and see
below). In order to test whether ORF145/RIP binding modulates
the position of the RNAP clamp, we compared the FRET
efficiency distribution of RNAP with RNAP–ORF145/RIP
complexes. In a previous study the immobilized RNAP shows
two FRET populations with a major high FRET efficiency
(E)¼ 0.67±0.01 (82±4%) corresponding to an inter-dye
distance of 46 Å and a minor low FRET population at
E¼ 0.40±0.03 (18±3%) corresponding to 56 Å. These can be
assigned to a RNAP clamp in a closed and an open conformation,
respectively (Fig. 4b)14. In contrast, the RNAP–ORF145/RIP
complexes are radically different with only a single population of
intermediate FRET efficiency (E¼ 0.58±0.01; Fig. 4b),
corresponding to 49 Å. Control experiments measuring fluore-
scence anisotropy of the donor and acceptor dyes ruled out that
these changes are due to restricted mobility of the fluorescent
dyes (Supplementary Table 1). These results show that ORF145/
RIP disfavours both of the naturally occurring clamp confor-
mations and instead locks the clamp into a single, intermediate
conformation. The inability of the clamp to adopt any of the two
conformations of the RNAP suggests that ORF145/RIP interferes
with the conformational flexibility of the RNAP clamp that is
essential for RNAP activity.

Inhibition of transcription from host and viral promoters. To
determine the effect of ORF145/RIP on RNAP activity, we used a
range of in vitro transcription assays designed to dissect the
individual stages of transcription. First, we applied abortive
transcription assays11 using the well-characterized SSV1 T6
model promoter and the host Sso rRNA promoter (Fig. 5a). In
this assay the promoter-bound RNAP extends a primer
dinucleotide substrate by a single NTP. Synthesis of the
trinucleotide product is strictly dependent on the promoter
sequence, the dinucleotide and NTP11, and the two factors TBP
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and TFB, while the addition of TFE enhanced the signal. The
addition of ORF145/RIP efficiently inhibited the formation of the
first phosphodiester bond from both T6 and rRNA promoters in
a dose-dependent manner (Fig. 5a).

This led us to investigate whether ATV promoters would also
be subject to repression. The transcription start sites (TSSs) of
ATV have not been mapped experimentally; however, the
majority of mRNAs from its host Sso are leaderless, with the
TSS within 5 bp of the translation start site31. We aligned the
genomic regions proximal to the start codons of ATV in order to
search for conserved sequence features and found an AT-rich
region with a spacing relative to the start codon that is very
similar to the TATA boxes from host Sso promoters31. This
indicates that leaderless mRNAs are also a dominant feature of
the ATV transcriptome (Supplementary Fig. 4A). Searching for
specific sequence motifs in the region proximal to the start
codons (� 100 to þ 50 bp) identified a probable TATA element
(TTTWWAA) in 26 of the 46 predicted promoter regions with a
distance of 25 ±5 bp from the start codon (Supplementary
Fig. 4B). Interestingly, no sequence motif comparable to the BRE
(A-rich) was identified in this search, which hints at subtle
differences between virus and host promoters. On the basis of this
information, we designed DNA templates for transcription assays
containing the predicted promoters of ATV Gp63 and of ATV
Gp48 and a 4-bp region of non-complementarity (see above;
Supplementary Fig. 4C)6,11. Both ATV Gp63 and ATV Gp48
promoters facilitated transcription in a strictly TBP- and TFB-
dependent manner and were stimulated by TFE, which validated
our promoter prediction (Fig. 5a). Importantly, the addition of
ORF145/RIP efficiently repressed the activity of both ATV
promoters in this system at similar concentrations to the T6
and rRNA promoters (Fig. 5a). When comparing the inhibitory
effect of ORF145/RIP in the presence and absence of TFE,
ORF145/RIP inhibited at lower concentrations in the presence of
TFE, in line with our observations from the EMSA experiments
(Fig. 5a and Supplementary Fig. 4D). In summary, ORF145/RIP
inhibits transcription from host as well as virus promoters in
agreement with its ability to directly target the RNAP.

