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A strategy to discover new organizers identifies
a putative heart organizer
Claire Anderson1, Mohsin A.F. Khan1,*,w, Frances Wong2,*, Tatiana Solovieva1, Nidia M.M. Oliveira1,

Richard A. Baldock3, Cheryll Tickle4, Dave W. Burt2 & Claudio D. Stern1

Organizers are regions of the embryo that can both induce new fates and impart pattern on

other regions. So far, surprisingly few organizers have been discovered, considering the

number of patterned tissue types generated during development. This may be because their

discovery has relied on transplantation and ablation experiments. Here we describe a new

approach, using chick embryos, to discover organizers based on a common gene expression

signature, and use it to uncover the anterior intestinal portal (AIP) endoderm as a putative

heart organizer. We show that the AIP can induce cardiac identity from non-cardiac

mesoderm and that it can pattern this by specifying ventricular and suppressing atrial regional

identity. We also uncover some of the signals responsible. The method holds promise as a

tool to discover other novel organizers acting during development.
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O
rganizers are formally defined as signalling regions,
unique in being able both to induce and to pattern
adjacent tissue1. The dorsal lip of the blastopore, which

can induce a complete secondary axis in amphibian embryos, was
the first organizer to be discovered, in 1924 (ref. 2). Given the
complexity of the vertebrate embryo, one might expect that many
organizers should exist, but only a few others have been
described3: Hensen’s node (the amniote equivalent of the dorsal
lip of the blastopore, which can induce and pattern the central
nervous system)4, the notochord/floor-plate (which can induce
and organize different sets of neurons in the neural tube)5, the
zone of polarizing activity (ZPA, which can induce a patterned set
of limb elements)6 and the midbrain–hindbrain boundary
(isthmus, which can specify and pattern the adjacent regions of
the midbrain/tectum and hindbrain/cerebellum)7. One reason
why so few organizers have been found could be that their
discovery requires grafting appropriate tissues at the right time
and place, and there are too many possible combinations.

It has been shown that in some cases organizers can substitute
for each other. Most strikingly, a graft of Hensen’s node from an
early (primitive streak stage) embryo into the anterior limb bud of
a much later embryo can mimic the action of the limb organizer,
the ZPA, by inducing and patterning a full set of skeletal elements
including the digits8. This raises the intriguing possibility that
organizers may share a genetic signature (‘synexpression’) that
confers them with inducing and patterning properties. If this is
the case, we should be able to use this genetic signature to point to
potential new organizing regions. In this study, we tested this idea
by comparing the transcriptomes of three known amniote
organizers (Hensen’s node, the notochord/floor-plate and the
ZPA). This defines a synexpression set of 48 transcripts that are
either enriched or depleted in organizers, which we then used to
explore the embryo for other regions of synexpression. This
suggested that the endoderm of the anterior intestinal portal
(AIP) might be a new organizer. The AIP is an endodermal
invagination appearing with the head-fold, which moves caudally
down the embryo to form the foregut9. As it does so, it is closely
associated with the developing heart tube. We therefore
performed a series of experiments to test whether the AIP can
act as an organizer of the heart. Ablation and transplantation
experiments in vivo, along with co-culture in vitro, revealed that
the AIP endoderm can induce heart fate from non-cardiac
mesoderm as well as pattern the heart field by specifying
ventricular and suppressing atrial regional identity.

Results
Defining a gene signature for organizers. To investigate whether
organizers have a common genetic signature of enriched and
depleted transcripts, we designed a differential microarray screen
in chick embryos, comparing three known organizers to their
most similar non-organizer tissue. First, we chose stage (HH10)
3þ /4 Hensen’s node, which induces and patterns the neural
plate11, compared with the posterior primitive streak, which
cannot (Fig. 1a). We also sampled the later node (HH6), which
has lost its ability to induce a full neural plate11. This three-way
comparison was designed to reveal transcripts associated with full
organizer function. Second, we selected the notochord and
floor-plate at HH10-11, responsible for organizing the
dorso-ventral axis of the neural tube5, and compared this to the
dorsal neural tube (Fig. 1b). Finally, we compared the posterior
wing bud, containing the ZPA6, to the anterior wing bud at
HH20-21 and HH24 (Fig. 1c). Each comparison generated a list
of transcripts significantly enriched or depleted in that organizer
(Z1.2-fold the log2 of the expression level, and a false discovery
rate r0.05. The dataset was submitted to ArrayExpress with the

