Abstract
Many gravitational phenomena that lie at the core of our understanding of the Universe have not yet been directly observed. An example in this sense is the boson star that has been proposed as an alternative to some compact objects currently interpreted as being black holes. In the weak field limit, these stars are governed by the Newton–Schrodinger equation. Here we present an optical system that, under appropriate conditions, identically reproduces such equation in two dimensions. A rotating boson star is experimentally and numerically modelled by an optical beam propagating through a medium with a positive thermal nonlinearity and is shown to oscillate in time while also stable up to relatively high densities. For higher densities, instabilities lead to an apparent breakup of the star, yet coherence across the whole structure is maintained. These results show that optical analogues can be used to shed new light on inaccessible gravitational objects.
Introduction
Analogue gravity is the study of gravitational effects using artificial systems that recreate some specific aspects of the full gravitational system using laboratorybased experiments^{1}. Recent experimental studies have focused attention on analogues for black holes and the search for Hawking radiation in transonic fluid flows^{2} that may be obtained in a variety of systems such as flowing water^{3}, Bose–Einstein condensates^{4,5} and nonlinear optics^{6,7,8}. To date, attempts to experimentally study gravitational systems using analogues have tended to focus on the local and linear dynamics, that is, on the behaviour of weak perturbations or waves in background curved spacetime geometry, determined solely by the local flow speed of the supporting fluid or medium. However, gravity is inherently a nonlinear and nonlocal, that is, longrange, interaction. This has been used to draw an analogy between gravitational attraction and lighttrapping in the wake of optical solitons^{9}. Another notable example of the connection between gravity and optics was recently demonstrated using an optical system based on a thermally excited medium, which allows one to reproduce the physics of the Newton–Schrödinger equation (NSE)^{10}. The NSE can be written as
which describes the evolution of a particle with mass m defined by a wave function . ∇^{2} is the threedimensional (3D) Laplacian and the subscript t denotes a derivative with respect to time. The gravitational potential φ is determined by the Poisson equation
where G is the gravitational constant. This equation was proposed by Diòsi^{11} and Penrose^{12} as an attempt to investigate quantum wave function collapse in the presence of a Newtonian gravitational potential. More recently, the same equation has been used, as in its original proposal^{13} to describe the evolution of boson or Bose–Einstein condensate stars. Indeed, the NSE may be obtained as the nonrelativistic limit of the Klein–Gordon equation^{14}, and describes the coupling of classical gravitational fields to quantum matter states. Importantly, and in departure from most previous ‘linear’ analogue gravity studies, here the gravitational potential includes the quantum matter itself as a source. The remarkable feature that allows one to build laboratory experiments is that the evolution of the amplitude of an optical beam in a thermally focusing medium is described by
where is the transverse, twodimensional (2D) Laplacian, k=n_{b}ω/c=n_{b}k_{0}, n_{b} being the background refractive index and the nonlocal change in refractive index, Δn is induced by heating of the medium by the beam itself
where β=∂n/∂T is the medium thermooptic coefficient, κ is the thermal conductivity and α the absorption coefficient.
The similarity between the gravitational equations (1) and (2) and the nonlinear optical beam propagation equations (3) and (4) indicates the possibility to simulate a 2D slice of the full 3D gravitational system. We note that in the optical model, the propagation of the optical beam through space (z) maps onto the time coordinate of the NSE.
In this article we show that if care is taken in choosing the appropriate operating conditions, the medium response in the transverse plane of the optical beam can be made to mimic exactly the gravitational scenario. More precisely, we find that exact correspondence is obtained when the optical beam carries no energy onaxis in the Fourier domain, that is, when the pump is ringshaped in Kspace. We then use this correspondence to experimentally study the evolution of a rotating boson star that has quantized angular momentum^{15,16} using an intense light beam propagating in a leadglass slab. For low star densities (beam intensities) the evolution is characterized by selffocusing contraction cycles. The experimental results are well reproduced by numerical simulations, which are then extended to higher densities than those achievable in the experiments. At these high densities, the star becomes unstable yet complete collapse is prevented by the phase singularity (related to the quantised angular momentum of the entire structure) at the star centre.
