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Spatial clustering of tuning in mouse primary visual
cortex
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The primary visual cortex of higher mammals is organized into two-dimensional maps, where

the preference of cells for stimulus parameters is arranged regularly on the cortical surface.

In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what

is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields

in mouse primary visual cortex by measuring the tuning of pyramidal neurons in the joint

orientation and spatial frequency domain. We found that the similarity of tuning decreases as

a function of cortical distance, revealing a weak but statistically significant spatial clustering.

Clustering was also observed across different cortical depths, consistent with a columnar

organization. Thus, the mouse visual cortex is not strictly a salt-and-pepper map. At least on

a local scale, it resembles a degraded version of the organization seen in higher mammals,

hinting at a possible common origin.
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A
major feature of the primary visual cortex in higher

mammals is its organization into two-dimensional
feature maps, where the preference of cells for stimulus

parameters is mapped on the cortical surface in a quasi-periodic
pattern1–4. In sharp contrast, the preference of neurons for
stimulus attributes in rodents appears to be arranged randomly,
in what is termed a salt-and-pepper map5–7. The coexistence of
sharp tuning at the single cell level8 with a salt-and-pepper
organization has spawned fundamental questions about the
origin and significance of maps for visual processing9–11, the
specificity of cortical connections7,12–17 and the existence
of unifying principles of cortical organization across different
species10,11,18–21.

Recent studies have indicated the presence of spatial
organization in the primary visual cortex of the rodent that had
gone undetected. One demonstrated the anatomical existence
of patchy projections from the lateral geniculate nucleus (LGN)
and higher cortical areas into layer 1 of V1, and its association
with the expression of M2 muscarinic acetylcholine receptor and
higher spatial frequency preference at those locations22. Another
showed that there is a statistically significant clustering of tuning
in inhibitory parvalbumin (PV) cells in terms of their orientation
preferences23.

Here we revisited the spatial organization of pyramidal cell-
receptive fields in the mouse primary visual cortex by measuring
the tuning of neurons in the joint orientation and spatial
frequency domain24,25. To anticipate the results, we found that
the similarity of tuning decreases as a function of cortical distance,
with a length constant of B40mm. Thus, despite a substantial
diversity of tuning26, the mouse visual cortex is not strictly salt-
and-pepper. In addition, we observed clustering across cortical
depths, consistent with a columnar organization22. Altogether, the
present data suggest that the mouse primary visual cortex is more
spatially organized than that previously thought.

Results
V1 neurons are tuned for orientation and spatial frequency.
We measured the tuning of pyramidal cells in primary visual
cortex by means of resonant, two-photon microcopy in alert,
head-fixed mice, expressing GCaMP6f (ref. 27) in the superficial
layers of primary visual cortex (V1; Fig. 1a). The visual stimulus
consisted of a 20min-long sequence of flashed, high-contrast,
sinusoidal gratings that had random orientations and spatial
frequencies (a subset of Hartley basis functions)24,28 refreshed at a
rate of four frames per s (Fig. 1b). Individual cells were segmented
from the data and their spiking inferred by subtracting potential
contributions by the nearby neuropil and performing non-negative
deconvolution of the calcium signals (Fig. 1c, see Methods).

We estimated the tuning of each cell in the joint spatial
frequency and orientation domain by linearly regressing the
response on the stimulus (Fig. 2a, Methods). This analysis
averages the responses of neurons at a given orientation and
spatial frequency across spatial phase, thereby generating a tuning
profile for both simple and complex cells25. Similarly to what is
observed in higher mammals, cells in mouse V1 are jointly tuned
in orientation and spatial frequency (Fig. 2a).

Mouse V1 is not strictly a salt-and-pepper map. To measure the
similarity between two tuning profiles, we used their correlation
coefficient. The cortical distance between a pair of cells was defined
as the distance between the centre of mass of their cell bodies in the
image plane, which was parallel to the cortical surface.

The hypothesis of a salt-and-pepper organization predicts the
statistical independence of tuning similarity and cortical distance.
Instead, the data show that the average similarity decreases as a

function of cortical distance (Fig. 2b). The median similarity up to
distances of 100 mm is significantly higher than that seen at
separations of 200 mm (Fig. 2b, values, tailed rank-sum test,
indicated by size of data points), and an exponential fit to the
data yields a length constant of 38 mm (95% confidence interval
(24–50 mm)). A negative correlation between tuning similarity
and cortical distance was significant at the 0.05 level in 57%
(42 out of 74) of the experiments when tested individually
(one such case is shown in Fig. 2c).