Inhibition of productive stages of transcription. To investigate
the effect of ORF145/RIP on productive transcription initiation,
we carried out transcription run-off assays using the strong SSV1
T6 and Sso rRNA promoters (Fig. 5b). Transcription from these

promoters generates 68 and 50 nucleotide run-off products,
respectively, in a TBP- and TFB-dependent manner. The addition
of ORF145/RIP inhibits transcription from both promoters in a
dose-dependent manner (Fig. 5b). Moreover, ORF145/RIP is also
capable of inhibiting SSV1 T6-directed transcription by the Mja
RNAP (Supplementary Fig. 4E), further corroborating the view
that ORF145/RIP binds to a highly conserved region of Rpo10.

The elongation stage of transcription can be monitored
independently of promoter elements and initiation factors using
synthetic elongation scaffolds made of DNA and RNA oligonu-
cleotides32. ORF145/RIP also represses transcription elongation
in these assays (Fig. 5c) albeit to a lesser extent than run-off or
abortive transcription. The binding site of ORF145/RIP indicates
that it could prevent productive interactions between the RNAP
and the initiation factor TFB and/or the DNA template in the
DNA-binding channel. ORF145/RIP displays a similar order of
addition dependence effect as that observed in the EMSA
experiments (Fig. 5c), whereby the protein has a reduced effect
if a transcriptionally competent elongation complex has already
formed. As transcription elongation is not dependent on TFB,
these results suggest that ORF145/RIP inhibition could be due
to competition between ORF145/RIP and template DNA
binding to the RNAP during transcription elongation.
Alternatively, ORF145/RIP could inhibit elongation via an
allosteric mechanism, for example, by translating conforma-
tional changes via the clamp into the RNAP-active site, or by
preventing DNA movement along the DNA-binding channel.
EMSA competition experiments revealed that ORF145/RIP and
DNA/RNA elongation scaffolds do not compete for binding to
RNAP (Supplementary Fig. 4F,G). In fact, supershift experiments
using radiolabelled DNA/RNA elongation scaffolds and ORF145/
RIP support an allosteric mechanism. When ORF145/RIP is
added to RNAP–DNA/RNA complexes, a new complex with
lower mobility is formed in a dose-dependent manner (Fig. 5d).

Together, these results demonstrate that ORF145/RIP binds
directly to the RNAP and functions as an inhibitor of trans-
cription. On the basis of its properties we rename ORF145/RIP
as RIP.

ORF145/RIP adopts an entirely a-helical fold. To understand
the structural basis for ORF145/RIP repression of RNAP activity,
we generated a homology-based model of the protein using the
I-TASSER and Phyre2 algorithms. The model is primarily based
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on the parental structure of the ATV protein ORF131 (pdb 3FAJ)
that, owing to its high abundancy in the virion particle, is
predicted to be the major coat protein33. The similarity of the
ORF131 and ORF145 sequences shows that they are derived from
common ancestor and evolved by gene duplication and functional
speciation34. The structural model predicts that ORF145/RIP
is comprised entirely of a-helices, forming a tightly packed
helix bundle core with a short C-terminal tail motif that
protrudes at a right angle (Fig. 6a). The I-TASSER confidence
scores for this model (C-score � 2.12, TM-Score 0.46±0.15) are
suggestive of a prediction with mid-range reliability. To evaluate
this homology model experimentally, we used circular dichroism
(CD) spectroscopy to characterize the secondary structure
content of the protein. The CD spectrum displays a positive
peak at 193 nm and two negative peaks at 208 and 222 nm, which
are characteristic of a protein with predominantly a-helical
content (Fig. 6b). Comparison of these spectra with those of
proteins with known structures using Dichroweb allowed
quantification of the secondary structure content. Results
returned using different algorithms and data sets varied slightly.
On the basis of the normalized root-mean-square deviations of
the individual fits, visual inspection of the fitted spectra, the
composition of the data sets and general consideration of protein
structure, results suggest that B65% of amino acids adopt
a-helical conformation, 11% are in turns and 23% disordered.
Thus, the ORF145/RIP CD spectrum is in good agreement with
the homology model. In order to investigate the role of the
C-terminal tail in ORF145/RIP function, we created a short
C-terminal truncation variant (deletion highlighted in red in
Fig. 6a). The ORF145D114–145 variant was expressed at high levels
and proved to remain soluble after heat treatment, symptomatic
of a correctly folded protein. This mutant was not able to compete
with wild-type ORF145/RIP for the binding to RNAP (Fig. 6c)
and, likewise, unable to repress transcription (Fig. 6d), which
suggests that the C-terminal tail of ORF145/RIP is required for
RNAP binding and thus inhibition.

