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Several examples on Pd-catalysed carbonylation of methyl C(sp3)–H bonds with gaseous CO

via Pd(II)/Pd(0) catalysis have been reported. However, methylene C(sp3)–H carbonylation

remains a great challenge, largely due to the lack of reactivity of C–H bonds and the difficulty

in CO migratory insertion. Herein, we report the stereoselective alkoxycarbonylation of both

methyl and methylene C(sp3)–H bonds with alkyl chloroformates through a Pd(II)/Pd(IV)

catalytic cycle. A broad range of aliphatic carboxamides and alkyl chloroformates are

compatible with this protocol. In addition, this process is scalable and the directing group

could be easily removed under mild conditions with complete retention of configuration.
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O
ver the past few decades, Pd-catalysed C–H functiona-
lization has emerged as a powerful tool for the direct
conversion of ubiquitous C–H bonds into diverse

functional groups1–16. Among various C–H functionalization
reactions, the direct alkoxycarbonylation of C–H bonds is
particularly valuable17–21, since the resulting products, esters,
are among the most important functional groups that appear
commonly in agrochemicals, fine chemicals, natural products and
pharmaceuticals.

Although Pd-catalysed carbonylation of aromatic C–H bonds
has been extensively investigated, the direct carbonylation of
aliphatic C–H bonds is limited and still represents a tremendous
challenge in organic synthesis17–21. Pd-catalysed carbonylation of
methyl C(sp3)–H bonds of aliphatic amides or amines with CO
for the synthesis of succinimides or lactams has been achieved
recently22–27. Generally, these reactions proceed through a
Pd(II)/Pd(0) catalytic cycle. While these elegant methods are
efficient to introduce carbonyl groups and have greatly enriched
the reaction scope, the use of CO is still relatively inconvenient
on laboratory-scale due to its gaseous form, toxic nature
and flammability. In addition, the carbonylation reactions were
limited to those functionalizing methyl C(sp3)–H bonds
(Fig. 1a)22–27. The analogous carbonylation of methylene
C(sp3)–H bonds, which are more inert and sterically hindered
than methyl C(sp3)–H bonds, remains unexplored28,29.

Pd-catalysed alkoxycarboxylation of C(sp2)–H bonds with
other carbonyl reagents, such as potassium oxalate monoester30,
DMF31, formates32, azodicarboxylates33,34, a-keto esters35,
glyoxylates36 and oxaziridine37 has been reported. Ru-catalysed
alkoxycarbonylation of 2-arylpyridines with alkyl chloroformates
was disclosed by Kakiuchi and co-workers38. Inspired by
these excellent precedents and based on our recent work on
Pd-catalysed C(sp3)–H functionalization39–41, we were eager to
develop the catalytic carbonylation of methylene C(sp3)–H bonds
with less toxic, more easy to handle and readily available carbonyl
reagents.

Herein, we report the stereoselective and site-selective
alkoxycarbonylation of unactivated C(sp3)–H bonds with alkyl

chloroformates through a Pd(II)/Pd(IV) catalytic cycle (Fig. 1b).
This reaction is environmentally friendly and operationally
simple. A broad range of aliphatic carboxamides and alkyl
chloroformates are compatible with this protocol. In addition,
this process is scalable and the directing group could be easily
removed under mild conditions with complete retention of
configuration, thus providing a convenient strategy for the
stereoselective synthesis of orthogonally protected aspartic
acid derivatives42–45. Compared with the well-established C–H
carbonylation with CO via Pd(II)/Pd(0) catalysis, the direct
alkoxycarbonylation of unactivated C(sp3)–H bonds through a
Pd(II)/Pd(IV) catalytic cycle provides a new mode of reaction and
might offer a distinct platform for reaction development.

