Abstract
Elastic waves exhibit rich polarization characteristics absent in acoustic and electromagnetic waves. By designing a solid elastic metamaterial based on threedimensional anisotropic locally resonant units, here we experimentally demonstrate polarization bandgaps together with exotic properties such as ‘fluidlike’ elasticity. We construct elastic rods with unusual vibrational properties, which we denote as ‘metarods’. By measuring the vibrational responses under flexural, longitudinal and torsional excitations, we find that each vibration mode can be selectively suppressed. In particular, we observe in a finite frequency regime that all flexural vibrations are forbidden, whereas longitudinal vibration is allowed—a unique property of fluids. In another case, the torsional vibration can be suppressed significantly. The experimental results are well interpreted by band structure analysis, as well as effective media with indefinite mass density and negative moment of inertia. Our work opens an approach to efficiently separate and control elastic waves of different polarizations in fully solid structures.
Introduction
The past decades witnessed a revolution in the study of classical waves brought about by manmade subwavelength composite structures, denoted metamaterials, which hold the potential of unprecedented functionalities that go far beyond those offered by Nature. The study of metamaterials has thrived in electromagnetism^{1,2}, optics^{3,4}, fluidborne acoustics^{5,6} and also in structureborne elastic waves^{7}—a ubiquitous type of classical waves that has pivotal importance in many areas of studies and applications, such as mechanical and civil engineering, geophysics and seismology. Many intriguing phenomena that were first discovered in electromagnetism, such as cloaking^{8,9,10}, negative refraction^{11,12}, superresolution focusing^{12,13}, have been successfully demonstrated in thin plates. ‘Pentamode’ metamaterials demonstrate extreme mechanical properties through intricate designs of strut frameworks^{14,15,16,17,18,19,20,21}. Ambitious projects also aim to reduce the destructive power of seismic waves^{22,23,24}. However, elastic waves are distinct from both electromagnetic and acoustic waves by possessing a richer variety of polarization characteristics—waves with both longitudinal and transverse nature are allowed^{25}. While these characteristics bring new features, they also make elastic waves more complex and more difficult to handle than electromagnetic and acoustic waves.
Subwavelength building blocks with local resonances^{26,27} have been widely utilized for the design of acoustic metamaterials. Double negativity in acoustics^{28,29,30}, subwavelength wave guiding^{31}, superlensing^{32,33} and superabsorption^{34,35}, are examples among a plethora of exotic functionalities. Remarkably, recent theoretical studies linking local resonance with elastic waves in twodimensional systems have found fascinating consequences and unique properties, such as negative shear modulus^{36}, fluidlike behaviour^{37}, superanisotropy^{37} and so on. However, because of the structural complexity, these fascinating systems present tremendous experimental challenges. Consequently, the appeal of resonant elastic metamaterials with unique properties and richer physics in polarization control beyond their acoustic and electromagnetic counterparts mostly remained theoretical.
Here we present the design and experimental realization of a type of threedimensional locally resonant elastic metamaterial, which exhibits polarization bandgaps and ‘fluidlike’ elasticity. Based on such metamaterials, we construct unique rodshape structures, which we denote as ‘metarods’. By measuring their response functions for flexural, longitudinal and torsional vibrations, we demonstrate the selective suppression of these vibrations by polarization bandgaps and unprecedented elastic rod properties. In particular, we observe that in a certain frequency regime, only the longitudinal vibration can be excited in the metarod, whereas flexural vibrations are forbidden—a hallmark elastic property of fluids (hence denoted ‘fluidlike’ elasticity). Whereas in another configuration of the same metamaterial units, the metarod can significantly suppress the torsional vibration in a certain frequency regime. These unusual characteristics revealed by experiments are well interpreted by band structures as well as effective medium theory that exhibits negative moment of inertia and indefinite mass densities.