title ‘Microarray analysis of chick embryonic tissues: gastrulation,
neural tube/notochord and limb development’ and given
accession number E-MTAB-4048). These lists were then
combined using a Boolean algorithm to find enriched or
depleted transcripts common to all three organizers. This
approach uncovers relative changes in expression between
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Figure 1 | Transcriptome comparison of known organizers reveals genes

co-expressed in organizers and in the Anterior Intestinal Portal

endoderm. (a–c) Experimental design. (a) Hensen’s node (red box) was

compared with posterior primitive streak (green box); (b) notochord and

ventral neural tube (red box) was compared with dorsal neural tube (green

box) and (c) posterior wing bud (red box) was compared with anterior wing

bud (green box). (d–i) One gene enriched in organizers is PCSK6 (d–f, red

boxes, red arrowhead in f-inset) and SOCS2 exemplifies a depleted gene

(g–i, green boxes, green arrowhead in i-inset). Fold-change values are

indicated. (j–n) Examples of organizer-enriched transcripts expressed in the

anterior intestinal portal endoderm (AIP) (red arrowheads): NRP1 (j),

FBLN7 (k), SHH (l), KIRREL3 (m) and VTN (n). Scale bars, 0.5mm in whole-

mounts and 0.1mm in sections.
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organizer cells and neighbouring regions, even if the absolute
level of expression is widely different at different stages: a putative
organizer gene set of 31 enriched and 17 depleted transcripts is
revealed (Supplementary Fig. 1a–d and Supplementary Data 1).
Interestingly, over 60% of the enriched genes encode membrane-
associated or secreted molecules and 7% represent transcription
factors, whereas transcription factors are much more frequent
(38%) among the depleted genes (Supplementary Fig. 1c). One
possible interpretation of this is that the synexpression set is
enriched for signalling molecules emitted by the organizer and
depleted of transcriptional repressors that suppress the organizer
state.

The AIP endoderm as a candidate organizer. Next, we used this
set to verify the expression of the selected genes (Fig. 1d–i,
Supplementary Figs 2 and 3), as well as to explore whether the
synexpression signature occurs in other places and stages during
development. A large-scale in situ hybridization analysis of the
48 genes was undertaken from pre-primitive streak stage
up to HH27; these expression patterns can be browsed on
eChick atlas12 (www.echickatlas.org). One embryonic region
appropriately expresses 35 genes from the organizer gene set:
the endoderm of the AIP. At some stage between HH7-14, 20/31
enriched transcripts are detected (Supplementary Fig. 4a–t),
15/17 organizer-depleted genes are appropriately absent from the
early AIP (Supplementary Fig. 4u–k), and SOCS2 and BTG2 are
absent before HH10 and HH14 respectively (Supplementary
Fig. 4l0,m0). Thus, the AIP shares a similar transcriptional profile
to other known organizers.

There is substantial evidence that the early endoderm adjacent
to the bilateral cardiac mesoderm is required for normal heart
formation in chick, amphibian and fish embryos13,14, but less is
known about the AIP endoderm of later stages. Genetic or
manual ablation of the AIP endoderm in mouse and chick
embryos results in cardia bifida15–19 (failure of the bilateral heart
progenitors to fuse in the midline), rotation defects16 and
downregulation of early cardiac genes15, indicating that a
functional AIP endoderm is required for normal heart
formation, but its inducing and patterning abilities have not
been tested. Could the AIP be an organizer of the heart?

The AIP can induce cardiac identity from non-cardiac mesoderm.
We first confirmed that ablation of the AIP at HH8 does indeed
cause cardia bifida and abnormal heart rotation (Supplementary
Fig. 5). Next, to test if the AIP can induce cardiac identity, a
necessary prerequisite is to identify a suitable responding tissue.
Fate and specification maps indicate that the paraxial mesoderm
adjacent to Hensen’s node at HH5 (prospective head mesoderm)
is neither fated nor specified as heart20–24, but is competent
to respond to cardiac inducing signals22. We compared this
mesoderm (named #3) with four other regions of HH5 mesoderm
(Supplementary Figs 6a and 7a): #3 does not contribute to the
heart when grafted homotopically (Supplementary Fig. 7b–h),
and is the only region of mesoderm that does not express cardiac
markers when explanted either in vitro (Fig. 2 i,l,o,r,u,x,a0,b0 and
Supplementary Table 1) or in a host embryo (Supplementary
Fig. 7j–v and Supplementary Table 2). Mesoderm #3 is therefore
suitable for testing whether the early AIP can induce heart fate.
The AIP induces early cardiac markers, MYOCD, NKX2.5
(Fig. 2j,m and Supplementary Fig. 8b,c), GATA4, TBX5, ISL1
andMEF2C in explants of #3-mesoderm (Supplementary Fig. 8d–
g), while co-culture with control (Cont.), non-AIP endoderm
from the lateral embryo, largely does not (Fig. 2k,n,
Supplementary Fig. 8b–h, Supplementary Tables 2 and 3).
Strikingly, spontaneous beating is observed after 48 h of in vitro

co-culture of #3-mesoderm with AIP (Supplementary Movie 1),
but not with control, non-AIP endoderm. Together these results
show that the AIP endoderm can induce cardiac identity in
mesoderm that is not otherwise fated to become part of the heart.