Overexpression of ORF145/RIP is detrimental to cell viability.
Our in vitro analysis of ORF145/RIP shows that it binds to
RNAP with high affinity and efficiently represses all stages of
transcription directed from host and viral promoters. These
properties could lead to a global shut down of transcription
in vivo. In order to test the effect of ORF145/RIP expression in
the viral host, we developed an overexpression strategy using a
plasmid-borne maltose-inducible system. The gene encoding
ORF145/RIP was cloned into pSVA1450 that encodes the meta-
bolic selection marker pyrEF before transforming into the uracil
auxotrophic S. acidocaldarius strain MW001 (ref. 35). Transfor-
mations of a positive control vector, expressing the lacS gene,
gave rise to 80 colony-forming unit (CFU) per mg (±30 CFU per
mg) on plates containing minimal growth substrate, whereas the
ORF145/RIP overexpression plasmid did not yield any colonies
from three independent experiments. To verify that the toxic
effect resulted from the ORF145/RIP protein, we introduced a
frameshift mutation after Met5 into the ORF145/RIP gene, which
produced 130 CFU per mg (±75 CFU per mg) uracil autotrophic
colonies, comparable to the lacS vector control. These results
demonstrate that even under non-inducing conditions (in the
absence of maltose) the small amounts of (leaky) ORF145/RIP
expression have detrimental effects on the cell viability.

In summary, the expression of ORF145/RIP is highly toxic for
the archaeal cell in good agreement with its predicted potential
for repression of the cellular transcriptome.

Discussion
We describe the first example of a virus-encoded protein that is
able to bind directly to and repress the activity of the archaeal
RNAP.

Despite being a small protein of only 145 residues, ORF145/
RIP interacts with the archaeal Sso RNAP with very high affinity.
Far-western blotting and crosslinking-mass spectrometry analysis
reveal that ORF145/RIP binds within the DNA-binding channel
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of RNAP in the proximity of the clamp and protrusion motifs on
either side of the channel. This binding site provides important
clues to the molecular mechanisms of ORF145/RIP function. In
the context of the PIC, ORF145/RIP could interfere with the
binding of transcription factor TFB core domain or DNA within
the DNA-binding channel of RNAP, both would interfere with
the PIC. EMSA experiments mimicking the transcription
elongation complex demonstrate that ORF145/RIP can bind to
RNAP in the context of the RNAP–DNA–RNA complex without
disrupting it, while transcription elongation assays show that
ORF145/RIP efficiently inhibits elongation. This supports the
notion that ORF145/RIP binding to RNAP induces conforma-
tional changes that renders it inactive (Fig. 7a). The RNAP clamp
switches between open and closed conformations as it progresses
through the transcription cycle; during initiation the clamp opens
to allow DNA loading and then closes to form a stable and
processive transcription elongation complex14. Our single-
molecule FRET analysis shows that ORF145/RIP perturbs the
conformation of the clamp. ORF145/RIP might act like a wedge
in the DNA-binding channel locking the clamp into one singular
state that is likely to prevent ‘mission critical’ structural changes
of the RNAP clamp. Several antibiotics inhibit bacterial RNAP by
preventing movements of the clamp with a mechanism referred
to as hinge-jamming, which demonstrates that the flexibility of
the clamp is key to RNAP function36,37. We have prepared a
structural homology model of ORF145/RIP and verified it by
assessing the secondary structure content using CD spectroscopy.