Results
Metamaterial design
A photographic image of the unit cell is shown in Fig. 1a. A steel cylinder, with a radius r=15.8 mm and height h=37.6 mm, is coated with silicone rubber. The cylinder’s axial direction is defined as the z axis, and the xyplane is parallel to the end surfaces. The silicone layers on the top and at the bottom of the steel cylinder are both 1 mm in thickness; whereas the silicone covering the curvilinear side has a thickness of 5 mm. The siliconecoated steel cylinder is then cast inside an epoxy cube with each side a=60 mm. The physics of this unit cell can be understood with a simple massspringmass model, as shown in the inset of Fig. 1a. Here the steel cylinder and the epoxy cladding mostly have the role of two block masses, M_{1} and M_{2}, which interact through compression and expansion of the silicone rubber that acts as springs. Owing to the difference in the silicone’s thickness, the spring constants in relevant positions are different (denoted by K for the side, and K′ for top and bottom, respectively).
The consequence of the difference in silicone thicknesses or spring constants can be immediately seen by investigating the eigenmodes of an isolated unit cell using finiteelement simulations. Three translational modes (TMs) are found, in which the steel cylinder undergoes translational vibration and moves outofphase with respect to the epoxy cladding, which are shown in Fig. 1b. Two of these modes are degenerate at 1,651 Hz, in which the cylinder and the epoxy vibrate in the xyplane. We denote these two modes as TM(x), TM(y). The third mode, wherein the steel cylinder and the epoxy vibrate in the zdirection, has a much higher eigenfrequency at 2,637 Hz. This mode is denoted by TM(z). The large mismatch in eigenfrequencies between TM(z) and TM(x, y) is mainly due to the difference in the silicone coating’s thickness. Basically, a larger thickness means a smaller spring constant, thereby leading to a lower eigenfrequency; whereas a smaller thickness indicates the opposite. By changing the thickness of the silicone rubber, we can conveniently engineer the corresponding eigenfrequencies independently. This is shown in Supplementary Fig. 1 and Supplementary Note 1.
Three rotational modes (RMs) are also found in simulations, wherein the steel cylinder and epoxy oscillate rotationally about each of the three spatial axes in an antiphase manner, as shown in Fig. 1c. Their physical consequences are demonstrated and discussed below.
Quasionedimensional arrays as metarods
By assembling the unit cells into a quasionedimensional periodic array, we obtain an elastic structure commonly known as a rod. An elastic rod can sustain four distinct branches of waves: two flexural, one longitudinal and one torsional^{25,38}. They are easily distinguishable through their vibration profiles, as schematically illustrated in Fig. 2a. Characterized by the rod’s bending, flexural modes are dominantly transverse in their nature, therefore, there are two orthogonal polarizations. In the longitudinal vibration, displacements in the rod mainly are along the axial direction, accompanied by a small amount of breathing. In the torsional mode, a rod engages in rotational and twisting vibration along its own axis. These three types of vibrations can be identified through their dispersion signatures at low frequencies. The longitudinal and torsional waves have linear dispersions. Flexural waves, however, are governed by biharmonic equations^{25,38}, therefore, have distinctive quadratic dispersion relations. As we shall next demonstrate, the metamaterial unit cells endow the rods with very unusual vibration properties, hence they are denoted as ‘metarods’.
From the unit cell’s geometry, it is straightforward to see that there exist two different ways to build the quasionedimensional array. One is to repeat the unit cell in the zdirection, that is, along the steel cylinder’s axis. We denote this array as ‘samplek_{z}’. The second type of array, denoted by ‘samplek_{x}’, has periodicity in the x (or y) direction, that is, perpendicular to the steel cylinder’s axis. These samples are shown in Fig. 2b,c (top). Next, we demonstrate the emergence of unique vibrational properties such as the intriguing fluidlike elasticity, and the extinction of torsional vibration.
Fluidlike characteristic
First, we excite samplek_{z} by a force perpendicular to the rod. This is realized by the experimental setup shown in Fig. 3a. Simply put, the sample is uprightly fixated on an aluminum plate that is supported on lowfriction sliding tracks, which confine their motion to one single direction. We then connect the aluminum plate to an electromagnetic shaker, whose vibration causes the plate to move back and forth along the tracks (see Methods for more details). For the metarod, this transverse excitation will excite flexural vibrations. We obtain the response function by dividing the acceleration (with direction along the excitation force) measured on the top of the sample with the one measured on the aluminum plate. This is plotted in Fig. 4a as a function of frequency (blue circles). A bandgap is clearly seen in ∼1.2–1.6 kHz. We further use a laser Doppler vibrometer to map the displacement parallel to the actuation direction on a facet of the metarod at 1,350 Hz, that is, inside the bandgap. The result is shown in Fig. 4b. It is seen that the displacement amplitude rapidly decays away from the actuation position (z=0 mm). This means that unlike ordinary elastic rods, transverse forces with frequencies inside the bandgap cannot excite the flexural vibration in our sample.
