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Mpath maps multi-branching single-cell
trajectories revealing progenitor cell progression
during development
Jinmiao Chen1, Andreas Schlitzer1,w, Svetoslav Chakarov1, Florent Ginhoux1 & Michael Poidinger1

Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state

transition during cell differentiation and development. However, tools for constructing

multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an

algorithm that derives multi-branching developmental trajectories using neighborhood-based

cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath

constructs multi-branching trajectories spanning from macrophage/DC progenitors through

common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories

detect a branching event at the preDC stage revealing preDC subsets that are exclusively

committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals

sequential waves of gene regulation and temporal coupling between cell cycle and cDC

differentiation. Applied to human myoblasts, Mpath recapitulates the time course of

myoblast differentiation and isolates a branch of non-muscle cells involved in the

differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from

single-cell data.
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S
ingle-cell sequencing is a relatively recent technique that
offers unprecedented insights into the functionality and
development of complex cell lineages1–13. In particular, this

technique has revealed that a seemingly homogenous cell
population often comprises cells at various proliferating and
differentiating stages2,8–10. Furthermore, a continuum of
transitional cell states has been found to constitute the
progression between discrete states5,11. However, tools and
methodology for constructing cell lineages from single-cell data
are few, and have some limitations. The NBOR algorithm
(‘neighborhood-based ordering of single cells’), a method we
recently developed, leverages the continuum of transitional cell
states to reconstruct dendritic cell (DC) progenitor development
lineage9. However, NBOR assumes the developmental trajectory
is non-branching, and hence works optimally for linear
development lineage with no branching. Several other methods
that allow for branching have been recently proposed to enable
the analysis of more complex system. Diffusion map was recently
adapted for dimensionality reduction of single-cell data, and was
shown to outperform principal component analysis (PCA) and
t-distributed stochastic neighbor embedding for detecting
branching developmental trajectories from massive quantitative
PCR or RNA-seq data11,14. However, the performance of
diffusion map can be hampered by low number of cells,
especially when data are generated by RNA-sequencing14.
Another method named single-cell clustering using bifurcation
analysis (SCUBA) detects branching events of development via
investigating dynamic changes of gene expression pattern using
bifurcation theory15. However, it assumes every branching event
gives rise to only two lineages and requires time-course data
sampled with sufficient temporal resolution. One other method
named monocle10 also produces multi-branching trajectories of
cells’ progress through differentiation. The algorithm first
represents each cell as a point in a high-dimensional Euclidean
space, and then reduces the dimensionality using independent
component analysis. In the low-dimensional space, monocle
constructs a minimum spanning tree (MST) to connect the cells,
and identifies the longest backbone path through the MST.
However, with the latest single-cell RNA-seq technologies
measuring thousands and even tens of thousands of cells, MSTs
connecting a large number of cells become complex and difficult
to interpret.

To overcome the limitations of existing methods, we here
propose a novel algorithm termed Mpath for constructing multi-
branching single-cell trajectories of cellular state transition from
single-cell RNA-seq data. Mpath is flexible in identifying both
linear and branching development pathways. It does not require
massive number of cells or time-course data. Furthermore, it can
infer progenitor stage progression and identify subset-committed
progenitor cells using only signature genes derived from
comparing end stages of differentiated cell subsets. We show
the utility of this algorithm on our recently published conven-
tional dendritic cell (cDC)9 and publicly available human
myoblast data sets10. Using these data sets, we show that
Mpath produces more biologically relevant results as compared
with existing methods. And it is the only method that faithfully
recapitulates previously published experimental data of cDC
development in particular the exclusive cDC subset-commitment
of cDC progenitors.