Patterning by inducing ventricular identity and suppressing
atrial character. Many of the known early heart markers are
normally expressed in the bilateral cardiac mesoderm before the
AIP forms (around stage HH5; Supplementary Fig. 6a–f), whereas
regional markers of anterior–posterior heart tube patterning are
observed later (after HH9; Supplementary Fig. 6v–n0). Ventricular
markers (VMHC1/MYH15, IRX4 and NPPB) are initially
expressed in the medial splanchnic mesoderm25–27 immediately
adjacent to the AIP (Supplementary Fig. 6d0,f0,g0), and the atrial
marker AMHC1 is in the lateral splanchnic mesoderm28

(Supplementary Fig. 6c0). In #3-mesoderm explants cultured
either in a host embryo or in vitro, AIP induces VMHC1/MYH15,
IRX4 and patchy NPPB expression (Fig. 2b–d,p,s,v, Supple-
mentary Tables 2 and 3). AIP also induces GJA5 (Fig. 2e,y), which
marks the anterior ventricular myocardium, endocardium and
outflow tract (Supplementary Fig. 6h0). AIP does not induce
AMHC1 (Fig. 2f,b0) or SHOX2 (Fig. 2g,e0), a marker of the
sinoatrial node (Supplementary Fig. 6i0,p0). These results show
that the AIP can induce ventricular cardiac identity in mesoderm
not destined to this fate.

Previous tissue recombination experiments using HH5-6 chick
explants have demonstrated that anterior-lateral endoderm
adjacent to the early cardiogenic mesoderm can induce heart
gene expression in posterior primitive streak29. Are the induction
properties of the HH8 AIP endoderm distinct to the early
anterior-lateral endoderm? To test this, we co-cultured HH5
anterior-lateral endoderm with non-cardiac #3-mesoderm
(Supplementary Fig. 9a and Supplementary Table 4). Unlike
AIP endoderm, anterior-lateral endoderm does not induce
ventricular markers (Supplementary Fig. 9b–e) nor does it
induce AMHC1 (Supplementary Fig. 9f). These data show that
the anterior-lateral endoderm is different to the AIP endoderm
and that the ability to induce ventricular character is a property
specific to the AIP endoderm.

To test if the AIP patterns the heart tube by specifying
ventricular identity, AIP from transgenic GFP donors was grafted
over the cardiogenic mesoderm of a host embryo (Fig. 3a).
Strikingly, this expands the expression of VMHC1/MYH15 and
IRX4 posteriorly into the prospective atrial region (Fig. 3c–l),
while expression of the atrial marker AMHC1 is abolished
(Fig. 3m–q). Moreover, the AIP represses AMHC1 in
#1-mesoderm which would normally express it (Fig. 3r–t and
Supplementary Table 3); since IRX4 is known to repress AMHC1
(refs 26,30), this repression by the AIP may be either direct or
indirect, due to prior AIP-mediated induction of IRX4. Thus, the
AIP not only induces ventricular identity, but also actively blocks
atrial character. The ability to induce a new fate in responding
tissues and to impart a spatial pattern are properties shared by
other known organizers3. Taken together, these results show that
the AIP endoderm is distinct from other endodermal regions, in
that it can both induce cardiac identity in mesoderm not destined
for this fate and also pattern heart mesoderm by promoting
ventricular and suppressing atrial regional character.

