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CUG-binding protein 1 regulates HSC activation
and liver fibrogenesis
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Beicheng Sun2, Yang Sun1, Xuefeng Wu1 & Qiang Xu1

Excessive activation of hepatic stellate cells (HSCs) is a key step in liver fibrogenesis. Here we

report that CUG-binding protein 1 (CUGBP1) expression is elevated in HSCs and positively

correlates with liver fibrosis severity in human liver biopsies. Transforming growth factor-beta

(TGF-b) selectively increases CUGBP1 expression in cultured HSCs in a p38 mitogen-

activated protein kinase (MAPK)-dependent manner. Knockdown of CUGBP1 inhibits alpha

smooth muscle actin (a-SMA) expression and promotes interferon gamma (IFN-g)

production in HSCs in vitro. We further show that CUGBP1 specifically binds to the

30 untranslated region (UTR) of human IFN-g mRNA and promotes its decay. In mice,

knockdown of CUGBP1 alleviates, whereas its overexpression exacerbates, bile duct ligation

(BDL)-induced hepatic fibrosis. Therefore, CUGBP1-mediated IFN-g mRNA decay is a key

event for profibrotic TGF-b-dependent activation of HSCs, and inhibiting CUGBP1 to promote

IFN-g signalling in activated HSCs could be a novel strategy to treat liver fibrosis.
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L
iver fibrosis is a common scarring response to virtually all
forms of chronic liver injury and is characterized by an
excess accumulation of extracellular matrix1. To date,

treatment of liver fibrosis remains limited2. HSC activation and
transformation to active myofibroblasts are key steps in liver
fibrogenesis1,3,4. Currently, the targeting of HSCs, including
apoptosis induction and inhibition of the fibrogenic function, are
proposed therapeutic approaches to reverse liver fibrosis5,6.
Quiescent HSCs physiologically play critical roles in the
regulation of retinoid homeostasis and extracellular matrix
remodelling7,8. Therefore, the induction of HSC apoptosis may
destroy the liver architecture. Various chemicals that induce HSC
apoptosis, such as gliotoxin, tetrandrine and curcumin, exhibit
hepatocytotoxicity9–11. Currently, precise control of excessive
HSC function remains difficult.

The dysregulation of the balance between pro- and anti-fibrotic
signalling pathways presents as increased HSC activation, which
is key to the development of liver fibrosis12,13. Pro-fibrotic
transforming growth factor-beta (TGF-b) signalling is induced in
the activated HSCs, and anti-fibrotic interferon gamma (IFN-g)
signalling is suppressed14. The dysregulated opposing signalling
pathways suggest an imbalance between the activation and
homeostasis of HSCs during liver fibrogenesis. IFN-g signalling
inhibits TGF-b signalling via the induction of SMAD family
member 7 (Smad7)15. However, the mechanism by which TGF-b
signalling regulates IFN-g signalling during HSC activation is not
known. This study demonstrates that TGF-b-induced CUGBP1
expression during HSC activation suppresses IFN-g production
via binding to a GU-rich element (GRE) in the 30 untranslated
region (UTR) of human IFN-g mRNA, thus promoting the
degradation of the IFN-g mRNA. Notably, reduction of CUGBP1
expression using small interfering RNA (siRNA) or the natural
product fraxinellone, significantly prevents HSC activation
through producing IFN-g. Thus, this study provides a novel
approach to the homeostatic recovery, and suggests that the
triggering of IFN-g signalling via CUGBP1 reduction in activated
HSCs could be beneficial for the resolution of liver fibrosis.

Results
CUGBP1 expression correlates with liver fibrosis stage. We
initially examined CUGBP1 levels in human liver biopsies from
normal controls and patients with different stages of liver
fibrosis to investigate CUGBP1 expression during liver fibrosis
development. CUGBP1 mRNA expression increased significantly
in liver fibrosis biopsies (Fig. 1a). Furthermore, immuno-
histofluorescence (IHF) revealed high CUGBP1 (green)
expression in the activated HSCs that were positive for both
a-SMA (red) and cytoglobin (cyan)16 (Fig. 1b). Noteworthy, the
CUGBP1 expression was elevated with increasing liver fibrosis
and positively correlated with the liver fibrosis stage (Fig. 1c). In
addition, a selective increase in CUGBP1 expression was observed
in HSCs of the liver from BDL mice (Fig. 1d,e). Consistent with
the in vivo data, neither TGF-b nor lipopolysaccharide (LPS)
could increase CUGBP1 expression in hepatic macrophages, liver
sinusoidal endothelial cells (LSECs) or natural killer (NK) cells
in vitro (Supplementary Fig. 1). TGF-b but not LPS induced
CUGBP1 in HSCs in vitro (Supplementary Fig. 1). These results
suggest that CUGBP1 expression positively correlates with the
severity of liver fibrosis, which is specifically increased in HSCs in
the fibrotic liver.