Next, the same sample is subjected to a pushing and pulling force exerted along the rod’s axis. To achieve this, the metarod is fixed on a thick aluminum plate, which is connected to the shaker, as shown in Fig. 3b. The shaker excites the longitudinal branch in the metarod. The measured response function is shown with red circles in Fig. 4a. A bandgap is found covering ∼1.8–2.9 kHz, which is spectrally mismatched with the flexural bandgap. Comparing the sample’s flexural and longitudinal responses, an intriguing spectral regime can be found in ∼1.2–1.6 kHz. In this regime, the metarod can only withstand the longitudinal vibration. Transverse vibrations cannot be sustained. The response difference between these two polarizations exceeds 39dB around 1.4 kHz. Traditionally, such a characteristic is expected only in fluids, and is not found in any solid material. We have also carried out numerical simulations for both excitations. The results are shown in Fig. 4a. Good agreement with experiments is seen. Slight mismatches are attributed to fabrication errors.
The underlying physics of this fluidlike elasticity can be understood by the band structure, as shown in Fig. 2b. A force transverse to the metarod excites a flexural branch, which can be identified via its quadratic dispersion at the lowfrequency limit. In samplek_{z}, the transverse force will also excite one of the TM(x, y), in which the motion of steel core/epoxy are in the xyplane. This mode couples with flexural vibrations. Their anticrossing produces a polaritonlike dispersion (blue markers, Fig. 2b) and a bandgap (shaded blue in Fig. 2b.) Similarly, a force along samplek_{z} excites the longitudinal branch together with TM(z) (red markers, Fig. 2b). Owing to the thinner silicone rubber at the two ends of the steel cylinder, the longitudinal bandgap opens at much higher frequencies (shaded red in Fig. 2b). The flexural bandgap, therefore, overlaps with the longitudinal pass band, giving rise to a region that only sustains longitudinal vibrations. Owing to the isotropy in samplek_{z} in the xyplane, this characteristic disregards the polarization of flexural waves. Fluidlike elasticity is the consequence.
By simply changing the orientation of the same unit cells, samplek_{x} has distinctive features. Detailed experimental results of numerical investigations and relevant discussions can be found in the Supplementary Fig. 2 and Supplementary Note 2. In short, a ‘partially fluidlike’ region is observed in the frequency range covering ∼1.7–2.5 kHz. In samplek_{x}, the longitudinal branch couples with TM(x); and flexural branches interact with TM(z) or TM(y), depending on the polarization. Also, the eigenfrequencies of TM(x) and TM(y) are almost identical (they are degenerate in an isolated cell), therefore, fluidlike elasticity only exists for the zpolarized flexural waves. In practice, this characteristic can potentially be utilized to switch from fluidlike to solidlike—simply rotating samplek_{x} along its axis (x axis) by 90°.
Torsional bandgap and negative moment of inertia
RMs are found in our unit cell (Fig. 1c). RMs have long been theoretically studied in phononic crystals and metamaterials^{37,39,40,41,42,43}. Yet, owing to the difficulty in excitation, direct observations of these unique modes and their consequences are still lacking. The metarod’s geometry offers an interesting opportunity to observe and to appreciate the physical significance of RMs via torsional vibration (Fig. 2a).