Results
General framework of Mpath. As illustrated in the flow
chart (Supplementary Fig. 1), Mpath first clustered the cells and
designated landmark clusters with each representing discrete cell
states. When applied to a set of single-cell data comprising known

progenitor states (such as with a time course or through fluor-
escence activated cell sorting (FACS) sorting), landmark clusters
comprise cells mainly from one population (as defined by the
time points or the FACS sorting). It subsequently identified cells
that were potentially transitioning between landmark states based
on their similarities in transcriptional profiles shared with both
end states. The count of such cells was then used to estimate the
likelihood of the state transition being true. A pair of landmark
states with high count of such cells was likely two adjacent stages
along the developmental lineage. Mpath then built a neighbour-
hood network of landmarks in which edges connecting land-
marks were weighted by the number of cells that were at
transitional stage. As edges of low weights were likely artifacts
owing to noise, Mpath removed edges with low cell count support
using a heuristic approach, giving rise to a trimmed network that
allows connecting all landmarks by including the minimal
number of edges and the maximum number of cells on edges. The
trimmed network reconstructed a multi-branching state transi-
tion network of cellular development and differentiation. Lastly,
Mpath placed individual cells in order along the developmental
trajectories between every pair of neighbouring landmark states.
A two-dimensional visual example of the algorithm for going
from a point cloud to a state transition graph and cell re-ordering
is illustrated in Fig. 1. Detailed description of Mpath is given in
the Methods section. Next, we applied Mpath to two single-cell
differentiation data sets of biological relevance including cDC
(ref. 9) and human myoblasts10.

Mpath constructed multi-branching dendritic cell lineages.
Murine cDCs are constituted of two main lineages, namely
cDC1 and cDC2 (refs 16,17), each controlled by distinct
transcriptional programs which start with the macrophage and
dendritic cell progenitor (MDP), followed by the common DC
progenitor (CDP) and then pre-dendritic cell (preDC), which
migrate to peripheral organs and terminally differentiate into
cDC1 and cDC2 subsets9. In our recent study, we isolated all
mouse bone marrow DC progenitors, including 59
Lin�CD11c�MHCII�CD135þCSF-1RþCD117hi MDPs, 96
Lin�CD11c�MHCII�CD135þCSF-1RþCD117int CDPs and
96 Lin�CD11cþMHCII�CD135þCD172a� preDCs, by flow
cytometry and assessed their single-cell transcriptome by
microfluidic single-cell messenger RNA sequencing9. Using this
approach, we showed that early lineage-priming occurs in the
bone marrow at the CDP level and identified cDC1 and cDC2-
committed preDCs in the bone marrow9. Here, using Mpath
analysis, we confirm and extend our previous findings. Mpath
was applied using mature cDC1 versus cDC2 signature genes
derived from microarray analysis of FACS sorted splenic cDCs
(GSE60782). As described in the landmark designation step of
Mpath methodology, Mpath clustered cells using these signature
genes (Fig. 2a) and identified the inflexion point of number of
landmarks versus number of clusters to be 11 (Fig. 2b). Among
the total 11 clusters, 8 landmark clusters were designated
(Fig. 2c). Next Mpath reconstructed a state transition network
to infer putative transitions between the landmark states
(Fig. 2d,e). The resulting state transition network (Fig. 2e)
recapitulated the known cascade starting with MDP, then CDP
and lastly preDC. However, according to the state transition
network, Mpath identified different stages of DC progenitors.
Landmark MDP_a and MDP_b were early and late MDP states,
respectively; landmark CDP_a and CDP_b were early and late
CDP states, respectively. Notably, it detected a branching event at
the early preDC stage revealing divergent cell fates of single
preDCs. Two separate lineages branched out from common early
preDCs giving rise to distinct late preDC populations which
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potentially constitute immediate precursors of cDC1 and cDC2
subsets as recently published9.

Mpath-derived DC lineages confirm early DC subset commit-
ment. To further delineate the Mpath-derived state transition
network, we performed connectivity map (cMAP)18 analysis
using mature cDC1 versus cDC2 signature genes to identify
putative cDC subset-primed cells at MDP, CDP and preDC
stages. Similar to gene set enrichment analysis, cMAP is a
pattern-matching tool that can be used to detect similarities
between cells and gene signatures. cMAP analysis suggested
priming towards the cDC1 lineage can potentially occur as early
as MDP stage, whereas priming towards the cDC2 lineage was
only detected from CDP stage onwards (Fig. 3a). The number of
subset-primed cells increased along cell maturation from MDP
through CDP to preDC (Fig. 3a). The ratio of cDC1-committed
to cDC2-commited cells is in agreement with the notion that
cDC2 cells are more abundant in number compared with cDC1
cells19. Tracking the changes in the proportion of subset-
committed cells through the state transition network revealed
that majority of the cells was uncommitted before the branching
point (Fig. 3b). A minority of late CDPs and early preDCs were
either committed to cDC1 or cDC2, implying dual subset
potentials at late CDP and early preDC stages. From the
branching point onwards, the proportion of subset-committed
cells substantially increased and the dual subset potential was lost.
The branch spanning preDC_a, preDC_b and preDC_c was
exclusively committed to cDC2 while the branch spanning
preDC_a and preDC_d was exclusively committed to cDC1.
Based on these observations, we annotated the state transition
network for its biological relevance (Fig. 3b).