TGF-b increases CUGBP1 expression in HSCs via p38 MAPK.
We then examined CUGBP1 levels in human HSC cell line
LX-2 cells and primary mouse HSCs treated with TGF-b as
TGF-b-induced HSC activation plays an important role in liver

fibrogenesis. TGF-b strongly induced CUGBP1 in both LX-2 cells
and primary mouse HSCs but not human hepatic L02 cells nor
primary mouse hepatocytes (Fig. 2a–c). Next, we observed that
TGF-b did not inhibit the degradation of CUGBP1 mRNA
(Fig. 2d). Using TGF-b signalling inhibitors, we observed that
both the TGF-b receptor I inhibitor SB431542 and the p38
MAPK inhibitor SB203580, but not the c-Jun N-terminal kinase
(JNK) inhibitor SP600125, the extracellular signal-regulated
kinase (ERK) inhibitor FR 180204, or the Smad3 inhibitor SIS3
blocked the increase in CUGBP1 expression in LX-2 cells treated
with TGF-b (Fig. 2e). It has been reported that TGF-b activates
activating transcription factor 2 (ATF2) via p38 MAPK17,18.
Consistently, TGF-b was found to induce ATF2 phosphorylation
via p38 MAPK in LX-2 cells (Fig. 2f). Using gene2 promoter tool,
a similar cAMP response element (CRE) was found in the human
CUGBP1 promoter (Fig. 2g). Moreover, pT-ATF2 was found to
bind to the CRE-like region of the CUGBP1 promoter in LX-2
cells on TGF-b stimulation (Fig. 2h). Thus, we hypothesize that
TGF-b induces CUGBP1 mRNA expression in LX-2 cells via the
p38 MAPK/ATF-2 pathway.

CUGBP1 promotes HSC activation via reducing IFN-c expression.
Next, we hypothesized that the increased CUGBP1 may regulate
HSC activation. We used siRNA to knockdown CUGBP1 in
LX-2 cells and quantitative PCR analysis demonstrated that
siRNA-CUGBP1 successfully reduced 94% of CUGBP1 mRNA
(Fig. 3a). CUGBP1 silencing significantly reduced the mRNA and
protein expression of a-SMA, a marker of HSC activation, in
LX-2 cells (Fig. 3b,c) and increased those of IFN-g, a classic
antifibrotic factor, in either activated LX-2 cells (Fig. 3b,d) or
activated primary mouse HSCs (Fig. 3e). In contrast, the
knockdown of CUGBP1 did not affect a-SMA expression,
proliferation or apoptosis in hepatic L02 cells or primary mouse
hepatocytes (Supplementary Fig. 2a–c).

It has been reported that IFN-g signalling decreases HSC
activation via the induction of Smad7 expression15,19,20. We
demonstrated that CUGBP1 silencing in LX-2 cells increased
IFN-g, the signal transducer and activator of transcription 1
(STAT1) phosphorylation and Smad7 expression but did not
inhibit the pSmad2 expression (Fig. 4a,b). Next, we used two
methods to inhibit IFN-g signalling: neutralization of IFN-g using
an anti-IFN-g antibody and blockade of STAT1 activation in
the STAT1-deficient cell line U3A. IFN-g neutralization almost
completely abolished the decrease in a-SMA following CUGBP1
knockdown (Fig. 4c). CUGBP1 silencing in the STAT1-deficient
cell line U3A cells did not inhibit a-SMA expression (Fig. 4d).
The mRNA expression of a downstream transcript of signalling,
Smad7, was also increased in 2fTGH cells (Fig. 4d). These results
suggest that the increase in IFN-g signalling due to the silencing
of CUGBP1 contributes to the decrease in a-SMA expression.

In addition, through mRNA sequencing, we found that the
knockdown of CUGBP1 in activated LX-2 cells altered mRNA
expression of genes associated with the TGF-b signalling pathway
including, a-SMA, bone morphogenetic protein receptor type II
(BMPR2), Smad5, p107, p300 and rho associated coiled-coil
containing protein Kinase 1 (ROCK1; Supplementary Table 1).
These results suggest that the decrease in CUGBP1 in HSC may
cause a broader change of related molecules in TGF-b signalling
pathway.

CUGBP1 induces IFN-c mRNA decay via binding to the GRE.
CUGBP1 promotes mRNA decay via binding to the GRE in the
30-UTR of short-lived human transcripts in HeLa cells21.
Therefore, we used computational methods to search GREs in
the IFN-g mRNA sequence and identified a 9-nucleotide
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consensus sequence, 50-UGUGUGUUU-30, in the 30-UTR of the
IFN-g mRNA sequence (Fig. 5a). Next, we measured the binding
between CUGBP1 and the IFN-g GRE using mRNA-protein
precipitation, in which IFN-g GRE-Biotin (Fig. 5b, lane 1 and 2)
but not mutated IFN-g GRE-Biotin (Fig. 5b, lane 3 and 4) bound
and precipitated CUGBP1. A cold IFN-g GRE probe but not a
mutant IFN-g GRE probe successfully competed with
IFN-g GRE-Biotin to bind CUGBP1 (Fig. 5c), indicating that

CUGBP1 specifically bound to the IFN-g GRE. We further
performed competitive RNA-binding experiments using different
concentrations of cold IFN-g GRE probe and determined that the
equilibrium dissociation constant of the CUGBP1-containing
complex for the IFN-g GRE was 5.7 nM (Fig. 5d,e). This binding
caused the decay of IFN-g mRNA in a time-dependent manner,
and CUGBP1 knockdown using siRNA almost completely
inhibited this mRNA decay (Fig. 5f).
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Figure 1 | CUGBP1 expression correlates with liver fibrosis stage. (a) Quantitative PCR analysis of CUGBP1 mRNA from normal and liver fibrosis biopsies