We choose samplek_{x} to investigate the effect of RM on torsional vibration. First, the metarod’s torsional branch can be excited by a dynamic torque about the x axis. The same torque can also trigger RM(x), in which the steel cylinder and epoxy rotate about the x axis in an antiphase manner. RM(x) is found at 1,646 Hz (Fig. 1c). Similarly, the anticrossing due to counterrotating modes (RM(x) and the torsional branch) yields a polaritonic dispersion. Through the torsional branch’s linear dispersion signature and the system’s rotational displacement profile, this can be identified in the band structure (orange markers, right panel of Fig. 2c). A bandgap for torsional vibration is also highlighted in orange in Fig. 2c. Experimentally, we verify this torsional bandgap by rotational actuation with a setup shown in Fig. 3c, in which an electric motor is used to apply a torque pulse to the metarod. The measured response function indeed confirms the existence of such a bandgap, as shown in Fig. 5a. The measured results show good agreement with numerical simulation.
We can gain more insights about the metarod’s torsional behaviours from its displacement profiles at certain key frequencies, which are plotted in Fig. 5b. At the lower gap edge, the metarod undergoes pronounced twisting. However, in each unit cell, the steel cylinder vibrates in phase with respect to its epoxy cladding. Inside the bandgap, torsional vibration exponentially decays away from the actuation position. At the high gap edge, we can clearly observe that all steel cylinders are rotating outofphase with respect to the epoxy. These observations resemble closely the mode profile of acoustic/elastic metamaterials with negative effective mass density^{6}. In a similar spirit, effective moment of inertia of the metarod per unit, , can be defined as . Here is the effective torque applied on the unit, and is the effective angular acceleration of the unit. By using the eigenfunction of RM(x), we can easily calculate the x component of inertia I_{x}. The result is plotted in Fig. 5a as a function of frequency. It can be seen that I_{x} is negative near 1.5 kHz. For torsional vibration, relevant wave parameters are the moment of inertia and torsional rigidity. Torsional waves exponentially decay if the rod has single negativity in moment of inertia. This is in alignment with both observation and analysis. The extraction scheme of effective moment of inertia is shown in Supplementary Note 3.
A torsional bandgap is also numerically found in samplek_{z} (Supplementary Fig. 3), wherein RM(z) has an important role. However, we did not observe this bandgap experimentally. We speculate that the discrepancy probably owes to the nonideal bonding between the steel/silicone/epoxy interface(s) around the curvilinear surface, which may result in slipping in circumstances of torsional vibration, and, therefore, leads to ineffectiveness of excitation. Relevant discussions are included in Supplementary Note 4.
Discussion
The elastic properties of our metarods are vastly different from rods made of traditional solid materials. Yet they all arise through a simple mechanism: the anticrossing between local resonances in metamaterial units and a certain vibration branch of the rod. Two types of eigenmodes are considered: translational and rotational. For TMs, the structure is in fact quite similar to the design first reported by Liu et al.^{26}, that is, a spherical metal core evenly coated with a layer of silicone rubber, and embedded in an epoxy cube. Clearly, the unit cell in ref. 26 has a highdegree of symmetry, and is isotropic in all three spatial dimensions. Although a lowfrequency bandgap can be created due to negativity of mass density, the selection of vibration modes cannot be realized. Here by breaking spatial symmetry, the metamaterial becomes anisotropic. The consequence is that the bandgaps for different polarizations are spectrally mismatched, which manifest fluidlike behaviour in a certain frequency regime, despite that all constituents are solid. This unique phenomenon is a direct consequence of the richer freedoms of polarizations existing in elastic metamaterials than that in acoustic and electromagnetic metamaterials. Moreover, because this characteristic is achieved via symmetry breaking, it is robust against perturbations in material properties as well as flaws in fabrication. These factors translate into the ease of implementation. We further demonstrate with numerical studies the robustness of these functionalities in systems with different geometric shapes (Supplementary Figs 6,7 and Supplementary Note 6), and different materials (Supplementary Figs 8,9 and Supplementary Note 7). These results show that the polarization bandgaps and the related functionalities can be easily attained with a large variety of material choice and geometry configurations. Such an unusual property expands the horizon of elastic wave manipulations. For example, it may improve impedance matching between solids and fluids as well as soft tissues, in which transverse or shear waves cannot propagate. It may also be exploited as a polarizer for elastic waves.