To further verify the annotation of the state transition network,
we derived signature genes of preDC_a, preDC_c and preDC_d
landmarks via ANOVA differential expression analysis
(Supplementary Fig. 2a, Supplementary Data 1). Gene ontology
analysis of these ANOVA derived genes revealed that along the

development from preDC_a to preDC_c or preDC_d, biological
processes associated with cell cycle and proliferation decreased,
whilst immune related functions such as antigen presentation,
immune response and cell activation increased (Supplementary
Fig. 2b,c). Major histocompatibility complex (MHC) class II
molecules (H2-Aa, H2-Ab1 and H2-Eb1) and associated molecule
Cd74 were upregulated only at preDC_c and preDC_d, the two
end stages of preDC differentiation (Fig. 3c). The bone marrow
egression marker Ccr2 was highly expressed in both preDC_c and
preDC_d, implying these cells were about to migrate from bone
marrow to blood (Fig. 3d). In addition, Ly6d, Siglech and Cd11c
were significantly (adjusted P valueo0.05, ANOVA) down-
regulated in preDC_c and preDC_d compared with preDC_a
(Supplementary Data 1). The expression of higher levels of MHC-
II and Ccr2 together with lower levels of Ly6d, Siglech and Cd11c
are known hallmarks of DC maturation and differentiation9,20.
As such, our analysis suggests preDC_a represents an early
preDC state having a proliferative signature in addition to being
less differentiated; preDC_c and preDC_d represent further
differentiated cell states with lower capacity of proliferation but
transcriptomic commitment to either cDC1 or cDC2. Our
findings implied that a switch from cell cycle and proliferation
to cell differentiation occurred during cDC maturation and
development. This proliferation to differentiation switch was also
observed at the CDP stage as landmark CDP_b downregulated
cell cycle genes compared with landmark CDP_a (Supplementary
Table 1). Our observations are in agreement with earlier findings
where DC progenitors were shown to downregulate their
proliferation activity on differentiation9,20.

Previously reported cDC1 master regulators (Id2 (ref. 19),
Batf3 (refs 21,22)) were only upregulated in landmark preDC_d
(Fig. 3e). Another well-studied cDC1 marker, Irf8 (ref. 19), was
found to be upregulated starting from early CDP stage then
downregulated in preDC_c but not preDC_d (Fig. 3e). Recently
described cDC1 early markers, Kit (refs 22,23) and Cd24a
(refs 9,23,24), were upregulated in preDC_d but not in preDC_a,
preDC_b or preDC_c (Fig. 3e). Other markers for which there is
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Figure 1 | A two-dimensional visual example of Mpath algorithm. (a) Identify the nearest two landmarks for every cell. (b) Build neighbourhood network

to connect the landmarks. Numbers on edges indicate the number of cells for which the two landmarks on both ends of the edge are the nearest

neighbouring landmarks. (c) State transition network after trimming edges with lower cell count support. (d) Project individual cells onto the edges and

re-order the cells according to the position of projection points.
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some evidence for their involvement in cDC1 development (Tlr3
(ref. 23), Ifi205 (ref. 23), Ncf4 (ref. 23) were also significantly
(adjusted P valueo0.05, ANOVA) upregulated in preDC_d
compared with preDC_c (Supplementary Data 1). On the other
hand, previously reported cDC2-specific markers and dominant
transcription factors (Irf4 (refs 25,26), Cx3cr1 (ref. 19), Klf4
(ref. 27), Rel (ref. 28), Cd209a (ref. 25) and Sirpa (ref. 24) were
only upregulated in landmark preDC_c (Fig. 3f, Supplementary
Data 1). The progression of these marker expression provided
further evidence that preDC_d and preDC_c were committed to
cDC1 and cDC2, respectively.