The tuning similarity curve asymptotes at a value larger than
zero at large cortical distances. This reflects the fact that the
average tuning profile across the population is biased, having a
prominent response at low spatial frequencies (Fig. 2b, inset).

Tuning similarity, defined by the correlation coefficient
between tuning profiles, takes into account the entire shape of
the tuning distribution, including the location of the peak and its
spread (or bandwidth). We verified that clustering remains
present if we compare the distribution of differences in the
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Figure 1 | Experimental set-up. (a) Activity of cells in the primary visual

cortex was imaged with a two-photon scanning microscope while the

mouse observed a continuous visual stimulus on a freely rotating platform.

The position of the platform was monitored with an optical rotary encoder.

An infrared light-reflective glass (red line) allowed a camera to image the

pupil while allowing for unobstructed visual stimulation. The visual stimulus

consisted of a sequence of pseudo-random sinusoidal gratings (see

Methods for details). (b) Two segments illustrating the process of inferring

spiking activity from imaging data. First, the calcium fluorescence

corresponding to cell bodies (raw signal) and their immediate

neighbourhood (neuropil) as a function of time are extracted after

compensating for motion in the imaging plane. Here both the raw signal and

the neuropil are normalized by the s.d. of the raw signal. The vertical scale

bar corresponds to five times the s.d. of the signals. A potential

contamination of the signal by the neuropil is ameliorated by projecting out

a robust linear prediction of the signal based on the neuropil. Finally, the

probability of spiking is inferred by non-negative deconvolution (see

Methods for details). The result is a trace that is nearly identical to zero in

regions devoid of spiking activity (red trace), further minimizing small

contributions of the neuropil to background activity. The spike inference

trace is plotted in arbitrary units.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12270

2 NATURE COMMUNICATIONS | 7:12270 | DOI: 10.1038/ncomms12270 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


preferred orientations for cell pairs at cortical distances less than
50 mm versus pairs more than 150 mm away from each other
(Fig. 2d, tailed, rank-sum, Po2� 10� 6, n¼ 1,507 and 12,763).
Thus, the observed dependence of tuning similarity with distance
is not just a reflection of the clustering of spatial frequency
preference reported recently22, which was also a feature present in
our data (tailed, rank-sum test, Po0.01). However, the strongest
evidence of clustering of tuning is obtained by analysing the joint
selectivity of neurons in the Fourier domain (Fig. 2a,b).

Tuning similarity clusters along cortical columns. We also
examined the dependence of tuning similarity as a function of
distance on the cortical surface and across different depths within
layer 2/3 (Fig. 3a). The goal was to investigate a possible
clustering of tuning along vertical columns. In four mice, we
measured the tuning selectivity of cells in at least four equidistant
optical planes parallel to the cortical surface. To ensure
independent measurements, we chose a distance of 40 mm
between adjacent planes (the support of the point-spread function
of the microscope as measured with fluorescent beads was limited
to ±8mm along the z axis). We then computed the dependence
of tuning similarity as a function of cortical distance within and

across planes (Fig. 3b). We found that tuning similarity was above
chance levels even for cells separated by as much as 120mm in
depth (Fig. 3b), consistent with the presence of cortical columns.

Control experiments. AAV-syn-GCaMP6 is expressed both in
excitatory and inhibitory cells in different degrees29,30.
Interneurons are known to pool the responses of nearby
pyramidal cells inheriting some of their tuning properties23,31.
Thus, the inclusion of interneurons in our analyses may result in
clustering that, perhaps, would not be observed without such
contamination. To address this concern we showed that excitatory
and inhibitory cells can largely be separated based solely on the
statistics of their GcaMP6 signals and that excluding inhibitory
cells from our analyses does not affect the main finding.