We note that similar fluidlike behaviours were theoretically shown to arise in twodimensional systems via intricate hybridization of multipole local resonances^{37}. However, the microstructure is highly complex, therefore, presents a tremendous fabrication challenge. The approach adopted here is much more convenient and practical. Diraccone dispersion in phononic crystals was also theoretically shown capable of similar characteristics^{44}. Nevertheless, the system relies on a zero refractive index as well as accidental degeneracy, which imposes high requirement of system parameters, making it less robust against perturbations, and, therefore, is also difficult to realize. In addition, lattice constants in phononic crystals are at the same order of wavelength, whereas the lattice constant in our design is deep subwavelength. On the other hand, ‘pentamode’ metamaterials, essentially skeletons of elongated struts joint together at their tips so as to maintain rigidity, also demonstrated vastly different transverse and compressional elastic modulus^{14,16}. These delicate structures are not fully solid, and require advanced fabrication techniques^{17,18,19}. Existing experimental investigations focused more on their static mechanical properties^{15,16,17,18,45} and shock responses^{21}.
The metamaterial units can also be assembled into a threedimensional periodic lattice. It is seen that the properties associated with TMs also emerge: spectrally mismatched polarization bandgaps for longitudinal and shear waves are found, and fluidlike elasticity exists. However, the effects of RMs mostly disappear, since torsional branches do not exist in a bulk solid. In a threedimensional lattice, the fluidlike property can be perfectly accounted for by effective medium. Here TMs have dipolar symmetry hence they introduce anomalous effective mass densities^{6,37,46,47}. Owing to the mismatched eigenfrequencies of TM(z) and TM(x, y), the effective mass density tensor is extremely anisotropic: we found that certain component(s) of the mass density tensor can become negative while other components remain positive. Similar to indefinite permittivity in electromagnetic systems^{48}, these ‘indefinite effective mass densities’ directly associate with the elastic wave propagation. In fluidborne acoustics, such indefinite mass density usually can be realized by layer structures and lead to hyperbolic dispersions^{49,50,51,52}, that is, sound cannot propagate in the direction wherein the effective mass is negative. Likewise, elastic waves cannot propagate a medium with singlenegative effective mass^{12,13}. However, in the context of elastic waves, the physical consequences of this indefinite mass density is richer, and can be used to attain polarization control. Numerical results of a threedimensional array and detailed discussions are presented in the Supplementary Figs 4,5 and Supplementary Note 5.
The metarod has another particularly interesting aspect in its ability to resist shaking that is transverse to its axis, that is, flexural vibration, at a deep subwavelength scale. In the particular geometry of a rod, our design may hold great potential in civil engineering. Flexural vibration is a major source of potential damage for manmade structures during earthquakes. In the experiment demonstrated in Fig. 3a, we emphasize that the long thin metarod was fixed only at the bottom to a plate that shakes horizontally—a configuration that faithfully reflects many freestanding structures, such as pillars, skyscrapers, towers, chimney, and so on. Yet this metarod shows resilience to lateral shaking within the frequency regime of the flexural bandgap. It can be seen in Fig. 4b that the vibration decays within one unit cell, whose dimension is at the deep subwavelength scale (wavelength of flexural wave at ∼1.3 kHz in epoxy exceeds one meter). Therefore, counterintuitively, the parts of the metarod that are further away from the ground (z=0) are more stable. The vibration shielding functionality of metarods has been videotaped and is demonstrated in Supplementary Movie 1. In comparison, existing seismic protective solutions employ sophisticated systems such as the massive roofloaded ‘seismic damper’ to protect skyscrapers. ‘Seismic shields’ installed in the earth^{22,24} will have to mitigate both surface waves and body waves, and have to deal with complexities such as the soil and rock properties^{53,54}. Our results suggest elastic metamaterials/metarods as an interesting alternative. A similar vibration shielding effect can also be obtained for longitudinal vibrations (a demonstration in Supplementary Movie 2). We note that the condition of anisotropy is not necessary for vibration shielding applications. Using isotropic unit cells can bring longitudinal and flexural bandgaps to overlap, creating a full bandgap capable of stopping vibrations of all polarization types.
On the other hand, RMs and the negative effective moment of inertia provide intriguing possibilities to mitigate torsional vibrations, which have been recognized as a potential hazard in machineries with rotating parts, such as drills, propulsion shafts, and so on.