The model reveals that the width of ORF145/RIP (B20 Å) is
compatible with its insertion into the DNA-binding channel of
RNAP; it is a ‘tight fit’ in line with ORF145/RIP binding negating
the closed clamp state. The outcome of these steric and/or
allosteric mechanisms is that ORF145/RIP is a potent repressor of
all productive stages of transcription in vitro. These include
promoter-directed formation of the first phosphodiester bond
during abortive initiation and productive initiation, as well as
promoter- and factor-independent transcription from elongation
scaffolds.

Since ORF145/RIP interacts with RNAP independently of
DNA and represses host as well as ATV promoters, its inhibitory
activity is predicted to be global in vivo. In agreement with this,
S. acidocaldarius cells are extremely sensitive to the ectopic
expression of ORF145/RIP. In a similar experiment, transforma-
tion of a plasmid carrying the ORF145/RIP gene into an Sso
strain that carries a CRISPR spacer targeting ORF145/RIP was
extremely inefficient38. Sequencing of these colonies revealed
mutations within the ORF145/RIP promoter region and
inactivation of the CRISPR systems, suggesting that expression
of ORF145/RIP is toxic to the cells38. Since ORF145/RIP is an
abundant component of the ATV virion6, transcriptional repres-
sion can take effect immediately following infection, and the
repression by ORF145/RIP could help protect transcription of
viral DNA and viral transcripts from being prematurely degraded
by the host type III-B CRISPR system before and after the viral
genome has been integrated into the protective environment of
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the host genome. The intracellular ratio between ORF145/RIP
and RNAP as well as the half-life of ORF145/RIP are likely to play
pivotal roles in setting the level of transcriptional repression.

The function of ORF145/RIP—apparently global repression of
the transcriptome—has not previously been described for any
factor encoded by an archaeon or by archaeal viruses; however, it
is reminiscent of phage regulators in bacteria. Factors like T7 gp2
inactivate the host gene expression machinery by inhibiting the
host RNAP to exploit remaining host resources and to allow
efficient transcription of the phage genome. However, this
strategy is more plausible if the virus provides an alternative
viral RNAP that is resistant to the repressor. About 150 archaeal
viruses have been sequenced to date and none of these—including
ATV—encode a detectable viral RNAP (Eugene Koonin—
personal communication, and ref. 39). In addition, the
similarity of ATV and host promoter motifs—in particular the
TATA element—reveals that ATV utilizes host initiation factors
and RNAP (Supplementary Fig. 4A,B). Our results show that
ORF145/RIP represses host as well as ATV promoters. We
cannot rule out that as yet unidentified ATV-encoded transcrip-
tion factors differentially modulate ORF145/RIP repression of
host and ATV promoters. ATV includes two putative transcrip-
tion factors (ATV gp28 and 29) with Cys2-His2 Zn-ribbon
domains39, and it is possible that factors like gp28 and 29 enable
ATV promoter expression in the presence of ORF145/RIP, even
though our sequence analysis of ATV promoters did not reveal
any obvious putative binding sites.

Sequence homology searches reveal that ORF145/RIP belongs
to a growing family of proteins encoded by ATV, Sulfolobus
monocaudavirus (SMV) and Acidianus tailed spindle virus
(ATSV) viruses and even includes a relative in the cellular
genome of S. acidocaldarius. A phylogenetic analysis reveals that
this family can be divided into two main clades that we coin
‘major coat protein’ and ‘ORF145/RIP-related’ (Fig. 7b). The
genomic location of the cellular ORF145/RIP homologue
(SACI_RS03025) proximal to integrase and tRNA genes is
suggestive of a viral origin of the gene. Two members of the
family have been structurally characterized: ATV131, the ‘parent’
used to prepare the ORF145/RIP homology model and ATSV
ORF17, the major coat proteins of ATV and another virus termed
ATSV, respectively33,40. The region of homology encompasses the
four-helix bundle resolved in the ATV131 structure; however,
most members include additional C-terminal extensions that
likely confer specific functional properties to the structurally
conserved core of the protein (Fig. 6a and Supplementary Fig. 5).
In this context, its important to note that the C-terminal deletion
variant of ORF145/RIP completely abrogated RNAP binding and
inhibition (Fig. 6c,d). Our phylogenetic analysis suggests that,
while ORF145/RIP shares a common ancestry with the structural
protein ATV ORF131 (Fig. 7b and Supplementary Fig. 5), its
function has evolved later following duplication and speciation.