Results
Proof of concept on methylene C(sp3)–H alkoxycarbonylation.
We began our investigation by using N-phthaloyl phenylalanine
derivative 1a bearing an 8-aminoquinoline (AQ) auxiliary as a
model substrate. This auxiliary was first introduced by Daugulis
and has been proved to be effective in the direct functionalization
of methylene C(sp3)–H bonds46–50. We first explored the
carbonylation with carbon monoxide through the traditional
Pd(II)/Pd(0) pathway. Previously, we have found that the reaction
of N-phthaloyl phenylalanine derivative 1a and stoichiometric
Pd(OAc)2 could form the stable palladacycle I in MeCN
(Fig. 2a)51,52. However, when we treated palladacycle I with
carbon monoxide under various conditions, no desired
carbonylation product 3ab was observed. Complex II with CO
coordinated as an L-type ligand was obtained as a pale yellow
solid in 80% yield (Fig. 2b). This complex showed unexpected
resistance to migratory insertion under various conditions, and
proved stable to air and moisture, withstanding shelf storage
without noticeable decomposition. The coordination of CO as a
neutral ligand without migratory insertion was confirmed by
the characteristic infrared absorption of terminally coordinated
CO ligand (2095 cm� 1, Supplementary Fig. 2), and, the ease
formation of complex III via ligand exchange with pyridine,
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Figure 1 | Pd-catalyzed carbonylation of C(sp3)–H bonds. (a) Previous reports on Pd-catalyzed carbonylation of methyl C(sp3)–H bonds with carbon

monoxide through a Pd(0)/Pd(II) catalytic cycle. (b) Our work on Pd-catalyzed alkoxycarbonylation of unactivated C(sp3)–H bonds with alkyl

chloroformates through a Pd(II)/Pd(IV) catalytic cycle.
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which was characterized by X-ray crystallography (Fig. 2d). It is
noteworthy that complex III could also be generated via the
reaction of 1a with 1 equivalent of Pd(OAc)2 in a mixture of DCE
and pyridine (see Supplementary Methods for details). Moreover,
the reaction of 1a with stoichiometric Pd(OAc)2 under 1 atm CO
could also give complex II in 80% yield without the detection of
any carbonylated product 3ab (Fig. 2c). Thus, the carbonylation
of b-methylene C(sp3)–H bonds of 1a through Pd(II)/Pd(0) was
unfeasible due to the difficulty in CO migratory insertion and
subsequent reductive elimination53,54.

It has been proven that high-valent Pd(IV) species undergo
facile reductive elimination55–59. Therefore, we speculated that
the use of alkyl chloroformates as carbonylation reagent might
enable the desired alkoxycarbonylation via oxidative addition of
palladacycle I to form a highly reactive Pd(IV) intermediate IV,
which could then undergo reductive elimination to give the
corresponding ester (Scheme 1, Pd(II)/Pd(IV) pathway). To our
delight, treatment of complex I with 3 equiv. of ClCO2Et (2ab) or
ClCO2Me (2b) in the presence of 2 equiv. of silver carbonate gives
the expected alkoxycarbonylation product 3a and 4b in 25% and
18% yield, respectively. The relative and absolute stereochemistry
of 3a and 4b was unambiguously determined by X-ray
crystallography (Fig. 2e). Inspired by this promising result, we
next sought to identify suitable reaction conditions to render this
reaction catalytically (Table 1). When 1a was treated with
10 mol% Pd(OAc)2, 3 equiv. of ClCO2Et and 2 equiv. Ag2CO3 in
DCM, the desired product 3a was obtained in 40% yield, along
with trace of undesired b-lactam 3aa generated by the
competitive intramolecular C–N bond reductive elimination
(entry 1). Toluene was found to be the ideal solvent for this
transformation (entry 7, 65% yield). Further screening of
additives then established that the addition of I2 could
significantly improved the efficiency and 3a was obtained in

76% isolated yield (entry 11). It is worth noting that the
alkoxycarbonylation reaction was quite sensitive to the amount of
Ag2CO3. Attempts to lower the Ag2CO3 loading led to the
inhibition of the desired reaction and the competitive
intramolecular C–N bond reductive elimination occured
predominantly (entry 12, 3a, o5%; 3aa, 30%).
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Figure 2 | Proof of concept on alkoxycarbonylation of methylene C(sp3)–H bonds via Pd(II)/Pd(IV) catalysis. (a) Synthesis of palladacycle I.
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(e) Stoichiometric reaction of palladacycle I with ClCO2R. The structure of compounds 3a and 4b was confirmed by single-crystal X-ray diffraction.

