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optical nanoantennas, just like their radio-frequency equivalents, enhance the light-matter 
interaction in their feed gap. Antenna enhancement of small signals promises to open a new 
regime in linear and nonlinear spectroscopy on the nanoscale. Without antennas especially 
the nonlinear spectroscopy of single nanoobjects is very demanding. Here we present the first 
antenna-enhanced ultrafast nonlinear optical spectroscopy. In particular, we use the antenna 
to determine the nonlinear transient absorption signal of a single gold nanoparticle caused by 
mechanical breathing oscillations. We increase the signal amplitu-de by an order of magnitude, 
which is in good agreement with our analytical and numerical models. our method will find 
applications in linear and nonlinear spectroscopy of single nanoobjects, especially in simplifying 
such challenging experiments as transient absorption or multiphoton excitation. 
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Nanoobjects with a size between � and �00 nm show fasci-
nating properties which deviate strongly from bulk behav-
iour. The plasmon resonance of metal nanoparticles and the  

electron confinement in quantum dots are prominent examples. 
However, even with the best preparation methods, the individual 
objects differ from each other in size, shape or local environment, 
rendering necessary single-object experiments�. As the light-matter 
interaction strength scales with the number of electrons involved, 
the signals of an individual nanoobject become very weak. Espe-
cially, the nonlinear signals, which are already weak for bulk mate-
rial, become difficult if not impossible to detect�–9. A resonant 

optical nanoantenna�0,�� that concentrates the optical field on the 
individual nanoobject promises enhancement of such weak nonlin-
ear signals (Fig. �). In previous work, nonlinear effects were used to 
characterize the antenna itself��,�3. Here we use the resonant antenna 
for spectroscopy and demonstrate nanoantenna enhancement of 
the ultrafast transient transmission of a single metal nanodisc6. 
This transient transmission spectroscopy is a nonperturbative opti-
cal method to investigate mechanical properties at the nanoscale. 
It is particularly suited to test our concept. A pump-pulse triggers 
acoustical vibrations. The oscillations lead to a periodic variation  
of the particle size and of the plasma frequency by the electron  
density. This modifies in turn the dielectric function�4,�5. In this  
way, we determine the oscillation eigenfrequency of a tiny nanodisc 
and Young’s modulus at the nanoscale�6.

Currently, different kinds of antenna structures are under  
development in the optical regime, ranging from simple dipoles  
to complex Yagi-Uda antennas��,�7–�0. In our experiment, we use a 
polarization-insensitive dipole antenna, that is, a plasmonic nano-
disc of 70 nm diameter (Fig. �a). As the nanoobject under investi-
gation we pick a nanodisc of smaller diameter (40 nm) whose linear  
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Figure 1 | Illustration of signal enhancement using a resonant optical 
nanoantenna. (a) A single nanoobject of few nanometres in size is probed 
by an ultrashort laser pulse. The resulting nonlinear response is extremely 
weak, but carries information about the physical processes. (b) An optical 
nanoantenna (represented by the bowtie structure) enhances the nonlinear 
response of the nanoparticle by increasing the light-matter interaction 
at the nanofocus. (c) For the demonstration of this effect, we chose a 
structure for which we can model reliably both the electromagnetic as  
well as the mechanic properties. more evolved antennas promise an even 
larger enhancement and offer degrees of freedom to adjust the antenna to 
special needs.
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Figure 2 | Basic concept of an antenna for a plasmonic particle.  
(a) scanning electron microscopy picture of the structure: nanoantenna 
(disc diameter 70 nm) separated from the nanoparticle under investigation 
(disc diameter 40 nm) by a gap of 15 nm. Both elements are made 
by electron beam lithography out of gold (height 30 nm) on a glass 
substrate (scale bar, 50 nm). (b, c) Absolute value of the electric field in 
the top plane of the structure. The wavelength is in each case adjusted 
to the resonance. (d) A coupled antenna-nanoobject system has new 
eigenmodes, determined by plasmon hybridization. (e) The change in 
extinction of a coupled system (dashed line) by varying the nanoparticle’s 
plasma frequency is enhanced and red shifted, compared with the case of 
an uncoupled nanoparticle (solid line).
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optical scattering signals are already very weak and transient absorp-
tion is nearly impossible to detect. We find a transient signal that 
arises from the coupled antenna-nanoparticle structure. Compared 
with the nanoparticle alone, the signal is increased by an order of 
magnitude, in good agreement with our simulations. By changing 
the polarization direction of the probe beam, we can selectively 
switch on and off the antenna enhancement. We expect our method 
to find applications in linear and nonlinear spectroscopy of nanoo-
bjects, ranging from single-protein binding events�� via nonlinear 
tensor elements�� to the limits of continuum mechanics�3.