(n¼ 30), ***Po0.001 by Student’s t-test. (b) Representative sections of Sirius Red staining and IHF for CUGBP1, a-SMA and Cytoglobin from tissue arrays

(scale bars, 100 mm, 30 normal and 39 fibrotic liver tissue spots). Arrows indicate CUGBP1 (green) expression in the activated HSCs, which are positive for

both a-SMA (red) and cytoglobin (cyan). (c) Correlation analyses of CUGBP1 IHF scores with Ishak fibrosis staging scores of Sirius Red-stained sections

from tissue arrays. Pearson’s correlation test was used (Po0.05 significance; r¼ correlation coefficient). (d,e) Flow cytometry analyses of CUGBP1
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Reducing CUGBP1expresion alleviates murine liver fibrosis.
We screened small molecule inhibitors of CUGBP1 expression
from natural products to further confirm the role of CUGBP1 in
HSC activation and identify an inhibitor of CUGBP1 for the
possible treatment of liver fibrosis. We found that fraxinellone

isolated from Cortex Dictamni reduced the mRNA and protein
expression of CUGBP1, a-SMA and procollagen a1(I) that are
linked to the inhibition of HSC activation, in TGF-b-activated
LX-2 cells (Supplementary Fig. 3a–c). The effects of fraxinellone
were then examined in cells with over-expressed or silenced
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Figure 2 | TGF-b increases CUGBP1 expression in HSCs via p38 MAPK. (a) Quantitative PCR analyses of CUGBP1 mRNA from the human hepatic stellate

cell line LX-2 or human hepatocyte L02 cells treated with or without 5 ng ml� 1 TGF-b for 6 h (mean±s.e.m.; n¼ 3, **Po0.01 by Student’s t-test).

(b,c) Western blot analyses of CUGBP1 from LX-2 cells, primary mouse HSCs (b), and primary mouse hepatocytes (c) treated with or without 5 ng ml� 1

TGF-b for 24 h. The data are representative of three independent experiments (mean±s.e.m.; n¼ 3, **Po0.01 by Student’s t-test). (d,e) LX-2 cells were

treated with actinomycin D (1mg ml� 1) and with or without 5 ng ml� 1 TGF-b for indicated time intervals (d). LX-2 cells were treated with or without

SB431542 (10 mM), SB203580 (10 mM), SP600125 (10 mM), FR180204 (10 mM) or SIS3 (20 mM), following 5 ng ml� 1 TGF-b treatment for 6 h (e). And

then quantitative PCR was carried out to detect the remaining mRNA expression of CUGBP1. (mean±s.e.m.; n¼ 3, *Po0.05, **Po0.01 by one-way

analysis of variance followed by Dunnett’s test). (f) Western blot analyses of LX-2 cells treated with or without SB431542, following 5 ng ml� 1 TGF-b
treatment for 24 h. (g) Gene2promotor analyses of promoter and transcription factors of human CUGBP1 gene. (h) Probe pull down assay was performed

by mixing CUGBP1-CRE-Bio or mCUGBP1-CRE-Bio with total cell extracts from LX-2 cells treated as in f. Precipitates were prepared for Western blotting

using SoftLink Soft Release avidin resin. The data in f and h are representative of two independent experiments.
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CUGBP1. CUGBP1 silencing using siRNA almost completely
abolished the inhibition of fraxinellone on a-SMA expression
(Supplementary Fig. 3d, left). Similarly, over-expression of
CUGBP1 in LX-2 cells using pCDNA3 CUGBP1 almost reversed
the fraxinellone-mediated decrease in a-SMA levels
(Supplementary Fig. 3d, right). These results suggest that the
effect of fraxinellone on TGF-b-induced a-SMA expression is
dependent on the CUGBP1 abundance. We then investigated
whether the effect of fraxinellone on HSC activation was

associated with IFN-g production. Notably, fraxinellone triggered
the mRNA expression of IFN-g in LX-2 cells in a dose- and time-
dependent manner (Supplementary Fig. 3e). Western blotting
also revealed that fraxinellone caused a dose-dependent increase
in STAT1 phosphorylation in LX-2 cells, while pretreatment with
AG490 abrogated the effects of fraxinellone on collagen-a1 (I)
expression (Supplementary Fig. 3f). These results suggest a
relationship between CUGBP1 and IFN-g signalling in the HSC
activation or homeostasis, which is modulated by fraxinellone. As
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to the mechanism underlying the inhibition of CUGBP1
expression by fraxinellone, we observed that fraxinellone did not
promote the degradation of CUGBP1 mRNA or protein
(Supplementary Fig. 4).