Table 1 | Screening of reaction conditions.

Ph N
H

O

Q

NPhth

1a 3a

Q

O

PhthN

Ph
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3aa

+

Pd(OAc)2 (10 mol%)
3.0 equiv ClCO2Et (2a)

2.0 equiv Ag2CO3,

1.0 equiv additive, solvent
air, 120 °C, 16 h

Ph N
H

O

Q

NPhth

H CO2Et

Entry Solvent Additive 3a (%)* 3aa (%)*

1 DCE – 40 o5
2 MeCN – N.D. N.D.
3 t-AmOH – o5 N.D.
4 THF – 62 o5
5 MeOH – n.d. o5
6 toluene – 65 o5
7 toluene Oxone 78 o5
8 toluene BQ 77 o5
9 toluene DDQ o5 N.D.
10 toluene NIS 18 o5
11 toluene I2 84(76)w o5
12z toluene I2 o5 30

N.D., not detected.
*Yields were determined by 1H NMR using CH2Br2 as the internal standard.
wIsolated yield in parenthesis.
z1.0 equiv. Ag2CO3 was used.
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Substrate scope of methylene C(sp3)–H alkoxycarbonyaltion.
With the optimal reaction conditions in hand, the scope of this
alkoxycarbonylation reaction was investigated (Fig. 3). The
reaction was found to be compatible with a broad range of
phenylalanine derivatives with various electron-donating and
electron-withdrawing substituents (3b–3q). Various functional
groups, such as methoxy (3e–3g), trifluoromethyl (3h), acetyl
(3i), methoxycarbonyl (3j), fluoro (3k and 3l), chloro (3m) and
bromo (3n) were tolerated, furnishing the desired products in
moderate to good yields. The tolerance of halides was particularly
noteworthy since such substituents could serve as versatile
handles for further elaboration via cross-coupling. It is
noteworthy that arylalanine derivatives (1b–1q) were prepared by
arylation of the alanine derivative (5a) using our previsouly
established conditions40. Therefore, this protocol also showcases
the synthesis of chiral aspartic acid derivatives via a two-step C–H
functionalization sequence. Importantly, the alkoxycarbonylation
of aliphatic secondary C(sp3)–H bonds could also be achieved
when 0.2 equiv. of succinic anhydride was included (3r-3w).
Alkoxycarbonylation of sterically hindered L-leucine derivative
containing adjacent secondary alkyl group occurred
smoothly under a slightly higher temperature (3t, 50%). The

alkoxycarbonylation reaction was found to be highly diastereo-
selective, furnishing a single diastereoisomoer as the sole product.
The relative and absolute stereochemistry of 3a, 3d, 3k and 4b,
was unambiguously determined by X-ray diffraction, and all
other alkoxycarbonylation products were assigned analogically.
The trans orientation of the N-phthaloyl group and the newly
incorporated alkoxycarbonyl group was consistent with the
proposed stereochemical model and previous reports40–45,51,52.
In addition, the more remote g-methyl C(sp3)–H bond was also
reactive, provided that no reactive b–C–H bonds were present.
The alkoxycarbonylation of L-tert-Leucine (3u), L-isoleucine (3v)
and L-vlaine (3w) proceeded effectively, albeit affording the
products in reduced yields.

The scope of the alkyl chloroformates coupling partners was
examined subsequently (Fig. 4). The reaction was found to be
compatible with a variety of simple and more complex
chloroformates. Methoxycarbonylation of phenylanine derivative
proceeded smoothly to provide product 4b in 72% yield. A
number of linear alkyl chloroformates gave the corresponding
products in good yields (4b–4e). Interestingly, the more sterically
hindered branched-alkyl chloroformates, such as iPr (2f), iBu
(2g), and cyclopentyl (2h) were more reactive, giving the
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corresponding products in higher yields (4f–4h, 82–96% yield).
The synthetic potential of this alkoxycarbonylation strategy
was further demonstrated by the effective reaction with more
complex chloroformates, such as menthyl chloroformate (2i) and
Fmoc-Cl (2j).