Results
Theoretical model
The basic model for an optical beam propagating in a thermooptic medium is derived within the paraxial approximation and incorporates the thermally induced change in refractive index Δn(r_{⊥}, z), r_{⊥}=(x, y) being the transverse position vector. The resulting paraxial wave equation for the slowly varying complex electric field envelope propagating along the z axis is
where is the transverse Laplacian, α is the medium absorption coefficient, and the nonlocal change in refractive index is expressed by the integral^{17,18}
where I(r_{⊥}, z)=(r_{⊥}, z)^{2} describes the beam intensity profile and . Thus, in the case of a local nonlinear optical response, , the nonlinear coefficient is given by γ. In the above equations, is the response function for the medium, which incorporates the transverse boundary conditions. We assume the transverse boundary does not vary with z, that the medium is sufficiently long, and optical absorption low enough that the thermal diffusion is dominated by transverse diffusion and longitudinal effects are not significant.
Response function
It is by tailoring the medium response function that one may ultimately reproduce a precise analogue of the NSE in the laboratory. Physically the change in refractive index in the medium arises from the temperature increase due to laser absorption Δn=βΔT, with β=. Taking into account appropriate boundary conditions, the spatial profile of the temperature change obeys the heat equation
with κ the thermal conductivity and ρ_{0}C the heat capacity per unit volume. Finally, in steady state, found by setting the time derivative to zero, we obtain equation (4) which should be solved subject to the appropriate boundary conditions due to heat loss. Equation (6) shows that the response function is, to within a constant, the Green’s function for heat diffusion in the medium, and obeys
Infinite space model
In this case the boundaries are moved off to infinity in the two transverse dimensions, and we might hope to have a realization of the Schrödinger–Newton equation albeit in 2D. Fourier transforming equation (8) yields
where the tilde signifies a transformed variable and . The same functional form for is of course also expected for the gravitational case. However, in the two dimensions used in our experiments (the transverse plane of our optical beam), the resulting response function in the realspace domain is
which is very different from the Coulomblike (decaying) interactions that arises in three dimensions and in the gravitational case.
Distributed loss model
The lesson from the infinite space model is that thermal losses due to the presence of the boundaries will always have to be incorporated at some level. We consider the case for which the boundaries are present but well removed by a characteristic distance D/2 from the transverse position at which the laser beam of width W<<D/2 is centred. For a cylindrical medium, D will be the medium diameter, whereas for a medium of rectangular crosssection, D is chosen as the smaller dimension. Then to a reasonable approximation the medium will be shiftinvariant for displacements in the vicinity of the beam centre, that is, the boundaries should not significantly impact the symmetry of the laser beam as it propagates. In this regime we may include the effect of the distant boundaries into a distributed loss term in the starting temperature equation
Here σ is a nonlocal interaction length scale set by thermal diffusion and can be taken as σ∼D/2. Indeed, we measured the nonlocal length using the method put forward by Minovich et al.^{17}, providing evidence that to a good approximation σ=D/2 in our system, as shown in Fig. 1. Numerical solutions to the thermal diffusion equation indicate that this is a generic feature and not a peculiarity of our system. This type of thermal nonlocality was also previously explored in the context of vortex solitons in ref. 19. With the addition of the distributed loss term, the response function in equation (8) is described by
and by Fourier transforming we obtain
The Fourier transform of equation (6) yields , and the effective nonlinear coefficient is given by^{20}
We finally obtain a relation for the Kspace response function
and the corresponding response function in real space
where K_{0} is the zerothorder modified Bessel function of the second kind. In our experiments we use a similar leaddoped glass to that used in ref. 21 with parameters κ=0.7 W m^{−1} K^{−1}, n_{b}=1.8, β=14 × 10^{−6} K^{−1} and α=0.01 cm^{−1}. In our experiments described below D=5 mm, giving σ=2.5 mm and γ=1.25 × 10^{−6} cm^{2} W^{−1}.