Common signals between organizers. Grafts of either Hensen’s
node8, notochord or floor-plate31 into the anterior limb bud
can induce extra digits, suggesting that at least some signals
(an obvious one being SHH) may be common to different
organizers. We therefore tested whether the heart-inducing or
ventricle-specifying functions of the AIP can be mimicked by
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other organizers. We find that Hensen’s node induces patchy
expression of VMHC1/MYH15 but not MYOCD in #3-mesoderm
cultured in a host (Supplementary Fig. 10a,b and Supplementary
Table 5), as well as in explants (Supplementary Fig. 10c,d and
Supplementary Table 5). Hensen’s node has also been shown to
induce ectopic VMHC1, but not AMHC1 in the germinal crescent
and the lateral plate mesoderm32, comparable to the ability of the
AIP to induce ventricular markers. Conversely, to test whether
the AIP can mimic the neural inducing activity of Hensen’s node,
we grafted AIP endoderm into the area opaca33 at HH3þ : this
induces the early neural marker SOX3, but not the later neural

plate marker SOX2 (Supplementary Fig. 10e,f). Finally, we tested
whether the AIP can mimic a ZPA graft into the anterior
wing bud: strikingly, the AIP causes duplication of digit-2
(Supplementary Fig. 10h). Therefore, the AIP is partly
interchangeable with other organizers at earlier and later stages
of development, some of which could be related to its expression
of SHH (Fig. 1l) or FGF8 (ref. 34). However it seems that the
ability of organizers to substitute for each other is limited.

Signals from the AIP endoderm. The inducing and patterning
activities of other known organizers rely on multiple signals,
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Figure 2 | AIP induces cardiac and ventricular identity in non-cardiac mesoderm. (a) AIP or control (Cont.), lateral endoderm from a HH8 quail

co-cultured with anterior-medial mesoderm (#3) from a HH5 chick embryo overnight in the anterior area opaca of a host chick. (b–g) Regional myocardium

markers VMHC1/MYH15 (b), IRX4 (c), NPPB (d) and GJA5 (e) are induced in #3-mesoderm by quail (brown) AIP (red arrowheads), but not by control

endoderm (Cont., black arrows), whereas AMHC1 (f) and SHOX2 (g) are not induced (black arrows). (h) In vitro co-culture of #3-mesoderm with GFP-AIP

(j,m,p,s,v,y,b’,e’) or -Cont. (k,n,q,t,w,z,c’,f’) for 24 (j,k,m,n) or 48 h (p,q,s,t,v,w,y,z,b’,c’,e’,f’). No expression is seen in #3-mesoderm cultured alone

(i,l,o,r,u,x,a’,d’). AIP (brown) induces MYOCD (j), NKX2.5 (m), VMHC1/MYH15 (p), IRX4 (s), NPPB (v) and GJA5 (y) in #3-mesoderm (red arrowheads),

but Cont. does not (brown, k,n,q,t,w,z, black arrows). Neither AMHC1 nor SHOX2 are induced (black arrows) by AIP (b’,e’) or by Cont. (c’,f’). *Pr0.05,

**Pr0.005, ***Pr0.0005 using two-tailed Fisher’s exact test. Scale bars, 0.5mm in whole-mounts and 0.1mm in insets, explants and sections.
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acting together and/or sequentially35–37. FGF8 (refs 38,39) and
SHH (refs 40,41) play important roles in other organizers; both
have been implicated in cardiogenesis34,42 and both are expressed
in the AIP. However, our synexpression set contains many other
secreted or membrane-associated factors that have not hitherto
been implicated either in the activity of other organizers or in
cardiac gene induction or heart patterning. Four of these are
expressed in the early AIP: NRP1, FBLN7, KIRREL3 and VTN
(Fig. 1j,k,m,n). To investigate their activity, we co-cultured
#3-mesoderm with pellets of cells transfected with expression
plasmids encoding these four factors. This combination partly
mimics the AIP, sometimes inducing patchy expression of the

ventricular markers VMHC1/MYH15 (Fig. 4a) and NPPB
(Fig. 4b), but not IRX4 (Supplementary Fig. 11f) or other early
cardiac markers (Fig. 4c, Supplementary Fig. 11a–e and
Supplementary Table 6).

These results suggest that other signals are required, possibly
SHH and FGF8, but also considerable complexity, not unlike
other organizers, which are believed to emit different signals at
different times to account for their various inducing and
patterning functions35–37. Accordingly, some gene expression
profiles change over time as the organizer changes its properties.
Although HH8 AIP endoderm was used in co-cultures, the AIP
continues its developmental programme, expressing transcripts
that are detected in the later AIP (Supplementary Fig. 12). HH8
AIP cultured either alone or with #3-mesoderm expresses genes,
including those that encode secreted or membrane-associated
molecules normally observed in the HH10 AIP (Supplementary
Fig. 4j,k), after 24 h (Supplementary Fig. 12a–d) and those
expressed in the HH12-13 AIP (Supplementary Fig. 4q,s) after
48 h (Supplementary Fig. 12e–h). These results suggest that the
signalling properties of the AIP endoderm mature over the
culture period as they do in the embryo.