In conclusion, we present the first identification of a virally
encoded global inhibitor of transcription in archaea that
functions by targeting the host RNAP via an allosteric mechan-
ism. In evolutionary terms, ORF145/RIP is one of the most
striking examples of functional diversification of a viral protein
into a global transcription repressor or major coat protein.

Methods
Plasmids and proteins. All oligonucleotides used in this study are detailed in
Supplementary Table 2. Expression plasmids encoding ATV_ORF145/RIP were
constructed by cloning the ORF145/RIP gene followed by a protein kinase A
recognition sequence and C-terminal His-tag, or a thrombin cleavage site followed
by a C-terminal His-tag, into pET21aþ (Novagen). ORF145/RIP was expressed in
E. coli and purified by heat treatment at 76 �C and nickel affinity chromatography;
the column was equilibrated with HN250 (10 mM HEPES pH 8.0 and 250 mM
NaCl) before loading of the cleared cell lysate and elution by HN250 with 250 mM

imidazole. Peak fractions were analysed by 14% Tris-tricine SDS–PAGE and pure
fractions were combined and dialysed into HN250 before treatment with thrombin.
The sample was re-purified using nickel affinity chromatography, with the cleaved
protein eluting in the flow through. Pure fractions were snap-frozen and stored at
� 80 �C. RNAP was isolated from the Sso strain M16:pSVA158 (ref. 41) using
nickel and heparin affinity chromatography11 Sso TBP, TFB and TFEab were
heterologously expressed in E. coli. Sso TBP was purified by heat treatment and
heparin affinity chromatography. Sso TFB was purified by heat treatment,
nickel affinity, heparin affinity and SEC42. Sso TFEab and the RNAP clamp
(a recombinant fusion of Rpo2 1055–1117, Rpo10 4–315 and Rpo10 0 340–377)
were purified using heat treatment and nickel affinity chromatography41.

SEC and Western blotting. Sso RNAP (0.2 nmol) and ORF145/RIP (1 nmol) were
incubated in TN150 (25 mM Tris pH 8.0, 150 mM NaCl, 10 mM MgCl2, 100mM
ZnSO4 and 10% glycerol) at 65 �C for 10 min and resolved on a Superose 6 column
(GE Healthcare) pre-equilibrated with TN150. Peak fractions were resolved by 14%
Tris-tricine SDS–PAGE, transferred to nitrocellulose membranes using a fully wet
tank system for RNAP detection or semi-dry blotting system for ORF145/RIP
detection. The blots were then blocked in TBS with 5% milk powder and washed
twice with TBS plus 0.1% tween and once with TBS before immunodetection.
The blots were incubated with their respective anti-sera; 1:1,000 diluted polyclonal
rabbit anti-serum against recombinant ORF145/RIP (Davids Biotechnology) and
1:1,000 diluted rabbit anti-serum against Sso RpoB (obtained from Steve Bell,
Indiana University, USA)43. After washing, the anti-ORF145/RIP blots were
incubated with 1:2,500 diluted anti-rabbit horseradish peroxidase (Promega
#W4011), washed again, incubated with femto-ECL (Thermo Scientific) and
imaged using Li-cor Odyssey. The anti-Sso RNAP blots were incubated with
1:10,000 diluted Dylight 680-conjugated goat anti-rabbit IgG (Thermo Scientific
#35568), washed and scanned on a Typhoon FLA 9500 scanner (GE Life Sciences)
equipped with a 685 nm laser.