Comparison of models and reduction to the NSE
We start by noting that when the longitudinal wavevector component K_{z}<<K_{⊥}, the Coulomb response function in the NSE in Kspace reduces to . We then recall that for the infinite space model, and using equation (14), the Fourier transform of the response function may be written as , which indeed reproduces the desired Coulomb interaction however, at the expense of a nonphysical logarithmic behaviour in real space. The latter is due to the lack of boundaries whose effect is correctly modelled in the distributed loss model (DLM) approach, which provides an exponentially decaying behaviour in direct space. In Kspace, the distributed loss model response function reduces to the Coulomb form in the limit (σ K_{⊥})^{2}>>1. Therefore, for a general input beam (typical laser beams have a Gaussian profile) whose spatialfrequency spectrum includes the region around the origin K_{⊥}=0, the thermal and the NSE models will be significantly different. However, if we use beams comprising wavevectors only of >>1/σ, then we may realize the dynamics of the infinite space system, and therefore also of the gravitational system, while still accounting for the boundaries as above. With this caveat, our 2D thermooptic model has the same response function as the gravitational Poisson equation used in the NSE, thus providing the basis for the correspondence between our nonlocal optical and the Newtonian gravitational system.
Finally, we point out that the propagation along the z axis of our optical beam is analogous to propagation in time of a particle in the NSE framework. Furthermore, a gravitationallike potential requires that the sign of Δn is positive.
Boson stars
We may now use this model to perform experiments that reproduce the dynamics of the NSE. In particular, we chose to study a specific astrophysical object that is described by the NSE, namely a boson star. Originally envisioned by John Wheeler in the 1950s as localized bundles of electromagnetic energy named geons^{22}, boson stars are the stable particlelike solution to the Klein–Gordon equation^{23,24}. Although boson stars may or may not exist in nature they provide a useful testbed for the study of compact objects that can be described by a single wave function. Indeed, boson stars are assumed to be described by a wave function, which is governed by the Einstein–Klein–Gordon equations^{16}. The star then arises as a result of a balance between the gravitational field and the dispersion of the wave function. This dispersion essentially originates from the Heisenberg uncertainty principle, that is, the star counteracts gravity due to the impossibility to arbitrarily localize the star’s wave function in both position and momentum. In this work we consider a specific type of rotating boson star, which is taken in the weak field (Newtonian) limit where the Einstein–Klein–Gordon equations reduce to the NSE^{25}. The fact that a boson star is described by a singlevalued wave function implies that the angular momentum must be quantized. More explicitly, the wave function is of the form (r, t, θ)=(r, θ)e^{i(ωt+mθ)}, where (r, t, θ)=(r, t, θ+2π) implies that the angular momentum number m is an integer^{16,26,27,28,29,30,31}. This in turn leads to a toroidal mass distribution in the star, which can be seen as a result of the fact that the phase is undefined at the star centre^{26,27}. These features hold in both 3D and 2D (ref. 28) and emerge naturally in optical experiments using beams that carry orbital angular momentum (OAM).