Taken together, our results implicate the AIP as an organizer of
the heart, and suggest that a complex combination of signals
account for its heart inducing and patterning functions at early
stages of heart tube formation.

Discussion
Our results suggest that organizers do share a common genetic
signature, and that this property can be used to identify putative
new organizers acting during development. The choice of the
three organizers to compare was relatively arbitrary and perhaps
we should have used a different well-characterized organizer, the
mid-hindbrain boundary (MHB) or isthmic organizer3,7 instead
of the comparison between notochord/floor-plate with dorsal
neural tube (particularly as the latter is also a signalling region).
The main reason why we did not use the MHB is that it is difficult
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to identify a non-organizer tissue that is similar enough to this
boundary in every other respect. The organizer gene set could be
refined further using this tissue in future. Nevertheless, this study
is an important proof of principle and, based on the synex-
pression of 48 genes, we uncover the AIP endoderm as a putative
organizer because it can both induce cardiac identity and pattern
the heart field by specifying regional characteristics (inducing
ventricle and suppressing atrial character).

Previous studies have concluded that the endoderm is required
for heart development (reviewed in ref. 13). Many of these studies
investigated the early anterior-lateral endoderm adjacent to the
cardiac mesoderm at HH4-6 (refs 34,43–48). Tissue recombina-
tion experiments have shown that this endoderm can reprogram
non-cardiac tissues to heart identity29 and BMPs, FGFs
and inhibition of WNT signalling have been implicated in
this13,22,32,34,49–53 (Fig. 5a). Some recombination experiments
have used posterior primitive streak or posterior lateral plate
(#4–5; Supplementary Figs 6a and 7a) explants as a responding
tissue to test for cardiac induction29,49,50,53. However, it has since
been shown that these tissues express MYOCD (ref. 43), GATA
(ref. 54) and TBX20 (ref. 14) transcription factors, and can express
MYOCD and VMHC1/MYH15 following culture in vitro
(Supplementary Table 1) leaving open the possibility that these
experiments do not demonstrate a true change of fate in this tissue.
Widespread expression of some early cardiac markers makes it
difficult to find a responding tissue suitable for an induction assay
(neither being fated to give rise to heart nor express any of the
markers being assessed as a result of the induction). Here we use
anterior-medial mesoderm (#3), which is neither fated nor
specified as heart20–24 and can be used to assess both induction
and patterning rigorously.

The expression patterns of early cardiac markers, like NKX2.5
(ref. 29), and the signalling molecules previously implicated in
their induction (BMP2/4/7 (ref. 22), FGF8 (ref. 34) and
CRESCENT (ref. 49)) indicate that initial signals act at an early
stage of cardiogenesis (HH4-6, Fig. 5a) before the AIP forms. Our

results show that the AIP from a later stage embryo can also
induce heart identity (reprogramming non-heart #3-mesoderm
from an earlier stage donor) as well as pattern it by specifying
ventricular and suppressing atrial character. During normal
development, the AIP is likely to be responsible for the later
patterning functions (Fig. 5b), but our results show that it can
also mimic the activity of earlier endoderm. This could be due to
the presence of AIP precursors within this early endoderm21,55,56

and the continued expression of BMP2 (ref. 22) and FGF8
(ref. 34). This is reminiscent of other organizers, for example,
Hensen’s node can initiate the entire process of neural induction,
even though the first neural inducing signals begin before
gastrulation, long before Hensen’s node can be defined38. This
could be a general feature of organizers, perhaps because they
produce many signals. However, the signals emitted by organizers
also change over time as their patterning properties evolve, which
is seen in organizers like Hensen’s node11,36, as well as in the AIP.

Heart progenitor cells become determined to either
the ventricular or atrial compartment at around HH8
(refs 28,57,58), consistent with the timing of signals from the
AIP endoderm that induce ventricular and repress atrial character
(Fig. 5b). Retinoic acid signalling from the posterior lateral plate
mesoderm is known to control the allocation of cardiac
progenitor cells to the atrial lineage28,57,59. We have shown that
signals from the AIP endoderm, NRP1, FBLN7, KIRREL3 and
VTN when combined can sometimes induce VMHC1/MYH15
and NPPB (Fig. 5c), but whether these signals also repress atrial
identity remains to be tested. BMP2/4, FGF4 and Wnt inhibitors
have also been shown to induce VMHC1 (refs 22,32,49), although
the results of these studies do not rule out induction of heart
identity rather than regionalization. Additional regional markers
need to be tested to resolve this. Interestingly, both VTN and
NRP1 have other, much later roles in heart patterning.