RNAP clamp and ORF145/RIP gel filtration experiments were carried out using
a Superose 12 column (GE Healthcare) and TK150 running buffer (50 mM Tris/
HCl pH 8.0, 150mM KCl, 100 mM ZnSO4 and 5 mM dithiothreitol (DTT)) and
analysed by 14% Tris-tricine SDS–PAGE and SYPRO-Ruby (Bio-Rad) staining.

EMSAs. ORF145/RIP was labelled with 32P using protein kinase A (NEB) as per
the manufacturer’s instructions. Binding reactions were conducted in 16 ml
volumes in lo-bind microcentrifuge tubes (Eppendorf). 32P-ORF145/RIP (1 nM)
was incubated with 1–100 nM Sso RNAP in 10 mM MOPS pH 6.5, 10 mM MgCl2,
260 mM NaCl, 5 mM DTT, 10% glycerol, 0.067 mg ml� 1 BSA and 2 mM ATP at
65 �C for 5 min. Complexes were resolved on 6% native PAGE, imaged by
phosphorimagery and quantified using ImageQuant TL software package
(GE Life Sciences). The binding curve was fitted using the tight binding
equation44: % Complex¼ {(Kdþ [RNAP]Tþ [RIP]T)�O((Kdþ [RNAP]Tþ
[RIP]T)2� 4[RNAP]T[RIP]T)}/2[RIP]T.

SSV1 T6 promoter oligonucleotides were labelled and purified. Reactions
were performed in 16 ml volumes containing 10 mM MOPS pH 6.5, 10 mM MgCl2,
260 mM NaCl, 5 mM DTT, 10% glycerol, 0.067 mg ml� 1 BSA, 20 mg ml� 1

heparin, 1 mM Sso TBP, 0.125 mM Sso TFB (0.5 mM Sso TFE), 50 nM Sso RNAP,
7.8 nM 32P-labelled DNA probe and 100–800 nM ORF145/RIP. Samples were
incubated at 65 �C for 5 min with either pre-incubation of RNAP–ORF145/RIP
before further incubation with the ternary complex or pre-incubation of the PIC
before addition of ORF145/RIP. Complexes were resolved with 4–12% native
PAGE and imaged using phosphorimagery.

Far-western blotting. Far-western blotting was carried out identical to western
blotting with an additional ORF145/RIP incubation step (0.5 mg ml� 1 ORF145/RIP
in TN150) and wash steps prior to incubation with the primary polyclonal
anti-serum raised against ORF145/RIP and then Dylight 680-conjugated goat
anti-rabbit IgG (Thermo Scientific).

Crosslinking/mass spectrometry. Purified RNAP and ORF145/RIP were
combined and 225mg BS3 (Thermo Fisher Scientific) dissolved in 100ml crosslink
buffer (20 mM HEPES pH 7.8, 20 mM NaCl, 5 mM MgCl2) was added. The
reaction was incubated at room temperature for 1 h and stopped by adding 1 ml of
2.5 M ammonium bicarbonate for 30 min at room temperature. The reaction
mixture was separated on a 4–12% SDS–PAGE and stained with Coomassie.

Crosslinked bands were excised and the proteins reduced/alkylated and digested
using trypsin45. The equivalent of 20 mg were injected directly in six portions,
2� 1 mg and 4� 3 mg. Further fractionation of crosslinked RNAP–ORF145/RIP
peptides was carried out on 60% of the crosslinked sample (30 mg) using
SCX-StageTips46 following the protocol for linear peptides47, yielding three
fractions, followed by desalting using self-made C18 StageTips48.