Experiments
A continuouswave laser with central wavelength 532 nm is used to pump a slab of leaddoped glass with positive thermooptic nonlinearity (see Methods). We imprint an azimuthal phase onto the Gaussian output beam of the laser via a transmissive phase mask to provide the large wavevectors required to operate in the region (σ K_{⊥})^{2}>>1. The beam, now carrying OAM, is imaged after passing through the nonlinear medium onto a chargecoupled device camera (Fig. 1). We monitor both the near and far fields of the output facet of the medium while changing the input power of the beam, P. The near field provides the realspace dynamics I(r_{⊥}, P) of the boson star while the far field reveals the spatialfrequency spectrum, I(K_{⊥}, P). We change the power in the absence of being able to track the beam profile as a function of the propagation distance z. At very low beam intensities we see a ringshaped distribution in both the near and far fields. Figure 2a shows a 2D slice in the x plane of the nearfield evolution I(x, 0, P) of the vortex beam as the pump power is increased from zero to a maximum power at the sample input facet of ∼1.6 W. The beam starts to selffocus as the power is initially increased, reaching a minimum ring diameter at ∼0.4 W. The ring then expands before collapsing again at ∼0.8 W. It can be seen that there is minimal transfer of energy to higherorder modes suggesting that the energy is predominantly localized within the ring. The farfield evolution is shown in Fig. 2b, which at low intensities has a spectrum centred on a ring with σ K_{⊥}≈20. As the farfield spectrum and nearfield intensity distribution are inversely linked through their Fourier transform we see that the far field expands at first and contracts after the near field passes through the first minimum at ∼0.4 W. There is some indication of mode splitting hereafter but the majority of the energy is conserved within the singleinput mode. We note that throughout the entire propagation the spectrum does not contract to a value smaller than the initial σ K_{⊥}, thus ensuring that at all times we are in a regime ((σ K_{⊥})^{2}>>1) under which the analogy with the NSE equation is valid. The selfcontraction cycles in the optical system are due to the interplay between nonlinearityinduced selffocusing and saturation mechanisms that prohibit the beam to continue collapsing indefinitely. Other optical systems are known to exhibit similar dynamics, for example, laser pulse filamentation, where the saturation and counterbalancing effect is provided by plasma defocusing (see, for example, ref. 32). Here the contraction can be arrested by two mechanisms: the first is diffraction, analogous to the repulsive pressure term due to the uncertainty principle in the gravitational case. This will occur even in the absence of angular momentum. The second is due to the presence of a phase singularity at the centre of the beam (due to the quantized angular momentum) that enforces zerolight intensity there. For gravitational Boson stars, numerical studies have shown similar contraction cycles in the absence of angular momentum^{16,33}.
Numerical simulations
We have performed simulations based on equations (5) and (6) using the splitstep beam propagation method^{34}. In this approach propagation over a length L is written as a product of N_{z} small steps Δz=L/N_{z}. For large enough number of longitudinal sample points N_{z} this allows the propagation to be approximated as a concatenation of small propagation steps of length Δz involving only the diffraction term on the righthand side of equation (5), followed by the same but involving only the nonlinear term. The small step of diffraction is performed in the transverse spatialfrequency domain using fastFourier transforms on a transverse grid of N_{T} × N_{T} points. The nonlinear refractive index in equation (6) is evaluated by converting the convolution to a product in the spatialfrequency domain and, using equation (15), the resulting small nonlinear step is performed point by point over the transverse plane. For the simulations presented we have used N_{z}=1,000 longitudinal sample points along with N_{T}==1,024 transverse grid points, convergence being checked by increasing the number of points. We use the same experimental parameters for the material listed above. Thus, for the beam we use an input ring diameter w_{0}=360 μm, a maximum power input of P=1.6 W and 400 mm of propagation distance. Figure 2c,d shows the nearfield intensity as a function of the input power. These simulations can then be directly compared with the evolution of optical wavepacket as the power is increased (Fig. 1a,b) with good agreement.
In Fig. 3 we show the evolution of the boson star in time (that is, intensity distribution along the propagation length of the optical beam I(x, 0, z)). Again, we see an initial contraction of the ring beam followed by a series of oscillations in which the majority of the energy is conserved in the innermost ring, with little lost to higherorder modes.