Methods
Sample fabrication
The metamaterials were fabricated one unit cell at a time. Unit cells were joined together by acrylic superglue. The materials are: Wacker silicone rubber RTV2 Elastosil M4440, Clear Casting Floral Arrangements decorative epoxy resin.
Measurements
For the measurement of the response spectra under transverse and longitudinal excitations, we used a waveform generator (Agilent 33220A) to send a pulse covering 0.5–3.5 kHz to an electromagnetic shaker (Brüel and Kjær Vibration Exciter type4809) through a power amplifier. The samples were superglued onto an aluminum plate. For transverse excitation, the sample and the aluminum plate were supported by two parallel lowfriction sliding tracks, which confined the motion to one single direction. A facet of the aluminum plate was then firmly attached to the shaker. For longitudinal excitation, a thicker aluminum plate was used so that the plate’s bending modes located at frequencies higher than our range of interest. The center of the plate was directly connected to the shaker. Two triaxial accelerometers (Dytran 3023A) were adhesivebonded to relevant positions. Details of experimental setups can be more easily seen in Fig. 3a,b. The accelerometers measured the vibration along the excitation directions. The exterior of our samples are relatively rigid and deformation is minimal. Still, to obtain best results, we measured 24 points on the top surface of the sample, and used the arithmetic mean to calculate the response functions. The signals were recorded by a digital oscilloscope (Agilent DSO6014A).
To measure the torsional response, the metarod was fixed on a rotational stage at its axial center at the bottom. The top was fixed to a DC motor that was connected to the waveform generator. The two accelerometers measured the tangential accelerations at the top and the bottom of the sample.
The vibrational profile (Fig. 4b) was acquired as follows. A piece of aluminum kitchen foil (thickness ∼0.02 mm) was adhered to cover the facet of the sample to be measured, which increased the reflectivity. A laser Doppler vibrometer (Graphtec AT50005) was mounted on a twodimensional motorized translation stage to scan the surface point by point. Our translational stage has limited travel range that only covers four unit cells. The laser beam was perpendicular to the measured surface, and was parallel to the excitation force. The sample was excited by the shaker driven by a sinusoidal signal, and the measured data was recorded by a lockin amplifier (Stanford Research SR830).
Simulations
Numerical simulations were performed using the threedimensional solid mechanics module in COMSOL Multiphysics (v4.3a). The band structure and eigenmodes were solved using eigenfrequency study, whereas the frequency response functions were solved by frequencydomain study. Parameters used in simulations are: for the epoxy, the Young’s modulus E=3.8 GPa, Poisson ratio ν=0.350, mass density ρ=1,130 kg m^{−3}; for the steel cylinders, E=180 GPa, ν=0.250, and ρ=7,850 kg m^{−3}; for the silicone rubber, E=3.3 MPa, ν=0.477, and ρ=1,245 kg m^{−3}. In the calculation of frequency response functions, dissipation is added to Young’s modulus of silicone rubber, that is, E=3.3+0.3i MPa. For the purpose of clear viewing, the displacement profiles shown in Fig. 5b were obtained without dissipation.
Data availability
The data in this study are available from the corresponding authors on request.
Additional information
How to cite this article: Ma, G. et al. Polarization bandgaps and fluidlike elasticity in fully solid elastic metamaterials. Nat. Commun. 7, 13536 doi: 10.1038/ncomms13536 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305, 788–792 (2004).
Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).
Shalaev, V. M. Optical negativeindex metamaterials. Nat. Photon. 1, 41–48 (2007).
Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of threedimensional photonic metamaterials. Nat. Photon. 5, 523–530 (2011).
Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).
Ma, G. & Sheng, P. Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2, e1501595 (2016).
Christensen, J., Kadic, M., Kraft, O. & Wegener, M. Vibrant times for mechanical metamaterials. MRS Commun. 5, 453–462 (2015).
Colombi, A., Roux, P., Guenneau, S. & Rupin, M. Directional cloaking of flexural waves in a plate with a locally resonant metamaterial. J. Acoust. Soc. Am. 137, 1783–1789 (2015).