Peptides were loaded directly on a spray-emitter analytical column (75 mm
inner diameter, 8 mm opening, 250 mm length; New Objectives), packed with
C18 material (ReproSil-Pur C18-AQ 3 mm; Dr Maisch GmbH, Ammerbuch-
Entringen, Germany) using an air pressure pump (Proxeon Biosystems)49 at a flow
rate of 0.5 ml min� 1. Mobile phase A consisted of water and 0.1% formic acid.
Mobile phase B consisted of 80/20 acetonitrile:water and 0.1% formic acid. Peptides
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were eluted over 169 min using a linear gradient going from 2% B to 40% B,
followed by an increase to 95% B over 11 min. Eluted peptides were sprayed
directly into a hybrid linear ion trap—Orbitrap mass spectrometer (LTQ-Orbitrap
Velos, Thermo Fisher Scientific). Peptides were analysed using a high/high strategy,
detecting at high resolution in the Orbitrap and analysing the subsequent
fragments also in the Orbitrap. Fourier transform mass spectrometry (FTMS)
spectra were recorded at 100,000 resolution and the eight most intense signals in
the survey scan for each acquisition cycle were isolated with an m/z of 2 Th and
fragmented with collision-induced dissociation in the ion trap. 1þ and 2þ ions
were excluded from fragmentation. Fragmentation (MS2) spectra were acquired in
the Orbitrap at 7500 resolution. Dynamic exclusion was set to 90 s and repeat count
was 1. Mass spectrometry (MS) raw files were processed into peak lists using
MaxQuant version 1.3.0.5 (ref. 50) using default parameters except the setting for
‘top MS/MS peaks per 100 Da’ being set to 100. Peak lists were searched using a
database containing the sequences of the subunits of RNAP from Sso and the
sequence of ORF145/RIP using Xi (ERI, Edinburgh) for identification of
crosslinked peptides. Search parameters were MS accuracy, 6 p.p.m.; MS/MS
accuracy, 20 p.p.m.; enzyme, trypsin; specificity, fully tryptic; allowed number of
missed cleavages, four; crosslinker, BS3; fixed modifications, carbamidomethylation
on cysteine; variable modifications, oxidation on methionine. Linkage specificity
for BS3 was assumed to be at lysine, serine, threonine, tyrosine and protein
N termini. Identified crosslinked residue pairs were returned at an estimated
false discovery rate of 5%, which was carried out following a modified target-decoy
search strategy45,51.

The MS data have been deposited to the ProteomeXchangeConsortium via the
PRIDE partner repository with the data set identifier PXD001692.

Single-molecule FRET microscopy. The double-labelled RNAP system and its
application to monitor the clamp conformation is as follows. Briefly, measurements
on immobilized donor–acceptor fluorophore-labelled RNAP molecules were
carried out using a homebuilt PRISM-TIRF set-up based on an Olympus IX71 with
alternating laser excitation14,42,52. All measurements were carried out at room
temperature (21 �C) on a polyethylene glycol (PEG) surface attached to a flow
chamber. Quartz slides were prepared according to ref. 53. A yellow laser (568 nm;
Coherent Sapphire 100 mW) was used for excitation of the donor, and a red laser
(639 nm; Toptica iBeam Smart 150 mW) was used for direct excitation of the
acceptor. The fluorescence was collected by a � 60 Olympus/1.20 NA. water-
immersion objective and split by wavelength with a dichroic mirror (640 DCXR,
Chroma Technology) into two detection channels that were further filtered with two
bandpass filters (Semrock BrightLine 582/75 and Semrock Brightline 609/54) in the
orange channel and one longpass filter (647 nm Semrock RazorEdge) in the near
infrared detection range. Both detection channels were recorded with one EMCCD
camera (Andor IXon X3, preGain 5.1, gain 250, frame rate 10 Hz) in a dualview
configuration (TripleSplit, Cairn UK) and the acquired data were analysed by custom-
made software based on LabVIEW 2012 64 bit (National Instruments). The resulting
histograms were fitted either with a single or double Gaussian fit and the mean FRET
efficiency and the s.e. was determined from the fit. ORF145/RIP–RNAP complexes
(0.1mM RNAP, 1mM ORF145/RIP) were allowed to preform at 65 �C for 20 min prior
to immobilization on the streptavidin-coated surface and subsequent microscopy.

ATV promoter prediction. The ATV genome sequence and gene annotations were
downloaded from NCBI genomes database. Overall, 35 of the 72 ATV genes are
organized into 12 operons. The 72 ATV genes are predicted to be organized into 46
transcription units based on the orientation and distance of upstream genes6. For
the 46 genes that constitute the first cistron of these transcription units, the DNA
sequence from � 100 to þ 50 relative to the annotated start codon was extracted
using BedTools54 and alignments performed using WebLogo55. Sequence motifs
were determined using MEME (Multiple Em for Motif Elicitation)56.