In addition to the previously described markers, our analysis
identified new putative markers for early uncommitted, cDC1-
committed and cDC2-committed preDCs (Supplementary
Fig. 2a, Supplementary Data 1). Both cDC1- and cDC2-
committed preDCs upregulated transcriptional co-activator
CIITA (Supplementary Fig. 2d) that was reported as the master
regulator of MHC class II genes29. Moreover, the up-regulation of
CIITA paralleled that of major MHC class II molecules (H2-Aa,
H2-Ab1 and H2-Eb1) and associated molecule Cd74
(Supplementary Fig. 2d, Fig. 3c). CIITA has been referred to as
the master control factor for the expression of MHC class II
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genes29. And it has been shown to exhibit differentiation-stage-
specific pattern of expression that precisely parallels that of
MHCII genes30. Our Mpath analysis implies CIITA is responsible
for driving the activation of MHCII genes during DC early
development in the bone marrow. In addition, transcriptional
factor Irf5 was also found to be upregulated in both subset-
committed preDCs (Supplementary Fig. 2d). Novel putative
transcriptional regulators of pre-cDC1 included Ifi205 and Pbx1
that were recently described in our previous study9, as well as
Lbh, Mnda and Rbbp7 (Supplementary Fig. 2e). Their
involvement in cDC1 development remains unknown.
Compared with cDC1, cDC2 comprises more heterogeneous
cell populations and its development is less understood. We
identified several putative early regulators for cDC2 lineage,
including Atf3, Fosb, Ifi204, Irf7, Junb, Mphosph8, Nfkbiz, Pfdn5,
Zeb2 and Zfp36 (Supplementary Fig. 2f). Their roles in cDC2
commitment remain to be investigated. Besides transcriptional
regulators, other types of putative markers were also identified
(Supplementary Data 1).

Guided by a reference data set of mature cDC1 and cDC2,
Mpath was able to accurately recapitulate the progression from

MDP through CDP to preDC, at the same time capture both the
proliferation to differentiation switch and cell marker progres-
sion, and elucidated the branching event that led to exclusive
commitment to cDC1 or cDC2 lineages. This in depth delineation
of the transcriptomic events leading to terminal DC differentia-
tion illustrates the power of Mpath.

Mpath re-ordered cells and revealed waves of gene regulation.
Mpath re-ordered individual cells along DC developmental traje-
ctories to resemble pseudo-temporal kinetics of gene expression
during differentiation. It then identified genes whose expression
changed significantly (adjusted P valueo0.05, likelihood ratio
test) as a function of the pseudo-temporal ordering using
generalized additive models (GAMs)31. Finally, it performed
cluster analysis on the differentially regulated genes to classify
them based on pseudo-temporal expression patterns. This
analysis identified seven distinct clusters of genes that were
regulated differentially during development from CDP to cDC2-
committed preDC (Fig. 4a, Supplementary Data 2). Clusters 3
and 7 included genes mainly involved in mitosis and synthesis
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phases of cell cycle respectively (Fig. 4b–d). Expression of these
genes showed an overall downward trend, suggesting DC
progenitor decreased cell cycle and proliferation as they became
more differentiated to the late subset-committed preDC stage. It
is expected that CDPs and early uncommitted preDCs were less
differentiated and in a more proliferative state as compared with
the more differentiated late subset-committed preDCs. Notably,
expression of the mitosis and synthesis genes followed two nearly
out-of-phase waves with respect to the pseudo-temporal order.
When mitosis genes were upregulated, synthesis genes were
downregulated and vice versus. It appears that this lineage
undergoes several cell-cycle peaks during DC maturation. Cluster
1 comprised genes that were first highly expressed in CDPs and
then gradually downregulated. These genes were significantly
(adjusted P valueo0.05, DAVID gene ontology analysis)
enriched for biological processes central to RNA processing,
chromosome/chromatin organization and metabolism (Fig. 4e).
In particular, expression of genes associated with chromosome/
chromatin organization shows similar trends as cell cycle genes,
suggesting that the remodeling of chromatin occurs during cell
cycle. Chromatin remodelling is known to be crucial during
development32 and haematopoietic differentiation33. Mpath
analysis showed a temporal coupling among cell cycle,
chromatin organization and cell differentiation, implying these