There is conflicting evidence about the extent to which cells
that make up the AIP roll around it (involution) and turn over
rapidly, or whether they remain in place as it advances caudally
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Figure 5 | Successive roles of the endoderm in heart induction and patterning. Each diagram represents a stage in development; in each, tissue

interactions are depicted on the left, signals on the right. (a) Initially (HH 4–6), the anterior-lateral endoderm (including some prospective AIP56, green) is

required for the adjacent cardiac mesoderm (light blue) to express NKX2.5, MEF2C29 and MYOCD43. BMP2 and FGF8 signalling from the anterior-lateral

endoderm induce NKX2.5, GATA, MEF2 and HAND transcription factors22,34,51,52. The anterior endoderm expresses WNT inhibitors including Crescent,

which can induce NKX2.5 (ref. 49). (b) At HH8, progenitor cells are becoming determined as either atrial or ventricular28,57,58. The AIP endoderm induces

ventricular character and represses atrial identity. Signals from the AIP endoderm, including NRP1, FBLN7, KIRREL3 and VTN described here (red text and

arrows) and previously reported BMP2, FGF4 and Wnt inhibitors22,32,49 (black text and arrows), induce some ventricular markers, which are integrated

with atrial-inducing retinoic acid signalling from the posterior lateral plate mesoderm28,57,59. The signals from the AIP endoderm that repress atrial identity

are unknown. (c) At HH9, when regional markers of anterior–posterior heart tube patterning begin to be expressed, AIP endoderm induces ventricular

markers VMHC1/MYH15, IRX4, NPPB and GJA5 (the latter expressed from HH12) and represses the atrial marker AMHC1. Four secreted molecules from the

AIP endoderm, NRP1, FBLN7, KIRREL3 and VTN can induce VMHC1/MYH15 and NPPB.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12656

6 NATURE COMMUNICATIONS | 7:12656 | DOI: 10.1038/ncomms12656 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


down the embryo19,55,60. Neither possibility is incompatible with
the AIP being an organizer. The cellular composition of Hensen’s
node constantly changes as cells move in and out of it61 but it also
contains resident cells62 and similar findings have been made for
the ZPA of the limb63. In all these cases the organizer property, as
well as molecular markers for it, remain in the region rather than
moving with the cells: cells regulate their expression and
functional properties according to their current position61.
These findings raise the general principle that organizers define
a position within the embryo where a set of properties come
together. Using a ‘synexpression’ gene set for this state should not
only allow us to seek new organizers, but also to investigate the
clues that instruct cells to have such properties in particular
places in the embryo.

Our novel approach of identifying genes common to different
organizers offers great potential not only for uncovering new
organizing centres during development, but also as a tool to
identify new signalling molecules underlying organizer function,
as well as transcription factors that confer cells with this property.
Interestingly, we find that the synexpression set is enriched for
signalling molecules (15 of the 31 enriched genes), whereas
transcription factors are more abundant among the depleted
genes (6/17), suggesting that some transcriptional repressors may
function to suppress the organizer state in non-organizer tissues.

Methods
Differential microarray screen and analysis. Fertile Brown Bovan Gold hens’
eggs (Henry Stewart, UK) were incubated at 38 �C and staged according to
Hamburger and Hamilton (HH)10. The following tissues were collected (three
separate samples of each) and RNA extracted by standard methods: Hensen’s Node
at HH3þ /4 (HH4 HN) and HH5/6 (HH6 HN), posterior primitive streak at
HH3þ /4 (HH4 PS), HH10/11 notochord and adjacent ventral neural tube/floor-
plate (VNT) and the corresponding dorsal neural tube (DNT), the posterior third
of the limb at HH20/21 (HH20 PL) and HH24 (HH24 PL) and the anterior third of
the limb at HH20/21 (HH20 AL) and HH24 (HH24 AL)64.