Results
Modelling of the antenna effect. The optical properties of a gold 
nanodisc are dominated by a dipolar plasmon resonance. Close to 
the resonance, the optical near-field around the disc shows a dipolar 
pattern with two regions of high field intensity (Fig. �b). These 
hot spots function similar to a nanolens by concentrating the field 
in a small volume�4. A variation of the dielectric function in this 
volume will have a large influence on the transmitted field. This is 
the antenna effect we exploit for signal enhancement. In our case, 
the perturbation of the antenna by the nanoobject is not negligible. 
Both antenna and nanoobject together form a coupled system with 
common eigenmodes and an altered field distribution (Fig. �c).

The common eigenmodes of the coupled system can be described 
in the plasmon hybridization picture�5,�6 by dipole–dipole interac-
tions. These coupled modes are the symmetric (ω + ) and antisym-
metric (ω − ) combination of the original modes (Fig. �d). If antenna 
and nanoobject were equal in size, the symmetric mode ω +  would 
carry all the oscillator strength. In our case, both modes are opti-
cally active. However, the high-energy antisymmetric mode ω −  is 
shifted into the d-band absorption of gold and thus damped out. 
For a polarization direction perpendicular to the symmetry axis, the 
dipole coupling and thus the mode splitting is reduced. The strong, 

symmetric mode becomes the blue-shifted mode and is damped 
because of absorption.

In the uncoupled case, a pump-induced variation of the plasma 
frequency of the nanoparticle shifts the extinction spectrum of  
the nanoparticle only, resulting in a dispersive feature in the  
differential spectrum at the plasmon resonance frequency ωnanoparticle 
of the nanoparticle (solid line in Fig. �e). When antenna and  
nanoparticle form a coupled system, the influence of the dielectric 
function of the particle is amplified by the larger oscillator strength 
of the coupled system. This results in a larger variation of the extinc-
tion (dashed line in Fig. �e) now located at the coupled antenna 
mode ω + . Thus, a successful operation of the antenna is character-
ized by a red shift and an amplification of the nonlinear signal of 
the particle.

Ultrafast spectroscopy of a single antenna. In the following, 
we verify these theoretical predictions by ultrafast pump-probe 
spectroscopy (Methods)6,�6. A laser pulse is focused onto a single 
antenna-nanoobject pair. The pulse heats up the electron gas and 
subsequently the lattice. On a picosecond timescale this launches 
mechanical breathing oscillations of the particles. The periodic 
variation of the particle volume causes a transient time-depend-
ent extinction. After a variable time delay, a probe pulse measures 
the pump-induced relative transmission variation ∆T/T in the �0 − 6 
range. By varying the time delay between pump- and probe-pulse 
we acquire mechanical oscillation traces.