The specific effect of fraxinellone on HSC activation was further
linked to the amelioration of BDL-induced liver fibrosis in mice.
Figure 6a shows that adipose degeneration in hepatocytes, mild
thickening of the central venous wall, fibrous hyperplasia,
inflammatory cell infiltration and collagen deposition were
observed in liver sections of BDL-treated mice. Fraxinellone
treatment significantly improved these pathological changes in a
dose-dependent manner (Fig. 6a,b). Furthermore, significant
increases in the expression of serum hyaluronic acid, laminin,
type III procollagen, and liver hydroxyproline (Hyp) were observed
in mice with fibrosis. Treatment with either 20 or 40 mg kg� 1 of
fraxinellone significantly attenuated these biochemical changes
(Fig. 6c,d). In addition, fraxinellone inhibited the collagen a1 (III),
collagen a1 (IV) and a-SMA mRNA expression levels in liver
tissue in a dose-dependent manner (Fig. 6e).

In the BDL-induced liver fibrogenesis, 20 or 40 mg kg� 1

fraxinellone also reduced the protein expression of CUGBP1
and a-SMA (Fig. 7a,b), while increased the IFN-g expression level
(Fig. 7c). Moreover, we observed an increase in pY-STAT1
expression and a decrease in pSmad2 expression in the liver of
fraxinellone-treated BDL mice (Fig. 7a). Next, we used reelin and
a-SMA as markers of activated HSCs22. As shown by the arrows
in Fig. 7c, we confirmed that IFN-g (green) was present in HSCs
that were positive for both a-SMA (red) and reelin (cyan).
Furthermore, we observed that both the cytosolic and the nuclear
CUGBP1 expression levels were elevated in the liver of BDL mice
(Supplementary Fig. 5a). It was reported that CUGBP1 regulated
splicing patterns for cardiac troponin T (Tnnt2), myotubularin-
related 1 gene (Mtmr1) and the muscle-specific chloride channel
(Clcn1) in the heart or skeletal muscle in nucleus23. We found
that the splicing pattern of Tnnt2 but not Mtmr1 or Clcn1 was
altered in the liver of BDL mice (Supplementary Fig. 5b). These
results suggested that CUGBP1 might regulate mRNA splicing in
the development of liver fibrosis.

Similarly, 40 mg kg� 1 of fraxinellone alleviated CCl4-induced
liver fibrosis (Supplementary Fig. 6a–d). Fraxinellone also reduced
the expression of CUGBP1, and a-SMA in the fibrotic liver
(Supplementary Fig. 6e). In addition, to determine the therapeutic
effect of fraxinellone on liver fibrosis, we administered fraxinellone
in mice five weeks or three weeks after the CCL4 treatment and
found that fraxinellone was able to inhibit the progression of
established fibrosis (Supplementary Fig. 7). The compound did not
affect the spontaneous proliferation, PDGF-induced proliferation
or apoptosis in LX-2 cells (Supplementary Figs 8 and 9). Above
results suggest that fraxinellone could be used as a potential
anti-fibrotic agent. Thus, we hypothesize that the decrease in
CUGBP1 in HSCs obtained with fraxinellone is considered one
possible mechanism for the improvement of liver fibrosis.

CUGBP1 in HSCs promotes murine liver fibrosis. Next, we
generated adeno-associated virus (AAV)-ShRNA-CUGBP1 to
knockdown CUGBP1 expression in liver cells, vitamin A-coupled
liposomes carrying siRNA-CUGBP1 (VA-Lip-siRNA-CUGBP1) to
knockdown CUGBP1 expression in HSCs and AAV-promotor of
glial fibrillary acidic protein (pGFAP)-CUGBP1 to overexpress
CUGBP1 in HSCs. We found that both AAV-ShRNA-CUGBP1
and VA-Lip-siRNA-CUGBP1 alleviated liver fibrosis and that
AAV-pGFAP-CUGBP1 exacerbated liver fibrosis (Fig. 8). In
addition, overexpression of CUGBP1 in HSCs almost abolished
the improvement of liver fibrosis obtained with fraxinellone
(Fig. 8a–c). The knockdown of CUGBP1 in HSCs by

VA-Lip-siRNA-CUGBP1 improved the liver fibrosis in mice and
fraxinellone was not able to promote the improvement (Fig. 8d–f).
Therefore, we hypothesize that the decrease of CUGBP1 in HSCs
obtained with fraxinellone contributes to the improvement of liver
fibrosis. Consistently, AAV-ShRNA-CUGBP1 and VA-Lip-siRNA-
CUGBP1 reduced a-SMA expression in the liver of BDL mice and
that AAV-pGFAP-CUGBP1 increased a-SMA expression in the
liver of BDL mice (Fig. 9a). Furthermore, an increase in IFN-g
expression was evident in HSCs of BDL mice infected with
AAV-ShRNA-CUGBP1 (Fig. 9b). These results suggest that the
increase of CUGBP1 in HSCs is critical for developing liver
fibrosis.

Discussion
The dysregulation of pro- and anti-fibrotic signallings is critical to
HSC activation and liver fibrogenesis. This study demonstrated
for the first time that CUGBP1 is a key molecule in the
dysregulation of HSC activation, and recovery from dysregulation
could be a novel approach to the treatment of liver fibrosis.