In four control experiments, we genetically labelled
PV-expressing inhibitory interneurons with tdTomato (Fig. 4a).
We measured the fluorescent signals originating from pyramidal
and PVþ cells during visual stimulation (Fig. 4b). We observed
that pyramidal cells show traces with frequent and large and fast
calcium spikes, while PV neurons showed slower dynamics and
much smaller fluctuations around their mean (Fig. 4b).
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Figure 2 | Tuning similarity depends on cortical distance in mouse V1. (a) Sample of estimates of the joint tuning of neurons in the orientation and spatial

frequency plane in four cells. The origin is in the middle of the image. Kernels are individually normalized, so the maximum absolute value is one.

(b) Average tuning similarity decreases as a function of cortical distance. Error bars represent±1 s.e.m. The size of the data points denotes the significance

of a rank-sum test comparing the median distribution of data at a given distance to the distribution of the rightmost bin near 200 mm. Red, dashed line

shows the best exponential fit to the data. Inset: the mean tuning profile in mouse V1. The number of cell pairs in each group, in order of increasing cortical

distance, are n¼ 894, 2,538, 3,473, 3,845, 3,792, 3,399 and 2,964. (c) Demonstration of clustering within a single imaging field. Top, segmented cells.

Middle, estimated kernels. Bottom, scatter plot of tuning similarity versus cortical distance. There is a statistically significant negative correlation between

receptive field similarity and cortical distance. (d) Distributions of the absolute difference in preferred orientation as a function of cortical distance for cells

within 50mm of each other (left panel) and at least 150 mm away from each other (right panel) for the data in (b).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12270 ARTICLE

NATURE COMMUNICATIONS | 7:12270 |DOI: 10.1038/ncomms12270 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


A measure that captures such differences is the kurtosis of the
signal distributions. Kurtosis is a measure of how outlier-prone a
distribution is. Calcium spikes in pyramidal cells generated
signals with high kurtosis, such that 99% of the cases lied above a
value of 7.35 (Fig. 4c). In contrast, the mean kurtosis for PV cells
was 3.98, and only 1 out of 62 PVþ cells (1.6%) had a kurtosis
that exceeded the 1% threshold for pyramidal cells (Fig. 4c).

In other experiments we also found similar differences between
the kurtosis of SOM (somatostatin expressing neurons, n¼ 204)
and VIP neurons (vasoactive intestinal peptide expressing neurons,
n¼ 357; Fig. 4d) and that of pyramidal cells. Altogether, these
data show that only 1% of inhibitory cells of any type
(PV, SOM or VIP) exceeded a kurtosis value of 15. The clustering
of tuning similarity remained unaffected by the removal of all cells
with a kurtosis value lower than 15 (Fig. 4e). This finding refines a
previous result that reported a weak clustering of orientation
preferences in PV� cells—a group that might have included
contributions from SOM and VIP neurons as well23.

Interneurons tend to be more broadly tuned for orientation
and more low-pass in spatial frequency than pyramidal cells.
Thus, an alternative way to bias the analysis towards pyramidal
cells is to restrict the data set to neurons whose kernels had sharp

tuning. We did this by requiring the peak spatial frequency of the
neuron to be larger than 0.025 cycles per degree. Clustering of
tuning similarity was still observed after restricting the analysis to
sharply tuned kernels (Fig. 5a).

Our semi-automatic cell segmentation procedure involves a
human subject confining the defined region-of-interest (ROIs) to
cell bodies. Nevertheless, this is a manual process and
it is possible that some cell dendritic processes were inadver-
tently included in the data. One concern is that adding the
dendritic branch of a cell that has already been segmented could
generate clustering when none was present. Dendritic processes
would tend to be represented by ROIs with relatively smaller
areas than those defining cell bodies. Thus, one way to remove
potential dendritic processes is to exclude small ROIs from the
analysis. We verified that clustering of tuning similarity was still
observed after removing cells with the smallest 20% ROIs
(Fig. 5b).

Discussion
Our findings show that excitatory cells in layer 2/3 of mouse V1
are functionally clustered into mini-columns32 that are biased
towards a common tuning profile. While it is undeniable that the
local diversity of tuning preference in the rodent is much higher
than that found in carnivores and primates, it is equally clear
from our results and that of others22,23 that the notion that mouse
visual cortex is organized as a strict, salt-and-pepper map
ought to be rejected (Fig. 2). This unexpected finding prompted
us to examine in more detail some of the published data in an
effort to understand the reasons for the apparent discrepancy
with previous reports.