In the simulations, we are able to vary the optical properties  
of the nanoparticle only. However, in the experiment, the pump-
pulse excites the nanoparticle and the antenna. Consequently, both 
start to oscillate. The inset of Figure 3a shows an example for the 
measured oscillation trace at 7�0 nm probe wavelength. Its Fourier 
transform (Fig. 3a) shows two distinct peaks at �� and 36 GHz. We 
assign the lower frequency mode to the antenna and the higher 
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Figure 3 | Experimental results compared with simulations. The polarization of the probe light determines the coupling strength between antenna  
and nanoparticle. The upper row of plots (a, c, e) shows the strong coupling case, lower row (b, d, f) the weak coupling control experiment. The response 
of the nanoparticle and the antenna are drawn in red and black, respectively. The insets in a and b give an example for transient transmission traces, 
monitoring the mechanical oscillation of the nanoparticles at their maximum signals. The corresponding mechanical spectra (a, b) show always the 
antenna mode (22 GHz), but only in the strong coupling case (a) also the nanoparticle mode at 36 GHz. (c, d) oscillation amplitude of both modes  
as function of probe wavelength as mean of six consecutive measurements. The error bars give the standard deviation. The line is a guide to the eye.  
(e, f) numerical simulations of the oscillation amplitude spectrum.
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mode to the nanoparticle based on measurements of individual  
single discs of different size. The Fourier decomposition thus allows 
us to distinguish between the mechanical signals from antenna and 
nanoparticle. In the following, we plot the amplitudes of these two 
Fourier components as a function of probe wavelength.

In the upper row of Figure 3, the probe pulse is polarized along 
the symmetry axis of the structure (strong antenna-nanoparticle 
coupling), and in the lower row perpendicular to it (weak cou-
pling). In the first case (Fig. 3c), the oscillation amplitude spec-
tra of antenna and nanoparticle are similar in spectral shape and  
position. Both follow the coupled antenna-nanodisc mode. These 
findings agree well with a dipole–dipole coupling picture (Fig. �d,e), 
in which the mechanical oscillation of the smaller nanodisc causes a 
high-frequency modulation of the coupled mode extinction signal. 
Full numerical simulations (Fig. 3e, calculation details in Methods) 
are in good agreement. All spectral features and signal amplitudes, 
as well as the amplitude ratio between antenna and nanoparticle sig-
nal are well reproduced.

To perform a control experiment, we turn to the weak coupling 
case for a probe polarization perpendicular to the symmetry axis. We 
see a significant change of the detected mechanical oscillation signal as 
plotted in the inset of Figure 3b for a probe wavelength of 605 nm. The 
corresponding Fourier amplitudes show just one peak, located at the 
mechanical eigenmode frequency of the nanoantenna at �� GHz. The 
36 GHz signal of the small nanoparticle is not recognizable, although 
the pump excitation process is identical for both measurements. This 
behaviour proves the concept of our resonant antenna enhancement 
based on polarization-dependent plasmonic coupling. Mechanical 
coupling of the nanoparticle to the antenna by the substrate would 
be independent of the probe polarization. Plotting the mechanical 
oscillation signal of antenna and nanoparticle versus the probe wave-
length (Fig. 3d), a clear change has taken place when compared with 
the strong coupling polarization (Fig. 3c). The oscillation amplitude 
spectrum of the antenna is still clearly observable and located around 
the uncoupled antenna resonance. The oscillation signal of the small 
nanoparticle vanishes almost completely. The numerical model  
(Fig. 3f) catches the essence: we observe a nearly undisturbed signal 
from a single antenna and a very weak nanoparticle signal. Figure 3c,d 
demonstrates clearly that we can turn the antenna enhancement on 
and off by switching the probe polarization appropriately.

Discussion
Efficiency and spectral response are two fundamental features 
of an antenna. To describe these features we have to compare the 
response of an antenna-enhanced nanoparticle with that of a single  
nanoparticle of the same size and shape. Because of slight varia-
tions in size, crystallinity, and damping, the oscillation amplitudes 
vary between nominally identical nanoparticles. Nanodiscs of 
40 nm diameter, as used in combination with the antenna, are at the 
limit of our current detection capabilities. We increased the pump 
power and measured several discs of that size (Supplementary 
Figs S� and S�). For the comparison, we select a disc in the centre  
of the Gaussian amplitude distribution. The oscillation amplitude 
spectrum is plotted as squares in Figure 4. It is obvious that the 
strongest signal is located around the highest gradient of the plas-
mon resonance where the biggest extinction change is expected. 
This reference signal can be compared with the antenna-enhanced 
signal (dots in Fig. 4), which was already shown in Figure 3c. The 
feature is red shifted and located around the plasmon resonance 
of the coupled antenna. The maximum amplitude is about a fac-
tor of ten larger than the signal from the nanoparticle without an 
antenna. This mechanical oscillation signal is the strongest oscilla-
tion that we have ever measured in such a small single nanoparticle.  
As the antenna concentrates also the pump field on the nanoparti-
cle, stronger mechanical oscillations are launched when the antenna 
is present. By numerical simulations, we estimate an increase by a  

factor of about 3, so that in the present case pump and probe 
enhancement contribute equally to the total signal enhancement.