CUGBP1 regulates pre-mRNA splicing, mRNA stability and
protein translation24–27. Few studies address CUGBP1 in liver.
Timchenko et al.28 found that CUGBP1 expression was increased
in the liver of older individuals and Liu et al.29 recently reported
that the suppression of CUGBP1 inhibits the growth of
hepatocellular carcinoma cells. Moreover, Hong et al.30 and
Breaux et al.31 recently reported that CUGBP1 was activated in
mice acutely treated with CCl4. However, the function of
CUGBP1 in HSCs and liver fibrogenesis is not known. Herein,
we demonstrated that CUGBP1 mRNA and protein expression
was increased in liver fibrosis biopsies, and this increase positively
correlated with liver fibrosis stage (Fig. 1a–c). Increased CUGBP1
was confirmed in both human HSC LX-2 cells and primary
mouse HSCs but not liver parenchymal cells such as human
hepatic L02 cells and primary mouse hepatocytes following the
TGF-b stimulation (Fig. 2a–c). The elevation in CUGBP1 mRNA
in LX-2 cells is induced by an increase of transcription of
CUGBP1 mRNA through the TGF-b receptor I-p38 MAPK-
ATF2 signalling pathway (Fig. 2d–h).

These findings promoted our exploration of the role of
CUGBP1 in HSCs. We observed that CUGBP1 promotes
a-SMA expression and inhibits IFN-g production in activated
HSCs (Fig. 3). This result indicates that the change in CUGBP1
abundance may alter the pro- and anti-fibrotic signalling
pathways and possibly impact the process of HSC activation or
homeostasis. IFN-g inhibits HSC activation19. Therefore, we
hypothesized that the increase in IFN-g that is induced by the
knockdown of CUGBP1 is linked to the inhibition of a-SMA
expression in activated HSCs. As a result, blockade of IFN-g
signalling using either an IFN-g neutralizing antibody or the
STAT1-deficient cell line U3A almost completely abolished the
decrease in a-SMA following CUGBP1 knockdown. The
expression of Smad7, a downstream transcript of IFN-g
signalling and a negative regulator of TGF-b signalling15, was
also increased in CUGBP1-silenced cells (Fig. 4). These results
suggest that CUGBP1 plays an important role in TGF-b
signalling during the optimal activation of HSCs, which is
opposed to the IFN-g/Smad7 signalling.

IFN-g is a critical factor in the inhibition of HSC activation and
liver fibrogenesis15,19,32. HSCs control IFN-g production to
achieve optimal activation. Yi et al.33 reported that activated
HSCs secreted retinols and TGF-b to inhibit IFN-g production
in NK cells. As mentioned above, CUGBP1 acted as an
IFN-g-inhibiting component in TGF-b signalling in the present
study. It has been reported that CUGBP1 causes mRNA decay via
binding to a GRE in the 30-UTR of short-lived human transcripts
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hyaluronic acid, laminin, and type III procollagen. (e) Quantitative PCR analysis of a-SMA, collagen a1(III), and collagen a1(IV) from mouse liver.
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in HeLa cells21. Therefore, we questioned whether CUGBP1
inhibited IFN-g production by such mechanism. We found that
CUGBP1 induced IFN-g mRNA decay via binding to the GRE in
the 30-UTR of IFN-g mRNA (Fig. 5). These findings suggest that
the binding of CUGBP1 to IFN-g GRE is a key molecular event

that connects the opposing signalling pathways, TGF-b and
IFN-g, during the activation of HSCs.

The discovery of novel treatments to control liver fibrosis
has been difficult because breakthrough targets from the
multifactorial pathogenesis of fibrosis are largely unknown.
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The inhibitory effect of CUGBP1 on IFN-g suggests that the
pro- and anti-fibrotic molecular pair CUGBP1-IFN-g can be a
potential target to control HSC activation for the treatment of
liver fibrosis. Therefore, we suggest targeting CUGBP1 as a novel
treatment of liver fibrosis. The natural product fraxinellone,
which was isolated from a Chinese herb Cortex Dictamni,
downregulated CUGBP1 expression in a dose-dependent manner.
This lactone also significantly reduced the combinational markers
involved in HSC activation including a-SMA and collagen a1 (I)

in TGF-b-activated LX-2 cells, and the expression of these
proteins was almost completely inhibited in CUGBP1-silenced
cells and CUGBP1 over-expressing cells (Supplementary
Fig. 3a–d). These findings suggest that fraxinellone inhibits
HSC activation through reducing CUGBP1 expression.
Fraxinellone notably inhibited the mRNA expression of CUGBP1
(Supplementary Fig. 3c). Fraxinellone also triggered IFN-g
production and its downstream STAT1 phosphorylation in HSCs
in a dose- and time-dependent manner (Supplementary Fig. 3e,f),
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which suggests a critical role of activated IFN-g signalling in the
fraxinellone-induced suppression of HSC activation. However,
the detailed mechanism of how fraxinellone acts on the
expression of CUGBP1 needs further investigation.