Transverse nearfield dynamics
We now consider the transverse profile of the beam. In the experiments we introduce a slight azimuthal anisotropy, which is manifested as two slightly higherintensity peaks, which live on symmetrically opposite sides of the ring (see top panels in Fig. 4a). Figure 4a shows the maximum intensity in the beam (left y axis) and the angle of the peaks as a function of the input power (right y axis). The two peaks are seen to slowly rotate around the ring as the beam selffocuses with increasing input power. However, the rotation speed suddenly increases close to the tightest contraction point and then actually inverts direction after this point. This behaviour is confirmed by the numerical simulations shown in Fig. 4b that allow us to observe the same rotation dynamics along the actual propagation axis for a fixed input power of 1.6 W. The nonuniform acceleration of the peaks reveals complicated dynamics for the boson star that has not emerged from previous studies. It is possible to interpret the observed rotation as due to Berry’s phase, that is, a geometric phase acquired by the system as it cycles through a closed loop in parameter space. Indeed, based on an analysis of the corresponding linear case (Supplementary Discussion), where we predict a similar rotation effect, we note that the rotation of the peaks appears as a consequence of a Berry phase accumulation that occurs through the beam focus^{35,36}. Garrison and Chiao^{37} have also shown that geometrical phases will arise in a general class of nonlinear field theories displaying global gauge invariance, as in the case investigated here. Thus, the peak rotation in our experiments and simulations may be viewed as a nonlinear extension of the linear Berry phase occurring during the selffocusing of the fields seen in Fig. 4.
In Fig. 4c we show numerical simulations for a much higher 10 W input power. The boson star is now seen to apparently break up into two wellseparated peaks as it contracts. However, these peaks still form a single coherent wave function. Indeed, whilst two independent peaks or boson stars will overlap and create interference fringes^{16}, here the merging of these two peaks is prohibited by the input phase singularity, which survives the evolution of the star. Another way of saying this is that the phase singularity acts as a perfectly repulsive point where the momentum of the wave function and thus its kinetic energy diverges to infinity, thus preventing collapse of the star and possibly ultimately limiting the formation of a black hole singularity (Supplementary Discussion).
Discussion
We have shown that, when appropriate attention is paid to boundary conditions, a medium with positive thermal–optical nonlinearity may provide a testbed for simulations of the NSE. Using optical vortex beams we are able to map the propagation of the wave function along the optical axis to the time evolution of a rotating boson star. However, a thermally focusing medium is not a ‘universal’ analogue of the NSE. The nonlocal nonlinearity needs to be properly tailored, for example, by tailoring the input beam shape to enforce the correspondence. We can therefore simulate only a certain subset of objects in the NSE context and we have identified rotating boson stars as one such example that we believe is also of practical interest given that most stars are indeed expected to be in rotation. Therefore, these experiments provide new possibilities for studies into objects described by the NSE. Future work may concentrate on beams with alternate phase profiles, such as Bessel beams and such experiments and studies in the laboratorybased system can provide new insights and research directions for the astrophysical system. Expanding the analysis to include the next higherorder term in the NSE hints that the instabilities observed here will actually be stronger in the full relativistic settings (Supplementary Discussion). It would therefore be interesting to investigate the full relativistic description of phase singularities in rotating objects and their role in the gravitational collapse of boson starlike objects. While our optical analogue can reproduce a 2D slice of the full 3D behaviour of the NSE, an interesting direction would be to look at systems capable of simulating the full 3D NSE. We note that the equations that govern rotating 2D optical beams with a phase singularity at the centre are of the same form as those that describe a rotating boson star, whose geometry is a torus with a similar phase singularity at the centre^{16}. As our analogue reproduces a slice of this torus we expect that insight gleaned from our experiments should be transferrable to ‘realworld’ cosmological objects.
Methods
Experimental details
Our experiments exploring the dynamics of rotating boson stars use a continuouswave laser with central wavelength 532 nm to pump a slab of leaddoped glass. The Gaussian beam is first passed through an optical forkpatterned phase mask, which imprints an azimuthal phase , where is the diffraction order. In the experiments performed here we use a beam with , which generates a ringshaped beam with I(K_{⊥}=0)=0 and large enough transverse wavevectors to be well within the regime (σ K_{⊥})^{2}>>1, as required for the correspondence between the NSE and the paraxial wave/heat diffusion equation. We isolate the first diffracted order with an iris placed in the Fourier plane of a 4:1 telescope, which is also used to reduce the beam input ring diameter to ∼360 μm. The OAM beam is input to a leaddoped glass (Schott SF6) plate with dimensions 5 × 40 × 400 mm (height, width and length); Fig. 1. The output facet of the glass medium is then imaged onto an sCMOS camera (Andor Zyla 4.2+). We simultaneously image both the near and farfield (spatialfrequency spectrum) intensity profiles of the sample output. The near field is imaged using an f_{1}=250 mm lens providing a magnification of M=2.7. The far field is imaged by placing an f_{2}=200 mm lens at distance f_{2} from both the output surface and from the camera sensor. The transverse wavevector calibration is given by K_{⊥}=(x/f_{2})k_{0}, where x is the transverse position and k_{0}=2π/λ is the fundamental wavevector. The near and far fields are then monitored as the power of the laser is increased using an attenuator (λ/2waveplate followed by a polarizer) placed before the phase mask.