Hybridization to Affymetrix microarrays was conducted by ARK-Genomics at
the Roslin Institute, University of Edinburgh, as described in the Affymetrix
GeneChip Expression Analysis Technical Manual (Affymetrix, Inc.). Briefly, 15 mg
of total RNA from each sample was reverse-transcribed using a T7-oligo (dT)
primer in the first-strand complementary DNA (cDNA) synthesis. After
RNAase-H treatment, second-strand cDNA synthesis was carried out. The cDNA
was then purified and used as a template in the subsequent in vitro transcription
reaction for linear amplification of each transcript, and incorporation of
biotinylated CTP and UTP using T7 RNA polymerase. The biotinylated cRNA
targets were fragmented and hybridized to the Affymetrix GeneChip Chicken
Genome Array, which provides good coverage of the chicken genome (32,773
transcripts corresponding to over 28,000 genes). Twenty-seven arrays were used in
total (samples from 9 tissues, each in triplicate). Hybridization was performed at
45 �C for 16 h with constant rotation (60 rpm). The microarrays were then
automatically washed and stained with Streptavidin-phycoerythrin conjugate
(SAPE; Invitrogen) in a GeneChip fluidics station (Affymetrix). Fluorescence
intensities were measured with a GeneArray scanner 3,000 (Affymetrix). The
scanned images were analysed as described in the Affymetrix GeneChip Command
Console 3.0 User Manual.

Gene expression data generated from the GeneChip software (GCOS) were
normalized using the probe logarithmic intensity error (PLIER) method65 within
the Affymetrix Expression Console software package. The normalized data were
then analysed using the Limma and FARMS66 packages within R in Bioconductor.
Venn diagrams were generated using the R package Vennerable with dependencies,
graph, RBGL, gplots, gtools and reshape. Weights used for scaling the Venn
diagrams were based on a priori count data reflecting intersections of genes
between different comparisons of datasets.

Dataset comparisons. Pair-wise comparison of samples was performed as follows:
HH4 HN versus HH4 PS;
HH6 HN versus HH4 PS;
HH4 HN versus HH6 HN;
VNT versus DNT;
HH20 PL versus HH20 AL;
HH24 PL versus HH24 AL.
Probes with a fold change (FC) Z1.2 (log2) and a false discovery rate r0.05

were deemed significant. The results of these individual comparisons (using
significant enrichment or depletion as the indicator, rather than absolute amounts)
were then combined using the Boolean algorithm: ((HH4 HN versus HH4 PS AND

(HH4 HN versus HH6 HN) OR HH6 HN versus HH4 PS)) AND VNT versus
DNT AND (HH20 PL versus HH20 AL OR HH24 PL versus HH24 AL). Probes
that are differentially enriched or depleted significantly in this algorithm comprise
the organizer gene set. The first set of comparisons selects genes enriched or
depleted in the early (HH3þ /4) Hensen’s node compared with the posterior streak,
some of which remain expressed the same way at the later (HH5/6) stage. The
comparisons for the limb select genes enriched or depleted in the posterior limb
bud (containing the ZPA) at either HH20/21 or HH24.

The dataset was submitted to ArrayExpress with the title ‘Microarray analysis of
chick embryonic tissues: gastrulation, neural tube/notochord and limb
development’ and given accession number E-MTAB-4048.

Embryo manipulation. Fertilized Brown Bovan Gold hens’ eggs (Henry Stewart,
UK), Coturnix coturnix japonica quails’ eggs (B.C. Potter, Rosedean Farm, UK, and
Blue Bridge Engineering Limited, Essex, UK) and transgenic GFP chicken eggs67

(Roslin Institute, Edinburgh, UK) were used. Embryo manipulations were
performed in Pannett-Compton saline and modified New culture68,69. Tissues were
excised from donor embryos using 0.12% w/v trypsin (porcine trypsin 1:250,
Sigma) in Pannett-Compton saline and 30G syringe needles, washed with saline
and kept on ice until needed. Mesoderm (#1–5, from both the left and the right
sides and used randomly) was harvested from HH5� to HH5þ donor embryos.
Early AIP endoderm (AIP) and control (Cont.) lateral endoderm (the endoderm
underlying the somites and proximal lateral plate mesoderm) were harvested from
HH8� to HH8þ embryos. Early AIP endoderm was used because cardiac
progenitors are closely associated with the AIP at this time, and because it is easier
to isolate the AIP at this stage than later, when the heart is beating. Anterior-lateral
endoderm (#1-2E) and anterior-medial endoderm (#3E) were harvested from HH5
donor embryos. Host embryos ranged from HH4þ to HH6. Grafts were placed on
the left or the right side of host embryos; no differences were noted in the results.
After grafting, the embryos were incubated for either 6–9 h or overnight (12–18 h).
Limb grafts were performed in ovo at HH20-21 and incubated for 5 days70.