Promoter-directed abortive initiation assays. Proteins were incubated in 16 ml
volumes containing 10 mM MOPS pH 6.5, 10 mM MgCl2, 100 mM KCl, 5 mM
DTT, 10% glycerol, 0.067 mg ml� 1 BSA, 5 mg ml� 1 heparin, 1 mM Sso TBP,
0.125 mM Sso TFB (3mM Sso TFE), 50 nM Sso RNAP and 100–800 nM ORF145/
RIP. Transcription was initiated with the addition of 50 nM of dsDNA template,
250mM dinucleotide primer (IBA), 50 mM [a-32P]-nucleotide and incubated at
65 �C for 15 min before the addition of formamide-loading dye. Samples were
resolved on a 20% 7 M Urea mini PAGE, imaged by phosphorimagery and
quantified using the ImageQuant TL software package (GE Life Sciences).

Promoter-directed run-off transcription assays. Reactions were performed in
16ml volumes containing 10 mM MOPS pH 6.5, 10 mM MgCl2, 260 mM NaCl,
5 mM DTT, 10% glycerol, 0.067 mg ml� 1 BSA, 40mg ml� 1 heparin, 1 mM Sso
TBP, 1 mM Sso TFB, 50 nM Sso RNAP, 500 ng T6/rRNA promoter plasmid DNA
and 100–800 nM ORF145/RIP. Transcription was initiated with the addition of
0.67 mM AUG/ACG trinucleotide mix, 8.3 mM CTP/UTP and 75 pM [a-32P]-CTP/
UTP nucleotide and incubated at 76 �C for 5 min before the addition of for-
mamide-loading dye. Samples were resolved on a 10% 7 M Urea sequencing PAGE,
imaged by phosphorimagery and quantified using the ImageQuant TL software
package (GE Life Sciences).

Transcription elongation assays. Reactions were performed using conditions
identical to the promoter-directed run-off transcription assays but without the
initiation factors TBP, TFB and TFE and using an increased heparin concentration
(2 mg ml� 1; ref. 32). The synthetic DNA–RNA elongation scaffold was formed
using 3.2 mM template strand, 5 mM non-template strand and 16 mM RNA.

CD spectroscopy. CD spectra were recorded at 0.34 mg ml� 1 of ORF145/RIP and
a path length of in 0.2 mm in 50 mM sodium phosphate buffer, pH 8.0 with
150 mM NaF on a Jasco J-720 CD spectrometer. At least eight spectra were
recorded from 300 to 180 nm, as were blank spectra of buffer. Spectra were quality-
checked by overlaying and then averaged; the averaged buffer spectrum was then
subtracted from the averaged ORF145/RIP spectrum. The resulting ORF145/RIP
spectrum was zeroed on the baseline from 263 to 300 nm and converted to delta
epsilon using its accurate concentration measured by quantitative amino-acid
analysis. Secondary structure analysis was performed by submitting the spectrum
to Dichroweb57 using Data set 7 (ref. 58) and Data set SP175 (ref. 59) and the
algorithms CDSSTR60, Contin-LL61 and Selcon 3 (ref. 62).

Sequence alignments and phylogenetic analysis. ORF145/RIP-related proteins
were identified using PSI-BLAST63 using a reciprocal approach that identified
identical sets of homologous genes. Sequences were aligned using MUSCLE64.
Maximum likelihood phylogenetic analysis was carried out using PhyML
(http://www.atgc-montpellier.fr/phyml-sms/)65 with standard settings and
automated model selection by SMS (LG þG6 þ I þ F) using BioNJ for the
starting tree. In all, 100 bootstrap replicates were performed.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information Files. In
addition, the mass spectrometry data have been deposited to the ProteomeX-
changeConsortium via the PRIDE partner repository with the data set identifier
PXD001692. All other data are available from the authors upon reasonable request.
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