processes are interrelated during DC differentiation. Cluster
2 included genes that were highly expressed in CDPs and rapidly
downregulated in early preDCs. These genes were highly enriched
for biological processes central to translation, protein transport
and metabolism (Fig. 4f). The differentiation of monocytes into
DCs and the development of DCs in lymphoid organs and
peripheral tissues have been shown to be dependent on metabolic
pathways34,35. However little is known about the metabolism of
CDPs or MDPs. Our analysis implies the role of metabolism
during DC development from bone marrow-derived precursors.
Cluster 6, including genes such as Spib, Tcf4, Siglech, Ly6d and
Itgax, was first upregulated on transition from CDP to preDC and
then downregulated as preDCs became more differentiated
towards the cDC2 lineage. Cluster 4 constituted a second wave
of gene activation occurring at a later time point on the transition
from early preDC to late cDC2-committed preDC. During the
last wave of transcriptional changes, genes from cluster 5 were
sharply upregulated in the cDC2-committed preDCs. These genes
were enriched for biological processes central to antigen
processing and presentation via MHC class II (Fig. 4g) which
marks further maturation and differentiation of preDCs.
Similarly, during development from CDP to cDC1-committed
preDC, we identified six distinct clusters of differentially
expressed genes (DEGs); and the final wave of gene activation
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was also involved in MCH class II and immune response
(Supplementary Fig. 3, Supplementary Data 3). Collectively, by
re-ordering individual cells along the developmental trajectories,
Mpath analysis elucidated phase-dependent waves of trans-
criptional changes, and highlighted the chronological
relationship of gene regulation during DC development.

Experimental validation of Mpath results. Mpath analysis
showed that cell cycle and proliferation genes were upregulated in
early uncommitted preDCs, and downregulated in late cDC1-
committed or cDC2-committed preDCs (Fig. 4, Supplementary
Fig. 2b). To validate these observations, we assessed the
proliferation of early uncommitted, late cDC1-committed or
cDC2-committed preDCs in vivo in the bone marrow of Fucci
(fluorescent ubiquitination–based cell-cycle indicator) reporter
mice36. In these mice, green-emitting fluorescent protein Azami
Green was fused to the protein geminin, whose expression is
associated with cells in the S, G2 and M phases of the cell cycle.
As reported in our previous study9, expression of the surface
proteins SiglecH and Ly6C distinguished 4 preDC subpopulations
each of which showed distinct developmental potentials.
SiglecH�Ly6C� population resembled cDC1-committed
preDCs that preferentially gave rise to cDC1; SiglecH�Ly6Cþ

population resembled cDC2-committed preDCs that
preferentially gave rise to cDC2; SiglecHþLy6C� and
SiglecHþLy6Cþ populations resembled uncommitted preDCs

that gave rise to both cDC1 and cDC2 (Fig. 5a). Therefore, we
measured the frequency of proliferating cells in each preDC
population in the fucci reporter model (Fig. 5b). Statistical
comparison indicated that SiglecHþLy6C� population which
marks uncommitted preDCs has significantly (adjusted P
valueo0.05, Mann–Whitney test) more proliferating cells as
compared with each of the rest populations. Another
uncommitted preDC population SiglecHþLy6Cþ also
displayed elevated proliferation as compared with subset-
committed preDCs, though the differences were not significant
(adjusted P value40.05, Mann–Whitney test). Our in vivo
proliferation assay validated Mpath results that DC progenitors
decreased their proliferation as they became more differentiated
towards the cDC1 or cDC2 lineage. This also confirms the results
achieved in our previous work9.