An influential study that first investigated the micro-organiza-
tion of rat visual cortex using two-photon imaging reported no
significant relationship between the direction preference of cells
and their cortical distance5. However, a closer look at their data
(Fig. 6a in ref. 5) reveals that cells within 50 mm of each other tend
to share the same direction preferences (Fig. 6a). Indeed, a
re-analysis of these data, limited to cell pairs at most 100mm from
each other, shows a statistically significant dependence of relative
preferred direction on cortical distance (Po0.003, r¼ 0.22;
Fig. 6a). We suspected that a failure to find a significant
relationship in the original study was because of the inclusion of
data points with cortical distances between 100 mm and up to
250 mm, comprising a large number of cell pairs with disparate
direction preferences. Consistent with their report, the correlation
between relative direction preference and cortical distance in this
larger data set is not significant (P40.1, r¼ 0.07). The reason is
that the additional data points are masking an existing
dependency that occurs within a narrower range. An analysis
closer to our approach (Fig. 2d) consists of comparing the
distributions of relative, preferred direction computed at small
and large cortical distances. Indeed, such analysis reveals that
nearby cells have a smaller difference than those that are farther
away (tailed rank-sum test, Po0.02, Fig. 6b).

Another study analysed the similarity of linear receptive fields
of simple cells in layers 2/3 and emphasized the large diversity of
the local population26. Nonetheless, as pointed out by the
authors, their data showed traces of spatial clustering, with cells
within 100 mm of each other having receptive fields that were
more similar than those 100–200 mm apart (see Fig. 6 in ref. 26).

The large, local diversity of receptive fields in rodent V1 was
also evident in earlier studies that used single-electrode
recordings to study receptive field properties, but the limited
spatial sampling obtained in these experiments make the data
inadequate to rule out the hypothesis of a salt-and-pepper
organization33,34.
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The present findings are consistent with the recent
demonstration of patchy projections from the LGN and higher
cortical areas into layer 1 of V1, and its association with the
expression of M2 muscarinic acetylcholine receptor and higher
spatial frequency preference at those locations22. The reported
clustering of orientation tuning preference in PV cells is
consistent with the present findings23. This is because PV
neurons pool the responses of nearby pyramidal cells and the
resulting bias in their tuning may reflect local homogeneities in
the tuning of pyramidal cells which, according to the present data,
show a degree of clustering. Altogether, growing evidence
suggests that mouse V1 may be more spatially organized than
previously thought.

It is worth emphasizing that the degree of spatial clustering in
the mouse is weak compared with that observed in higher
mammals5,35. Its presence, however, suggests that a similar
mechanism underlying the generation of cortical columns may be
at play in all mammalian species. Given the spatial scales involved
(Fig. 2), it is possible that the spatial clustering results from the
anatomical development of cortical minicolumns, where radially
arranged sister neurons36 acquire similar tuning and connections
with each other14,16,37,38. Such anatomical, minicolumns
are shared by all mammalian species, including monotremes,
and are postulated to have evolved in mammalian ancestors
alongside the emergence of a six-layered cortex39. In this context,
one hypothesis that deserves further study is the idea that the
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degree of spatial clustering in tuning properties across species
depends on differences in the horizontal dispersion of clonally
related cells, which appear to be larger in mouse than in
primate38. Such a mechanism predicts, and is consistent with, the
larger retinotopic scatter of receptive fields in species showcasing
a larger diversity in the local population40,41.

The finding that tuning is spatially clustered in mouse V1
raises a natural question: do mice have feature-based cortical
maps? In other words, is there a detectable, regular tiling of
preferences as seen in higher mammals? So far we have not seen
any evidence this is the case, but our data are limited by small
fields of view because of the restricted expression of GCaMP6
with adeno-associated virus (AAV) delivery. However, the
quasi-periodic pattern of spatiotemporal sensitivity described
recently22 suggests that this might be a real possibility. We are
currently conducting studies using transgenic animals and a
larger field of view that would allow us to test this tantalizing
possibility in the near future.