HSCs activation is a key process in liver fibrogenesis4.
However, the targeting of HSC activation remains an
unresolved issue. Our data suggest that confining CUGBP1
expression in activated HSCs is a novel potential therapy to
resolve liver fibrosis. Control of CUGBP1-mediated IFN-g
mRNA decay using fraxinellone is a very unique and expected
treatment for liver fibrosis. The effect of fraxinellone was linked
to the significant amelioration of BDL- as well as CCl4-induced
liver fibrosis in mice, which included improvements of multiple
markers, such as adipose degeneration of hepatocytes, fibrous
hyperplasia, collagen deposition, serum hyaluronic acid, laminin,
type III procollagen, and liver Hyp (Fig. 6). Fraxinellone reduced
the increase in CUGBP1 and a-SMA to approximately normal
levels, which supports the use of CUGBP1 as a new specific
biomarker of liver fibrosis (Fig. 7). The inhibition of CUGBP1 by
fraxinellone may directly lead to the increased production of
IFN-g in HSCs. Before fraxinellone treatment, we could hardly
detect IFN-g expression in the liver tissues from mice with

BDL, while fraxinellone increased the mRNA expression of
IFN-g and the number of IFN-g-producing HSCs in the liver
of mice with BDL (Fig. 7c). Together with the findings of
fraxinellone-increased pY-STAT1 level in the liver of BDL mice
(Fig. 7a) and IFN-g expression in TGF-b-treated primary
mouse HSCs on knockdown of CUGBP1 (Fig. 3e), we think
that conditionally producing IFN-g in HSCs could be a novel
approach to the homeostasis of HSCs. In addition, in mice,
knockdown of CUGBP1 in HSCs alleviates, whereas its
overexpression exacerbates, BDL-induced hepatic fibrosis
(Figs 8 and 9). Therefore, inhibiting CUGBP1 to promote
IFN-g signalling in activated HSCs could be a novel strategy to
treat liver fibrosis.

In conclusion, the positive correlation of CUGBP1 expression
in clinical samples with liver fibrosis severity supports the
hypothesis, the interaction of CUGBP1-IFN-g mRNA as a key
molecular event that connects the opposite TGF-b and IFN-g
signalling pathways in the activation or homeostasis of HSCs. The
regulation of CUGBP1-mediated crosstalk between TGF-b and
IFN-g signalling pathways via genetic down-regulation or
the treatment with fraxinellone may provide a novel strategy
for the therapy of liver fibrosis (Fig. 10).
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Methods
Clinical samples. Thirty normal and 30 liver fibrosis tissues in paraffin blocks
were obtained from the First Affiliated Hospital of Nanjing Medical University
(Nanjing, China). Informed consent in writing was obtained from patients. This
study protocol conformed to the ethical guidelines of the 1975 Declaration of
Helsinki Principles, and was approved by the review committee of the First
Affiliated Hospital of Nanjing Medical University.

Tissue array Sirius red staining and immunohistofluorescence. Formalin
fixed and paraffin embedded liver fibrosis tissue arrays were purchased from US
Biomax (LV805a) (Rockville, MD). Tissue array patient information is shown
in Supplementary Table 2. IHF was performed according to a previous report34.
Thin cryosections (4mm) of liver tissue were fixed in acetone for immuno-
histofluorescence, stained with the indicated antibodies. Antibodies used in IHF
were: anti-CUGBP1 (Santa Cruz Biotechnology, SC-20003, 1: 50), a-SMA (Santa
Cruz Biotechnology, SC-32251, 1: 50), Reelin (Abcam, ab78540, 1: 50),
IFN-g (Abcam, ab133566, 1: 50), Cytoglobin (Abcam, ab57713, 1: 50), CUGBP1
conjugated to Alexa Fluor 488 (Abcam, ab129115, 1: 100), IFN-g conjugated to
PE-CF594 (BD Biosciences, 562303, 1: 50), goat anti-mouse IgG2a conjugated
to Alexa Fluor 594 (Invitrogen, A-21135, 1: 500), goat anti-mouse IgG1
conjugated to Alexa Fluor 647 (Invitrogen, A-21240, 1: 500), goat anti-rabbit IgG
conjugated to Alexa Fluor 594 (Invitrogen, R37117, 1: 500), goat anti-mouse IgG2b
conjugated to Alexa Fluor 488 (Invitrogen, A-21141, 1: 500). The sections were
then stained with DAPI and examined with a confocal laser scanning microscope
(Leica, Wetzlar, Germany). Sirius Red staining was performed by Servicebio
(Wuhan, China). The liver fibrosis stage was assessed by Ishak scale35.

Mice. Eight-week-old male C57BL/6 mice were supplied by the Experimental
Animal Center of Yangzhou University (Yangzhou, China). All of the male
C57BL/6 mice received humane care according to the criteria outlined in the
‘Guide for the Care and Use of Laboratory Animals’ prepared by the National
Academy of Sciences and published by the National Institutes of Health (NIH
publication 86-23 revised 1985). They were housed five per cage under
pathogen-free conditions with soft bedding under controlled temperature
(22±2 �C) and photoperiods (12:12-h light–dark cycle). They were allowed to
acclimate to these conditions for at least 2 days before inclusion in experiments. All
animal experimental procedures were approved by the Animal Care Committee of
Nanjing University (Nanjing, China).

Cell culture. Cells belonging to the human sarcoma cell line 2ftgh and cells
belonging to the U3A cell line, a mutant cell line of 2ftgh that lacks STAT1

expression, were gifts from George Stark (Cleveland Clinic Foundation Research
Institute). The human normal liver cell line L02 was purchased from Chinese
Academy of Medical Sciences, China. The human hepatic stellate cell line LX-2 was
purchased from Xiangya Central Experiment Laboratory, Central South University,
China. 2ftgh, U3A and L02 cells were cultured in Dulbecco’s Modified Eagle
Medium (Gibco, NY) supplemented with 100 U ml� 1 penicillin, 100 mg ml� 1

streptomycin and 10% fetal bovine serum (HyClone, Beijing, China), under a
humidified 5% (v/v) CO2 atmosphere at 37 �C. LX-2 cells were cultured in
Dulbecco’s Modified Eagle Medium with 2% fetal bovine serum.