Data availability
All experimental and numerical data is available at http://dx.doi.org/10.17861/1b1afd5546dd49a19ed83034bd9a63b1.
Additional information
How to cite this article: Roger, T. et al. Optical analogues of the Newton–Schrödinger equation and boson star evolution. Nat. Commun. 7, 13492 doi: 10.1038/ncomms13492 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
 1
Barcelò, C., Liberati, S. & Visser, M. Analogue gravity. Living Rev. Relat. 14, 3 (2011).
 2
Unruh, W. G. Experimental blackhole evaporation? Phys. Rev. Lett. 46, 1351 (1981).
 3
Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).
 4
Lahav, O. et al. Realization of a sonic black hole analog in a BoseEinstein condensate. Phys. Rev. Lett. 105, 240401 (2010).
 5
Steinhauer, J. Observation of selfamplifying Hawking radiation in an analogue blackhole laser. Nat. Phys. 10, 864–869 (2014).
 6
Philbin, T. et al. Fiberoptical analogue of the event horizon. Science 319, 1367 (2008).
 7
Belgiorno, F. et al. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105, 203901 (2010).
 8
Faccio, D. Laser pulse analogues for gravity and analogue Hawking radiation. Contemp. Phys. 53, 97–112 (2012).
 9
Gorbach, A. V. & Skryabin, D. V. Light trapping in gravitylike potentials and expansion of supercontinuum spectra in photoniccrystal fibres. Nat. Photon. 1, 653–657 (2007).
 10
Bekenstein, R., Schley, R., Mutzafi, M., Rotschild, C. & Segev, M. Optical simulations of gravitational effects in the NewtonSchrödinger system. Nat. Phys. 11, 872–878 (2015).
 11
Diósi, L. Gravitation and quantummechanical localization of macroobjects. Phys. Lett. A 105, 199–202 (1984).
 12
Penrose, R. On gravity’s role in quantum state reduction. Gen. Relat. Gravit. 28, 581–600 (1996).
 13
Ruffini, R. & Bonazzola, S. Systems of selfgravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767–1783 (1969).
 14
Giulini, D. & Großardt, A. The SchrödingerNewton equation as a nonrelativistic limit of selfgravitating KleinGordon and Dirac fields. Class. Quant. Gravity 29, 215010 (2012).
 15
Yoshida, S. & Eriguchi, Y. Rotating boson stars in general relativity. Phys. Rev. D. 56, 762 (1997).
 16
Liebling, S. L. & Palenzuela, C. Dynamical boson stars. Living Rev. Relat. 15, 6 (2012).
 17
Minovich, A., Neshev, D. N., Dreischuh, A., Krolikowski, W. & Kivsahr, Y. S. Experimental reconstruction of nonlocal response of thermal nonlinear optical media. Opt. Lett. 32, 12 (2007).
 18
Vocke, D. et al. Experimental characterization of nonlocal photon fluids. Optica 2, 484 (2015).
 19
Yakimenko, A. I., Zaliznyak, Y. A. & Kivshar, Y. Stable vortex solitons in nonlocal selffocusing nonlinear media. Phys. Rev. E 71, 065603 (R) (2005).
 20
Boyd, R. W. in Nonlinear Optics 3rd, edn Academic press (2008).