We envision that our antenna-enhancement technique opens 
up new possibilities for linear and nonlinear spectroscopy on the 
nanoscale. Not only plasmonic nanoparticles, but also optically less 
active nanoobjects such as dielectric particles and biomolecules 
will detune the optical antenna�7. Their static linear as well as their 
ultrafast nonlinear response becomes thus accessible in the optical 
far-field. We expect our method not only to simplify the research 
on single molecules or quantum dots, but also to open the way for 
modern antenna-enhanced sensing and ultrafast telecommunica-
tion applications.

Methods
Experimental setup and data analysis. The output of a Ti:sapphire laser was 
used as pump pulses (wavelength 800 nm, duration �00 fs, repetition rate 76 MHz). 
Probe pulses were generated by feeding part of the pump pulses into a white-light 
fibre and selecting a 5-nm spectral interval. This results in pulses of � ps duration 
tunable between 530 and 750 nm. After setting the polarization state, both pump 
and probe pulses are coupled into a home-built sample-scanning confocal micro-
scope and focused with a numeric aperture (NA) of 0.95 objective on the sample 
surface. The transmitted light is collected using a NA = �.3 oil immersion objective 
and detected by a balanced photodiode after filtering out the pump light. More 
details can be found in the Supplementary Figure S3 and Supplementary Table S�.

Differential transmission traces were measured as a function of pump-probe 
delay. To extract the oscillatory part, an exponential decay was fitted and sub-
tracted, removing the thermal background signal. The complex-valued Fourier 
transform was calculated for each trace. The mechanical mode spectra (Fig. 3a,b) 
show the absolute Fourier values. The mechanical oscillation signal of a given 
mode has a wavelength-independent phase relative to the pump pulse, as all probe 
wavelengths monitor the same mechanical oscillation�4,�5, causing a wavelength-
independent phase of a mode’s complex-valued Fourier component (for details see 
Supplementary Figs S4 and S5). This is used to check the quality of the data and to 
retrieve the sign in the amplitude spectrum Figures 3c,d and 4.

Numerical simulations. For the numerical simulations, we used a Null-Field 
Method�8 and a Finite-Element Method�9, which give nearly equal results. We 
approximated our structure by gold nanodiscs in an homogeneous medium. For 
a single disc, an effective index of refraction of n = �.4� yields a good agreement 
between measured and calculated dark field scattering spectra. However, the mode 
splitting of a coupled disc pair is underestimated in this model. The step in index  
of refraction at the interface seems to be more important in near-field coupling. 
This explains the differences in spectral position between experiment and simula-
tion in Figure 3. For the differential transmission data, we took the difference 
between an unperturbed sample and a sample in which both the nanoparticle’s 
dielectric function and its size were changed. For the size change of the particle,  
we use an isotropic thermal expansion model, and a temperature variation pro-
portional to the Joule heating of the pump pulse in the particle. The change of the 
dielectric properties is modelled in our wavelength range by a Drude model. The 
size-induced variation of the electron density results in a variation of the plasma 
frequency30. The d-band absorption is extracted from Johnson and Christy data3� 
and kept constant. This renders our simulations below a probe wavelength of about 
600 nm unreliable. 
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Figure 4 | Enhancement of the oscillation signal by the nanoantenna. 
The weak signal measured on a single disc with 40 nm diameter (black 
squares) compared with the signal amplified by the antenna structure (red 
dots). As predicted we find a red shift and an enhancement of the signal 
amplitude. The error bars give the standard deviation of six consecutive 
measurements. In the case of the nanoparticle without antenna, the error 
bars are smaller than the symbols. The lines are guides to the eye.
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