Substrate scope of methyl C(sp3)–H alkoxycarbonyaltion. Next,
we sought to investigate whether the alkoxycarbonylation
protocol amendable to methyl C(sp3)–H bonds. Gratifyingly,
the alkoxycarbonylation occurred smoothly to a variety of
aliphatic carboxamides bearing b-methyl C–H bonds with a
slightly modified conditions: 10 mol% Pd(TFA)2, 2.0 equiv.
Ag2CO3, 1.0 equiv. Na3PO4 and 3.0 equiv. ClCO2Me in toluene at
120 �C. As shown in Fig. 5, N-phthaloyl alanine derivative 5a
reacted effeciently with ClCO2Me in the absence of sodium
phosphate, affording the orthogonally protected aspartic acid 6a
in 71% yield. Aliphatic carboxamides bearing either linear chains
or cyclohexyl were also compatible with these new conditions
(6b–6f). A wide range of functional groups, such as ester (6g),
ethers (Bn-, 6h and 6l; Et-, 6k), alkene (6i) and alkyne (6j), could
also be readily alkoxycarbonylated. The reactions were also
tolerant of a number of aryl groups at the a, b- and d-positions of
the carboxamides (6m–6o and 6e). It should be noted that
the broad functional group tolerance highlights the synthetic
potential of this protocol in late-stage modification and total
synthesis of complex molecules60.

Synthetic potential. To further demonstrate the synthetic
potential of this reaction, the reaction was conducted in gram
scale (Fig. 6). We were pleased to find that the treatment of
3.0 mmol 1a with ethyl chloroformate gave the corresponding
ethoxycarbonylation product 3a in 74% isolated yield (1.10 g).
The competitive intramolecular C–N bond reductive elimination

product 3aa was also produced in 12% yield when the reaction
was scaled up. The desired product 3a was obtained without any
racemization. Moreover, we also found that no epimerization of
3a has been observed upon prolonged heating under the reaction
conditions (Supplementary Figs 8–10).

The ability to easily remove the directing group from the final
product is crucial for synthetic applications of this reaction.
Previously, we reported that 2-pyridinylisopropyl bidentate
auxiliary introduced by us could be removed through a
nitrosylation/hydrolysis sequence with a mixture of NaNO2/
AcOH/Ac2O (refs 39,40). Baudoin and co-workers has improved
the procedure by using NOBF4 as a nitrosation agent and
pyridine at low temperature61,62. We envisioned that novel
process could also be applied to the removal of AQ. As expected,
the corresponding carboxylic acid 7 was obtained in 62% yield
without further optimization. Following esterification, the
corresponding methyl ester 8 was obtained in 91% yield with
the retention of configuration (Scheme 3, see Supplementary
Methods and Supplementary Fig. 61 for details). It is worth
noting that all of the alkoxycarbonylation reactions were
operationally simple, without the need for an inert-atmosphere
or rigorously moisture-free conditions.

Mechanistic investigations. To shed light on the mechanism,
several experiments were performed (Fig. 7). First, kinetic
isotopic effect (KIE) experiments were conducted by treatment of
compound 1a and its deuterated analogue 1a-d2 under the
standard reaction conditions for 10 min. A kH/kD value of 1.5 was
obtained in a competitive reaction and 1.7 in parallel reactions on
the basis of 1H nuclear magnetic resonance (NMR) analysis
(Fig. 7a), which is indicative of a secondary kinetic isotope effect.
This result also suggests that the cleavage of C–H is not the
rate-determining step of the reaction.
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Second, a stoichiometric reaction of complex I with 3
equivalents of ClCO2Et (2a) under the optimized reaction
conditions was performed, and the alkoxycarbonylated product
3a was obtained in 40% yield. However, b-lactam 3aa was
produced in 48% yield and no desired product 3a was observed
when complex I was treated with iodine in the absence of silver