Isolation of non-parenchymal liver cells from mouse liver. Primary HSCs were
isolated from the mouse liver according to a reported protocol36 that includes the
following steps: in situ pronase/collagenase perfusion of mouse liver, in vitro
digestion, density gradient-based separation, and flow cytometric sorting. After the
density gradient-based separation, primary non-parenchymal liver cells were
collected. Flow cytometric sorting was applied for isolation of HSCs (Retinoidþ ),
hepatic macrophages (F4/80þ ), liver sinusoidal endothelial cells (CD146þ ) and
natural killer cells (NK1.1þ ). Antibodies used in sorting were: anti-F4/80
conjugated to PE-Cy7 (eBioscience, 25-4801-82, 1: 50), anti-CD146 conjugated to
PerCP-Vio700 (miltenyi, 130-103-865, 1: 10), anti-NK1.1 conjugated to PE
(miltenyi, 130-102-400, 1: 10).

Isolation of primary hepatocytes from the mouse liver. Primary mouse
hepatocytes were isolated from mouse liver according to a previous protocol37. In
brief, the livers of the mice were first perfused in situ via the portal vein with Ca2þ

and Mg2þ free Hank’s balanced salt solution (HBSS) supplemented with 0.5 mM
EGTA and 25 mM HEPES at 37.8 �C. Then, the buffer was replaced with 0.1%
collagenase solution in HBSS (containing 4 mM CaCl2 and 0.8 mM MgSO4). After
a few minutes of perfusion, the liver was excised rapidly from the body cavity and
dispersed into cold HBSS. The cell suspension generated was filtered through a
sterile 70-mm pore size nylon cell strainer (Falcon; BD Biosciences, Franklin Lakes,
NJ) and spun three times at 30g for 4 min. The pellets were suspended in RPMI
1640 medium containing 10% fetal bovine serum for primary hepatocyte culture.

Reagents and chemicals. Fraxinellone, (3R)-3b-(3-Furanyl)-3ab, 7-dimethyl-1, 3,
3a, 4, 5, 6-hexahydroisobenzofuran-1-one was obtained as previous reported38. Kit
for determining Hyp was obtained from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). The reagents used in this study were purchased as
follows. pCDNA3.1-CUGBP1 plasmid and probes were ordered from Genscript
(Nanjing, China). AG490 was purchased from Sigma (Sigma-Aldrich China,
Shanghai, China). AAV-control, AAV-ShRNA-CUGBP1 (Contract number
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HH20160222RFF-AAV01) and AAV-pGFAP-CUGBP1 (Contract number
HH20160224RFF-AAV01) were purchased from Hanbio, Shanghai, China.

Preparation of VA-Lip-siRNA-CUGBP1. SiRNA of mouse CUGBP1 (50-CCAUG
AACGGCUUUCAAAUUGGAAU-30) was synthesized by Genscript. VA-Lip-
siRNA-CUGBP1 was prepared according to a reported method39. Briefly, prepare
VA solution by adding 5 mg VA into 50 ml of DMSO. Mix 280 nmol VA solution
and 0.14 mmol Lipotrust solution (Hokkaido System Science, Hokkaido, Japan)
by vortexing in a 1.5 ml tube at 25 �C. Add 12.24 nmol siRNA-control or
siRNA-CUGBP1 into VA-Lip solution with stirring at 25 �C. The VA-Lip-SiRNA
solution was filtered. Fractions were collected and the material trapped in the filter
was reconstituted with PBS to achieve the desired dose for in vivo use.

BDL-induced liver fibrosis in mice and drug administration. Eight-week-old
male C57BL/6 mice were randomly divided into groups. Mice were anesthetized
with isoflurane. All of the surgical procedures were performed under sterile
conditions. A midline laparotomy was performed, and the common bile duct was
ligated close to the liver hilus immediately below the bifurcation with 3-0 surgical
silk and cut between the ligatures as described previously40. Controls underwent a
sham operation that consisted of exposure, but not ligation, of the common bile
duct. Three groups of ligated mice were given daily intragastric administrations of
10, 20 and 40 mg kg� 1 fraxinellone for 4 weeks, respectively. The livers were
collected 4 weeks after surgery under general anesthesia. The serum was collected
and stored at � 70 �C for the assays of hyaluronic acid, laminin, type III
procollagen. The livers were then divided into three portions: (1) preserved in 10%
formalin for histological examination; (2) frozen at � 70 �C for Hyp assay; (3)
immediately used for protein and RNA isolation.

Collagen determination and histologic grading of fibrosis. The liver sections
imbedded in paraffin were cut (5 mm) and stained with hematoxylin-eosin, Sirius
Red and Masson’s trichrome to determine the collagen distribution41. The
macroscopic examination was blindly carried out by two independent observers.

Hyp content assay. The Hyp content in the liver was determined by the
spectrophotometric method according to the Hyp assay kit’s instruction manual42.
The data are expressed as Hyp (mg) per wet liver weight (g).