 21
Rotschild, C., Cohen, O., Manela, O., Segev, M. & Carmon, T. Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons of vortexring solitons. Phys. Rev. Lett. 95, 213904 (2005).
 22
Power, E. A. & Wheeler, J. A. Thermal Geons. Rev. Mod. Phys. 29, 480 (1957).
 23
Kaup, D. J. KleinGordon geons. Phys. Rev. 172, 5 (1968).
 24
Schunck, F. E. & Mielke, E. W. General relativistic boson stars. Class. Quantum Grav. 20, R301 (2003).
 25
Guzmán, F. S. & UreñaLópez, L. A. Evolution of the SchrödingerNewton system for a selfgravitating scalar field. Phys. Rev. D 69, 124033 (2004).
 26
Grandclément, P., Somé, C. & Gourgoulhon, E. Models of rotating boson stars and geodesics around them: new type of orbits. Phys. Rev. D 90, 024068 (2014).
 27
Schunck, F. E. & Mielke, E. W. Rotating boson star as an effective mass torus in general relativity. Phys. Lett. A 249, 389–396 (1998).
 28
Astefanesei, D. & Radu, E. Rotating boson stars in 2+1 dimensions. Phys. Lett. B 587, 7–15 (2004).
 29
Yoshida, S. & Eriguchi, Y. Rotating boson stars in general relativity. Phys. Rev. D 56, 762 (1997).
 30
Kleihaus, B., Kunz, J. & Schneider, S. Stable phases of boson stars. Phys. Rev. D 85, 024045 (2012).
 31
Brihaye, Y. & Hartmann, B. Angularly excited and interacting boson stars and Q balls. Phys. Rev. D 79, 064013 (2009).
 32
Couairon, A. & Mysyrowicz, A. Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007).
 33
Lai, C. W. & Choptuik, M. W. Final fate of subcritical evolutions of boson stars. Preprint at https://arxiv.org/abs/0709.0324 (2007).
 34
Fleck, J. A., Morris, J. R. & Feit, M. D. Timedependent propagation of high energy laser beams through the atmosphere. Appl. Phys. 10, 129–160 (1976).
 35
Subbarao, D. Topological phase in Gaussian beam optics. Opt. Lett. 20, 2162 (1995).
 36
Feng, S. & Winful, H. G. Physical origin of the Gouy phaseshift. Opt. Lett. 26, 285 (2001).
 37
Garrison, J. C. & Chiao, R. Y. Geometrical phases from global gauge invariance of nonlinear classical filed theories. Phys. Rev. Lett. 60, 165 (1988).
Acknowledgements
D.F. acknowledges financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP/200717172013)/ERC GA 306559 and EPSRC (UK, Grant EP/J00443X/1). N.W. acknowledges support from the EPSRC CMCDT Grant No. EP/L015110/1.
Author information
Affiliations
Contributions
All authors contributed to the preparation of the manuscript. The experiments were performed by T.R., K.W. and D.V.; the theory was developed by E.M.W., N.W. and D.F.; numerical simulations were performed by C.M. and E.M.W.; the project was led by D.F.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Discussion and Supplementary References (PDF 151 kb)
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Roger, T., Maitland, C., Wilson, K. et al. Optical analogues of the Newton–Schrödinger equation and boson star evolution. Nat Commun 7, 13492 (2016). https://doi.org/10.1038/ncomms13492
Received:
Accepted:
Published:
Further reading

Using numerical methods from nonlocal optics to simulate the dynamics of N body systems in alternative theories of gravity
Physical Review E (2020)

Wave turbulence in selfgravitating Bose gases and nonlocal nonlinear optics
Physical Review A (2020)

Simulating cosmological supercooling with a coldatom system
Physical Review A (2020)

From optics to dark matter: A review on nonlinear Schrödinger–Poisson systems
Physica D: Nonlinear Phenomena (2020)

Simulation of giant tidal force of wormhole using curved optical spaces
Physical Review Research (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.