carbonate (Fig. 7b). These results clearly indicated that the
addition of silver carbonate was crucial for the success of this
transformation. Although the exact role of the silver salt may
simply be a halide scavenger63–65, it is also proposed to form a
bimetallic complex with palladium, which might be important for
the reaction24,27,66.
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Finally, we found that palladacycle I was a viable precatalyst for
the alkoxycarbonylation of 1a, providing the desired product in
70% yield, which was comparable with the result under the
standard conditions (Fig. 7c).

Discussion
In conclusion, we have developed a new protocol for the direct
alkoxycarbonylation of both methylene and methyl C(sp3)–H
bonds through a Pd(II)/Pd(IV) catalytic cycle. A variety of
operationally simple and readily available alkyl chloroformates
were used as carbonyl sources. The reaction proceeded with
high functional compatibility. Furthermore, this efficient and
stereoselective protocol to access orthogonally protected chiral
aspartic acid derivatives may find applications in the synthesis
of complex molecules. Compared with the well-established
C–H carbonylation with CO via Pd(II)/Pd(0) catalysis, the
direct alkoxycarbonylation of unactivated C–H bonds through a
Pd(II)/Pd(IV) catalytic cycle provides a new mode of reaction and
might offer a distinct platform for reaction development. Further
studies toward the application of this new strategy to other
reaction systems are currently underway.

Methods
General methods. For NMR spectra, high-performance liquid chromatography
(HPLC) data, and X-ray analysis of compounds in this manuscript and
detailed experimental procedures, see Supplementary Figs 1–67, Supplementary

Tables 1–12 and Supplementary Methods. See Supplementary Datasets 1–6 for
X-ray CIF files of compounds III, 3a, 3d, 3k, 4b and 6a (CCDC 1446624, 1487147,
1486639, 1486599, 1446623, 1475241).

General procedure for secondary C–H alkoxycarbonylation. To a 50 ml Schlenk
tube, were added 1 (0.15 mmol), Pd(OAc)2 (3.5 mg, 0.015 mmol), Ag2CO3

(82.7 mg, 0.3 mmol), I2 (38.0 mg, 1.0 equiv.), ClCO2R (0.45 mmol, 3.0 equiv.) and
toluene (2.0 ml). The tube was sealed under air. The mixture was stirred at room
temperature for 5 min then heated at 120 �C for 16 h. After cooling to room
temperature, the reaction mixture was diluted with EtOAc (10 ml) and filtered
through a pad of Celite. After concentration in vacuo, the crude reaction mixture
was purified by silica gel flash chromatography.

General Procedure for Primary C–H Alkoxycarbonylation. To a 50 ml
Schlenk tube, were added 1 (0.15 mmol), Pd(OTFA)2 (5.0 mg, 0.015 mmol),
Ag2CO3 (82.7 mg, 0.3 mmol), Na3PO4 (49.0 mg, 0.3 mmol), ClCO2Me (0.45 mmol,
3.0 equiv.) and toluene (2.0 ml). The tube was sealed under air. The mixture was
stirred at room temperature for 5 min then heated at 120 �C for 20 h. After cooling
to room temperature, the reaction mixture was diluted with EtOAc (10 ml) and
filtered through a pad of Celite. After concentration in vacuo, the crude reaction
mixture was purified by silica gel flash chromatography.

Data availability. The X-ray crystallographic structures for compounds III, 3a, 3d,
3k, 4b, 6a reported in this article have been deposited at the Cambridge Crystal-
lographic Data Centre (CCDC), with the accession codes CCDC 1446624, 1487147,
1486639, 1486599, 1446623, 1475241 (http://www.ccdc.cam.ac.uk/data_request/
cif). The authors declare that all other relevant data supporting the findings of this
study are available within the article and its Supplementary Information files.
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