Stenger, N., Wilhelm, M. & Wegener, M. Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012).
Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009).
Zhu, R., Liu, X., Hu, G., Sun, C. & Huang, G. Negative refraction of elastic waves at the deepsubwavelength scale in a singlephase metamaterial. Nat. Commun. 5, 5510 (2014).
Dubois, M. et al. Timedriven superoscillations with negative refraction. Phys. Rev. Lett. 114, 013902 (2015).
Lee, H., Oh, J. H., Seung, H. M., Cho, S. H. & Kim, Y. Y. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging. Sci. Rep. 6, 24026 (2016).
Milton, G. W. & Cherkaev, A. V. Which elasticity tensors are realizable? J. Eng. Mater. Tech. 117, 483–493 (1995).
Bückmann, T., Thiel, M., Kadic, M., Schittny, R. & Wegener, M. An elastomechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).
Kadic, M., Bückmann, T., Stenger, N., Thiel, M. & Wegener, M. On the practicability of pentamode mechanical metamaterials. Appl. Phys. Lett. 100, 191901 (2012).
Bückmann, T. et al. Tailored 3d mechanical metamaterials made by dipin directlaserwriting optical lithography. Adv. Mater. 24, 2710–2714 (2012).
Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).
Kadic, M., Bückmann, T., Schittny, R., Gumbsch, P. & Wegener, M. Pentamode metamaterials with independently tailored bulk modulus and mass density. Phys. Rev. Appl. 2, 054007 (2014).
Zadpoor, A. A. Mechanical metamaterials. Mater. Horiz. 3, 371–381 (2016).
Hawreliak, J. A. et al. Dynamic behavior of engineered lattice materials. Sci. Rep. 6, 28094 (2016).
Brûlé, S., Javelaud, E., Enoch, S. & Guenneau, S. Experiments on seismic metamaterials: molding surface waves. Phys. Rev. Lett. 112, 133901 (2014).
Krödel, S., Thomé, N. & Daraio, C. Wide bandgap seismic metastructures. Extreme Mech. Lett. 4, 111–117 (2015).
Colombi, A., Roux, P., Guenneau, S., Gueguen, P. & Craster, R. V. Forests as a natural seismic metamaterial: rayleigh wave bandgaps induced by local resonances. Sci. Rep. 6, 19238 (2016).
Landau, L. & Lifshitz, E. Theory of Elasticity, Course of Theoretical Physics Vol. 7, Pergamon Press (1986).
Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).
Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006).
Yang, M., Ma, G., Yang, Z. & Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110, 134301 (2013).
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G. & Kim, C. K. Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010).
Brunet, T. et al. Soft 3d acoustic metamaterial with negative index. Nat. Mater. 14, 384–388 (2014).
Lemoult, F., Kaina, N., Fink, M. & Lerosey, G. Wave propagation control at the deep subwavelength scale in metamaterials. Nat. Phys. 9, 55–60 (2013).
Kaina, N., Lemoult, F., Fink, M. & Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 525, 77–81 (2015).
Zhu, J. et al. A holeystructured metamaterial for acoustic deepsubwavelength imaging. Nat. Phys. 7, 52–55 (2011).
Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).
Mei, J. et al. Dark acoustic metamaterials as super absorber for lowfrequency sound. Nat. Commun. 3, 756 (2012).
Wu, Y., Lai, Y. & Zhang, Z.Q. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011).
Lai, Y., Wu, Y., Sheng, P. & Zhang, Z.Q. Hybrid elastic solids. Nat. Mater. 10, 620–624 (2011).
Cremer, L., Heckl, M. & Petersson, B. A. T. StructureBorne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies Springer Science & Business Media (2013).
Peng, P., Mei, J. & Wu, Y. Lumped model for rotational modes in phononic crystals. Phys. Rev. B 86, 134304 (2012).
Zhao, H. et al. Resonance modes and gap formation in a twodimensional solid phononic crystal. Phys. Rev. B 72, 012301 (2005).
Wang, G., Wen, X., Wen, J., Shao, L. & Liu, Y. Twodimensional locally resonant phononic crystals with binary structures. Phys. Rev. Lett. 93, 154302 (2004).