Methods
Animals. All procedures were approved by University of California, Los Angeles
(UCLA’s) Office of Animal Research Oversight (the Institutional Animal Care and

Use Committee), and were in accord with the guidelines set by the US National
Institutes of Health. A total of 30 C57BL/6J mice (Jackson Laboratory), both male
(10) and female (20), aged P35–56, were used in this study. Mice were housed
in groups of two to three in reversed light cycle. Animals were naive subjects
with no prior history of participation in research studies. We imaged 129 different
fields, and obtained data for 7,018 cells, for a median of 47 cells per field (range:
6–162).

Surgery. Carprofen and buprenorphine analgesia were administered
preoperatively. Mice were then anaesthetized with isoflurane (4–5% induction;
1.5–2% surgery). Core body temperature was maintained at 37.5 �C using a
feedback heating system. Eyes were coated with a thin layer of ophthalmic
ointment to prevent desiccation. Anaesthetized mice were mounted in a stereotaxic
apparatus. Blunt ear bars were placed in the external auditory meatus to
immobilize the head. A portion of the scalp overlying the two hemispheres
of the cortex (B8mm by 6mm) was then removed to expose the underlying skull.

After the skull is exposed it was dried and covered by a thin layer of Vetbond.
After the Vetbond dries (B15min) it provides a stable and solid surface
to affix an aluminium bracket with dental acrylic. The bracket is then affixed to
the skull and the margins sealed with Vetbond and dental acrylic to prevent
infections.
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Virus injection. A 3mm diameter region of the skull overlying the occipital cortex
was removed. Care was taken to leave the dura intact. GCaMP6-fast (UPenn Vector
Core: AAV1.Syn.GCaMP6f.WPRE.SV40; #AV-1-PV2822) was expressed in cortical
neurons using AAV. AAV-GCaMP6-fast (titre: B13 genomes ml� 1) was loaded
into a glass micropipette and slowly inserted into the primary visual cortex (V1)
using a micromanipulator. Two injection sites were centred around the centre of V1
and separated about 200mm apart. For each site, AAV-GCaMP6-fast was pressure-
injected using a PicoSpritzer III (Parker, Hollis, NH; four puffs at 15–20 pounds per
square inch with a duration of 10ms; each puff was separated by 4 s) starting at a
depth of 350mm below the pial surface and making injections every 10mm moving
up with the last injection made at 100mm below the pial surface. The total volume
injected across all depths was B0.5ml. The injections were made by a computer
programme in control of the micromanipulator and the Picosprtizer.

A sterile 3mm diameter cover glass was then placed directly on the dura and
sealed at its edges with VetBond. When dry, the edges of the cover glass were
further sealed with dental acrylic. At the end of the surgery, all exposed skull and
wound margins were sealed with VetBond and dental acrylic and a small, sealed
glass window was left in place over the occipital cortex. Mice were then removed
from the stereotaxic apparatus, given a subcutaneous bolus of warm sterile saline,
and allowed to recover on the heating pad. When fully alert they were placed back
in their home cage.

Control experiments. To identify signals originating from PV-expressing neurons,
we genetically labelled them. PV-IRES-Cre knock-in female mice (Jackson
Laboratories, stock no. 008069, generated by S. Arbor, FMI) were crossed with
male tdTomato reporter knock-in mice directly received from Jackson Laboratory
(stock no. 007905, ‘Ai9’, generated by H. Zeng, Allen Brain Institute). All
experimental mice were hemizygous for both transgenes (PV-Cre:Ai9).
Homozygous PV-IRES-cre mice used for the above breeding were from a F1 cross
of a male and female directly received from Jackson Laboratory.