Enzyme-linked immunosorbent assay. ELISA kit for human IFN-g
(DKW12-1000-096) was bought from Dakewe (Shengzheng, China). ELISA kit for
mouse laminin (2900990015) was bought from Eton Bioscience (San Diego, CA).
ELISA kits for mouse procollagen III N-terminal peptide (CSB-E07928M)
and hyaluronic acid (CSB-E08121M) were bought from Cosmo Bio Co., Ltd.,
(Tokyo, Japan).

Reverse transcriptase-PCR and quantitative PCR. Total RNA was extracted
from the liver tissues of the mice or LX-2 cells using Tripure reagent (Roche
Diagnostics, Indianapolis, IN) as described by the manufacturer. Single-stranded
cDNA was synthesized from 2 mg of total RNA by reverse transcription using 0.5 mg
of oligo(dT)18 primer. PCR was performed at 94 �C for 30 s, 58 �C for 1 min and
72 �C for 1 min. The level of GAPDH RNA expression was used to normalize the
data. The primers used for quantitative PCR are described in Supplementary
Table 3.

Over-expression of CUGBP1 in LX-2 cells. LX-2 cells were transiently
transfected with pCDNA3.1-CUGBP1 (Genscript, 7074764, Nanjing, China) for
the over-expression of CUGBP1. Twenty four hours after the transfection, the cells
were treated as indicated and assessed by quantitative PCR.

Immunofluorescence cytochemistry. Cells adhered to glass coated with BD
Cell-Tak Cell and Tissue Adhesive (BD PharMingen, San Jose, CA) were fixed with
4% paraformaldehyde (40 min, room temperature), stained with the following
antibodies: anti-CUGBP1 (Santa Cruz Biotechnology, SC-20003, 1: 100), a-SMA
(Santa Cruz Biotechnology, SC-32251, 1: 50), anti-IFN-g (Abcam, ab133566, 1:
200)and detected with secondary antibodies: goat anti-mouse IgG2a conjugated to
Alexa Fluor 594 (Invitrogen, A-21135, 1: 1,000), goat anti-mouse IgG1
conjugated to Alexa Fluor 647 (Invitrogen, A-21240, 1: 1,000), goat anti-rabbit IgG
conjugated to Alexa Fluor 488 (Invitrogen, A-11008, 1: 1000). The coverslips were
counterstained with DAPI and imaged with a confocal laser scanning microscope
(Olympus, Lake Success, NY). Examination was blindly carried out.

RNA interference. Transfections were performed on cells with a siRNA
concentration of 100 nM. CUGBP1-specific siRNA (1299003) and non-silencing
siRNA (12935200) (Invitrogen, Carlsbad, CA) were transfected with Lipofectamine
RNAiMAX Transfection Reagent (13778150) (Invitrogen, Carlsbad, CA) according
to the manufacturer’s recommendations.

Western blot analysis. Proteins were extracted from the liver tissues or HSC cells
in the lysis buffer consisting of 50 mM Tris-HCl, pH 8.0, 50mM KCl, 5 mM DTT,
1 mM EDTA, 0.1% SDS, 0.5%Triton X-100 and protease inhibitor cocktail tablets
(Roche, IN). The extracted proteins were separated by polyacrylamide SDS gel and
electrophoretically transferred onto polyvinylidene fluoride membranes (Millipore,
MA). The membranes were probed with the indicated antibodies over night at 4 �C.
Antibodies used in western blot were: ATF2 (Abcam, ab32160, 1: 1,000 dilution),
pT-ATF2 (Abcam, ab32019, 1:500 dilution), CREB (Abcam, ab32515, 1: 1,000
dilution), Lamin B (Abcam, ab133741, 1: 1,000 dilution) and collagen-a1(I)
(Abcam, ab138492, 1: 1,000 dilution), Smad7 (R&D Systems, MAB2029, 1: 1,000
dilution), CUGBP1(Santa Cruz Biotechnology, SC-20003, 1: 1000 dilution), pY-
STAT1 (Santa Cruz Biotechnology, SC-8394, 1: 1,000 dilution) and a-SMA (Santa
Cruz Biotechnology, SC-32251, 1: 1,000 dilution), GAPDH (Abmart, M20006M, 1:
1000 dilution) and anti-b-tubulin (Abmart, M20005M, 1: 1,000 dilution), b-Actin
(Abgent, AM1021B, 1: 1000 dilution), pSmad2 (Cell Signaling Technology, 8828, 1:
1,000 dilution). Membranes were then incubated with a horseradish peroxidase
coupled secondary antibody. Detection was performed using a LumiGLO
chemiluminescent substrate system (KPL, Guildford, UK). The relative expressions
were quantified densitometrically using the Lab Works 4.0 software, and calculated
according to the reference bands of b-tubulin, actin or GAPDH.

Statistical analysis. Results were expressed as mean±s.e. of the mean (s.e.m.).
Statistically evaluated by Student’s t test when only two value sets were compared,
and one-way analysis of variance followed by Dunnett’s test when the data involved
three or more groups. Po0.05 was considered significant.

Data availability. The data that support the findings of this study are available
from the corresponding authors on reasonable request.
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