Liu, F., Huang, X. & Chan, C. Dirac cones at k= 0 in acoustic crystals and zero refractive index acoustic materials. Appl. Phys. Lett. 100, 071911 (2012).
Deymier, P. A., Runge, K., Swinteck, N. & Muralidharan, K. Rotational modes in a phononic crystal with fermionlike behavior. J. Appl. Phys. 115, 163510 (2014).
Liu, F., Lai, Y., Huang, X. & Chan, C. Dirac cones at =0 in phononic crystals. Phys. Rev. B 84, 224113 (2011).
Bückmann, T., Kadic, M., Schittny, R. & Wegener, M. Mechanical cloak design by direct lattice transformation. Proc. Natl Acad. Sci. 112, 4930–4934 (2015).
Li, J. & Chan, C. T. Doublenegative acoustic metamaterial. Phys. Rev. E 70, 055602(R) (2004).
Wu, Y., Lai, Y. & Zhang, Z.Q. Effective medium theory for elastic metamaterials in two dimensions. Phys. Rev. B 76, 205313 (2007).
Smith, D. R. & Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90, 077405 (2003).
Li, J., Fok, L., Yin, X., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nat. Mater. 8, 931–934 (2009).
Christensen, J. & de Abajo, F. J. G. Anisotropic metamaterials for full control of acoustic waves. Phys. Rev. Lett. 108, 124301 (2012).
GarcíaChocano, V. M., Christensen, J. & SánchezDehesa, J. Negative refraction and energy funneling by hyperbolic materials: an experimental demonstration in acoustics. Phys. Rev. Lett. 112, 144301 (2014).
Shen, C. et al. Broadband acoustic hyperbolic metamaterial. Phys. Rev. Lett. 115, 254301 (2015).
Chapman, C. Fundamentals of Seismic Wave Propagation Cambridge University Press (2004).
Gadallah, M. R. & Fisher, R. L. Applied Seismology: A comprehensive Guide to Seismic Theory and Application PennWell Books (2005).
Acknowledgements
G.M. and C.F. thank Zhiyu Yang for equipment and lab space. G.M. thanks C.T. Chan and ZhaoQing Zhang for helpful discussions. G.M., C.F., and P.S. acknowledge the support of the Hong Kong Research Grants Council (Grant No. AoE/P02/12). Y.L. and G.W. thank the State Key Program for Basic Research of China (No. 2014CB360505, No. 2012CB921501), National Natural Science Foundation of China (No. 11374224, No. 61671314), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). J.C. acknowledges the support from the European Research Council (ERC) through the Starting Grant 714577 PHONOMETA.
Author information
Authors and Affiliations
Contributions
G.M. and Y.L. supervised the project. Y.L., J.C., and G.M. conceived the metamaterial design. G.M. and C.F. fabricated the samples and carried out experimental measurements. P.d.H. assisted with experiments. G.M. and G.W. performed numerical simulations. All authors were involved in analysis and discussion of the results. G.M. and Y.L. wrote the manuscript. J.C. and P.S. revised and improved the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures 19, Supplementary Notes 17 and Supplementary References (PDF 1885 kb)
Supplementary Movie 1
Demonstration of vibration shielding against flexural vibration. (MOV 30682 kb)
Supplementary Movie 2
Demonstration of vibration shielding against longitudinal vibration. (MOV 29295 kb)
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Ma, G., Fu, C., Wang, G. et al. Polarization bandgaps and fluidlike elasticity in fully solid elastic metamaterials. Nat Commun 7, 13536 (2016). https://doi.org/10.1038/ncomms13536
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/ncomms13536
This article is cited by

Chiral trabeated metabeam for lowfrequency multimode wave mitigation via dualbandgap mechanism
Communications Physics (2022)

Robust separation of topological inplane and outofplane waves in a phononic crystal
Communications Physics (2022)

Photoresponsive hydrogelbased reprogrammable metamaterials
Scientific Reports (2022)

Bilayer synergetic coupling double negative acoustic metasurface and cloak
Scientific Reports (2018)

Observation of elastic topological states in soft materials
Nature Communications (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.