Delivery of factors using transfected cells. Chicken NRP1 (NM_204782.1; F
primer CCGCTCTCGGAAGG, R primer CATCCCGATTCTCTG), FBLN7
(XP_003640934.1, formerly FIBULIN 7-LIKE; F primer GGAC-
CATGGCTTCGGGGCTC, R primer CCTGGTCTGCCCTAGAACTCATAGGC),
VTN (NM_205061.1; F primer CTCTGGATCCTGCTCAGTCACAGTAG with
introduced BamHI site, R primer CTGGCGGTGAATTCGGGTCTAGC with
introduced EcoRI site) and KIRREL3 (XP_004948018.1; F primer CCTGAGGAAT
GAGCGCTTTC, R primer GTTCAAACGTGCGTCTGCATC) were cloned by
RT-PCR using cDNA synthesized from HH13/14 embryo mRNA. Full-length
cDNAs were inserted into the pCAb-IRES-GFP expression vector.

HEK293T cells were grown in DMEM (Gibco)þ 10% fetal bovine serum (FBS),
1% GlutaMAX (Gibco) and 1% penicillin/streptomycin (Gibco), and transfected
with appropriate expression vectors using polyethylenimine71. Pellets of 500 cells
were made by recombining cells from individual transfections in a hanging drop
culture72.

In vitro culture of explants. Tissues were excised from chicken and quail embryos
as described above, and cultured in vitro for 24 or 48 h at 37 �C with 5% CO2 on a
0.4 mm Nucleopore filter (Whatman, WHA110407) floating on DMEM (Gibco)
with 10% FBS, 5% chicken embryo extract (US Biological), 1% GlutaMAX (Gibco)
and 1% Penicillin/Streptomycin (Gibco)29. Tissues were arranged such that the
basal surface of the AIP faced the mesoderm explants. Spontaneous beating in 48 h
explant co-cultures was recorded with a QImaging Retiga 2000R camera and
QCapture Pro software.

Probes and antibodies. Whole-mount in situ hybridization and immuno-
histochemistry were performed as described73,74. Probes used were as follows:
MYOCD (ref. 43), TBX5 (ref. 75), IRX4 (ref. 26), ISL1 (ref. 76), PITX2 (ref. 77),
NXPH1 (ref. 78), NRP1 (ref. 79), NOTO (cNOT1) (ref. 80), VTN (ref. 81), MOXD1
(DBHR) (ref. 82), CXCL12 (SDF1) (ref. 83), ID2 (ref. 84), DLX6 (ref. 85) and
SHOX2 (ref 86), kindly provided by the originating laboratories. AMHC1 and
NKX2.5 were kindly provided by T. Brand and GATA4 by B. Pain. The cDNA
available for VMHC1 (MYH15)27 is a 2.5 kb cDNA, which also has significant
(73%) homology to MYH7b (Slow Myosin 2, SM2); therefore, a short 0.6 kb probe
(VMHC1/MYH15, generated after cutting with PstI, where the two sequences differ
most) was used instead (see VMHC1/MYH15 short in Supplementary Fig. 6).
Other probes, including MEF2C (ChEST776g19), NPPB (ANF; ChEST509m15)
and GJA5 (CX40; ChEST304a4), were transcribed from EST clones (Supplementary
Data 1)87. Following whole-mount in situ hybridization, embryos were incubated
in QCPN (Developmental Studies Hybridoma Bank, diluted 1:5) and/or anti-GFP
antibody (Life Technologies, A11122, diluted 1:2,000); secondary antibodies used
were goat anti-mouse IgG peroxidase (Jackson, 115-035-003), goat anti-rabbit IgG
peroxidase (Santa Cruz, sc-2004) or goat anti-rabbit IgG alkaline phosphatase
(Upstate, 12–448) diluted 1:1,000. Cryosections of 15 mm or paraffin sections
of 10mm were prepared. For skeletal staining, embryos were stained with
Alcian Blue88.
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Scoring of co-cultures. Explant cultures (Supplementary Tables 1–6) were
considered ‘positive’ if high-level expression was observed throughout the majority
of the explant. The n-numbers in the figures represent those that were scored as
positive. The n-numbers that include positive and patchy expression are indicated.
Explants with no detectable expression or very weak expression (perhaps due to
non-specific staining, constitutive expression and/or marginal induction) were
scored as negative. Explants with high-level expression in a small patch (some of
which could be due to contamination) were excluded from P-value calculations,
unless indicated. To calculate P values, positive (plus patchy where specified) and
negative counts were compared across two conditions (#3 alone versus #3þAIP or
#3þCont.) using two-tailed Fisher’s exact test with a 2� 2 contingency table.
P values r0.05 were deemed significant.

Data availability. The microarray data have been deposited in the ArrayExpress
database under accession code E-MTAB-4048. All other data supporting the
findings of this study are available within the article and its Supplementary
information files or from the corresponding author upon reasonable request.
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