We conducted similar experiments to isolate signals originating from VIP and
SOM inhibitory neurons. Homozygous VIP-IRES-Cre mice (Jackson Laboratories,
stock no. 010908, generated by Z. Josh Huang, CSHL) were crossed with
homozygous tdTomato reporter knock-in mice (Jackson Laboratories, stock no.
007905, ‘Ai9’, generated by H. Zeng, Allen Brain Institute). All mice were
hemizygous for both transgenes (VIP-Cre:Ai9 HET). VIP-Cre HET/Ai9 HET was
then backcrossed with parental homozygous VIP-IRES-Cre mice from JAX;
therefore, 25% offspring were homozygous for VIP-Cre and hemizygous for
tdTomato. Homozygous SOM-IRES-Cre mice (Jackson Laboratories, stock no.
013044, generated by Z. Josh Huang, CSHL) were crossed with homozygous
tdTomato reporter knock-in mice (Jackson Laboratories, stock no. 007905, ‘Ai9’,
generated by H. Zeng, Allen Brain Institute). All mice were hemizygous for both
transgenes (SOM-Cre:Ai9 HET). SOM-Cre HET/Ai9 HET was then backcrossed
with parental homozygous SOM-IRES-Cre mice from JAX; therefore, 25%
offspring were homozygous for SOM-Cre and hemizygous for tdTomato.
Finally, we crossed VIP-Cre HOM/Ai9 HET with SOM-Cre HOM/Ai9 HET
mice; therefore, 50% offspring were hemizygous for the three transgenes
(VIP-Cre:SOM-Cre:Ai9 HET). GCAMP6s was expressed in cortical neurons
using a Cre-dependent AAV injection (AAV1.Syn.Flex.GCaMP6s.WPRE.SV40;
# AV-1-PV2821; titre: B13 genomes ml� 1); therefore, just VIP and SOM
interneurons expressed the GCAMP6s calcium sensor.

Imaging. Once expression of Gcamp6f was observed in primary visual cortex,
typically between 11 and 15 days after the injection, imaging sessions took place.
Imaging was performed using a resonant, two-photon microscope (Neurolabware,
Los Angeles, CA) controlled by the Scanbox acquisition software (Scanbox,
Los Angeles, CA). The light source was a Coherent Chameleon Ultra II laser
(Coherent Inc, Santa Clara, CA) running at 920 nm. The objective was an � 16
water immersion lens (Nikon, 0.8 numerical aperture, 3mm working distance).
The microscope frame rate was 15.6Hz (512 lines with a resonant mirror at 8 kHz).
Eye movements and pupil size were recorded via a Dalsa Genie M1280 camera
(Teledyne Dalsa, Ontario, Canada) fitted with a 740 nm long-pass filter that looked
at the eye indirectly through the reflection of an infrared-reflecting glass (Fig. 1a).
Images were captured at an average depth of 210mm (90% of imaging fields within
the range 80–320 mm). During imaging a substantial amount of light exits from the
brain through the pupil. Thus, no additional illumination was required to image
the pupil. The platform was mounted on a rotary, optical encoder (US Digital,
Vancouver, WA) connected to an Arduino Mega 2560 board, which provided
direct access to movement information. Both locomotion and eye movement data
were synchronized to the microscope frames.

Visual stimulation. Hartley stimuli24,28 were generated in real-time with a
Processing sketch using OpenGL shaders (see http://processing.org). The stimulus
was updated four times a second on a BenQ XL2720Z screen refreshed at 60Hz.
The screen measured 60 cm� 34 cm and was viewed at 20 cm distance, subtending
112� 80 degrees of visual angle. The maximum spatial frequency was 0.15 cycles
per degree. A transistor-transistor logic (TTL) pulse was generated with an
Arduino at each stimulus transition. The pulse was sampled with the microscope
and time-stamped with the frame and line number that was being scanned at that

time. The time stamps provided the synchronization between visual stimulation
and imaging data.

The screen was calibrated using a Photo-Research (Chatsworth, CA) PR-650
spectro-radiometer, and the result used to generate the appropriate gamma
corrections for the red, green and blue components via an nVidia Quadro K4000
graphics card. The contrast of the stimulus was 99%. The centre of the monitor was
positioned with the centre of the receptive field population for the eye contralateral
to the cortical hemisphere under consideration. The location of the receptive fields
was estimated by an automated process where flickering checkerboard patches
(patch size 12� 12 deg, checker size 4 deg) appeared at randomized locations
within the screen. This experiment was ran at the beginning of each imaging
session to ensure the centring of receptive fields on the monitor.

Motion stabilization. Calcium images were aligned to correct for motion artefacts
in a two-step process. First, we aligned images rigidly in a recursive manner to
correct for slow drifts in the imaging plane. Pairs of neighbouring images in time
were aligned by finding the peak of their cross-correlation; then, pairs of averages
of such pairs were aligned; and so on and so forth. In the second step, we aligned
images non-rigidly to a reference mean image to correct for fast in-plane
movements, which are frequently observed during grooming. We iteratively
applied the Lucas–Kanade algorithm42 to non-rigidly match a reference mean
image, refining the estimate of this reference mean image after each alignment
iteration.

Segmentation. Following motion stabilization, we used a Matlab graphical user
interface tool developed in our laboratory to manually define regions of interest
corresponding to putative cell bodies. We used correlation and kurtosis images to
identify cell candidates43. The correlation image, corresponding to the average
correlation of a pixel and its eight neighbours across time, highlights regions of
space that covary in time. These images were computed after subtracting linear
de-trending44. The kurtosis image highlights regions in space with signals
composed of large, infrequent deviations or putative spikes, which biased our
selection of ROIs towards pyramidal cells.

We used these images to visually identify approximately circular regions of
space of an appropriate radius with high correlation, and high kurtosis. Clicking a
seed pixel at the centre of such a candidate patch allowed the definition of a ROI by
flood-filling an image corresponding to the correlation of the highlighted pixel and
every other pixel in the image field45. The interface then allowed the user to
dynamically grow or shrink the ROI to a desired size.

Signal extraction and spike inference. Following segmentation, we extracted
signals by computing the mean of the calcium fluorescence within each ROI and
discounting the signals from the nearby neuropil. We then used non-negative
deconvolution44,46 to estimate spikes from calcium traces. We solved the inverse,
constrained form of the non-negative deconvolution problem44 using the CVX
package47. To mitigate the effect of drifting background fluorescence, we modelled
the offset as slowly moving in time with a 10-knot cubic spline. We estimated the
noise of the measured calcium signals as the median absolute deviation of the first-
order derivative divided by a factor of 0:6745

ffiffiffi
2

p
� 0:954 (ref. 48).

The constrained deconvolution method of Pnevmatikakis et al.44 requires the
specification of the impulse response of the calcium indicator. We assumed an
exponential impulse response function and estimated its decay time using reference
data consisting of simultaneous loose-seal cell-attached recordings and calcium
imaging of GCamp6 in visual neurons27. We re-sampled this data set at a sampling
rate of 15.5Hz, ran non-negative deconvolution for a grid of values of decay times,
computed the R2 of the estimated calcium signal and the ground-truth cell spike
trains across the 11 cells of the data set, and selected the parameter set with the
largest mean R2. This yielded a decay time t1/2¼ 135ms for a validated mean R2

of .42 (compare Supplementary Table 3 in ref. 27).

Linear model. The response of a neuron to a stimulus was assumed to be given by
the linear model:

y tð Þ ¼
X

ox ;oy ;t

s ox;oy ; t� t
� �

w ox ;oy
� �

v tð Þþ ar tð Þþ bþ E tð Þ

Here E tð Þ is independent and identically distributed (i.i.d) Gaussian noise, s(ox, oy,
t� t) is the stimulus presented at time t, w(ox, oy) is the Fourier kernel, v(t)
is the temporal kernel, b is the offset during rest, a is the change in offset during
locomotion, y(t) is the measured response and r(t) is an indicator variable taking
the value 1 when the instantaneous velocity of the animal is at least 1 cm s� 1, and
zero otherwise.

We fit this model through alternating least squares49. We constrained the norm
of the temporal kernel to 1. We used a smoothness penalty for the spatial kernel50;
its strength was determined by fivefold cross-validation.

We compared the quality of fit of this generic linear model to a baseline model:

y tð Þ ¼ ar tð Þþ bþ E tð Þ

We considered a fit significant whenever the cross-validated sum-of-squared error
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SSEL of the generic linear model was:

rL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SSEL=SSEB

q
� 0:15

Here SSEB corresponds to the sum-of-squared error of the baseline model and rL is
analogous to a correlation (Pearson’s r) value. In all, 3,803/7,018 were significantly
tuned according to this criterion.

Data selection. For any one experiment, we accepted tuning profiles of each
where the linear model accounted for rLZ0.15 (which occurred in B54% of the
population) and the total number of such cells within the field exceeded 20. This
resulted in a subset of 45 experiments with a mean of 42 cells (range 20–94) that
were analysed here.

Data availability. All analyses were conducted in Matlab (Mathworks, Natick,
MA). The code and data are available upon request from the authors.
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