In addition, Mpath analysis identified putative new markers of
cDC1- or cDC2-committed preDC subsets. We verified some of
these markers by using flow cytometry. Cd74 was identified by
Mpath as a common marker for cDC1- or cDC2-committed
preDCs (Fig. 3c). As indicated in our previous work9 and other
published reports37,38, SiglecHþ marks a subset of preDCs that
give rise to both cDC1 and cDC2, whereas SiglecH� preDCs
showed subset-specific priming. By flow cytometry, we gated
SiglecHþ and SiglecH� subpopulations of total preDCs, and
found that the expression of Cd74 was higher in the SiglecH�

population (Fig. 5c). It verifies Mpath results that Cd74marks late
preDCs that are exclusively committed to cDC1 or cDC2.
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Moreover, Mpath identified Cd209a and Cx3cr1 as markers of
cDC2-committed preDCs (Fig. 3f). Flow cytometry analysis
validated that the expression of Cd209a and Cx3cr1 was the
highest in SiglecH�Ly6Cþ subpopulation which is cDC2-
specific preDCs (Fig. 5d). On the other hand, Mpath
rediscovered Kit and Id2 as markers of cDC1-committed
preDCs (Fig. 3e). Flow cytometry analysis verified that the
expression of Kit and Id2 was much higher in SiglecH�Ly6C�

subpopulation which is cDC1-specific preDCs (Fig. 5d).

Interestingly, Id2 exhibited bi-model expression in cDC1-
committed preDCs, which suggests SiglecH�Ly6C� preDCs
are heterogeneous and can be further dissected into Id2þ and
Id2� subsets.

Together, by using Fucci reporter mice and flow cytometry, we
were able to validate the subpopulations of preDCs predicted by
Mpath. Additionally, we verified the switch from proliferation to
differentiation during DC maturation, as well as several putative
marker genes identified by Mpath.
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Mpath constructed the lineage of myoblast differentiation. We
also applied Mpath to the differentiation of primary human
myoblasts10. In this public data set we used, primary human
skeletal muscle myoblasts were first expanded under high-
mitogen condition and differentiation was then induced by
switching to low-serum medium. Cells were captured at 0, 24, 48
and 74 h after the medium switch and analyzed using microfluidic
single-cell RNA sequencing10. Mpath was applied to this data set
using a set of DEGs from an ANOVA of these time points, having
no a priori knowledge of the ordering of the time points. Mpath
designated eight landmark states including early and late states at
0 h and two distinct states at every time point of 24, 48 and 72 h
(Fig. 6a,b). It subsequently used cell counts on edges of the
neighbourhood network to infer putative transitions between the
landmark states (Fig. 6c,d). The resulting state transition network
was able to recapitulate the process of cell differentiation from 0
to 72 h. Notably, it decomposed cell differentiation into two
distinct paths starting from the late 0 h state. Markers of actively
proliferating cells, such as CDK1, were downregulated from T0_2
onwards (Fig. 6e), indicating cell-cycle exit immediately occurred
upon medium switch. Differential expression analysis revealed
that cells on path 2 upregulated several well-known regulators of
myogenesis, such as MYOG (ref. 39), MYOD1 (ref. 39) and
MEF2C (ref. 39), whilst cells on path 1 upregulated PDGFRA
(ref. 40) and SPHK1 (ref. 40; Supplementary Data 4), suggesting
that only path2 differentiated into muscle cells while path 1

contained interstitial mesenchymal cells. These findings are
consistent with early findings by monocle analysis10.

Among the DEGs between the two branches, several genes
showed opposite expression trends and their interactions appear
to play a role in myogenesis. An extracellular matrix molecule
Fibronectin 1 (FN1) was found to be upregulated only at the last
stage of the non-muscle path; simultaneously key marker of
muscle differentiation MYOG was upregulated at the last stage of
the muscle path (Fig. 6f). Fibronectin was recently shown to
promote migration, alignment and fusion of myoblast in an
in vitro myoblast cell model41. In addition, the non-muscle cells
upregulated PDL1 and mTOR signalling pathway as compared
with the muscle cells, whilst extracellular molecule IGF2 was
found to be upregulated on the muscle differentiating path
(Fig. 6g). PLD1 has been reported to positively regulate mTOR
signaling leading to the production of IGF2, an autocrine factor
instrumental for the initiation of myoblast differentiation42.
Moreover, PDGFRa was upregulated in the non-muscle path
whilst its ligand PDGFa was upregulated in the muscle path
(Fig. 6h). Recent reports have showed PDGFRa is expressed in
fibrocyte precursors and increased PDGFRa activation can drive
fibrosis40. Our findings strongly suggested cell–cell crosstalk
between the muscle and non-muscle lineages during myoblast
differentiation.

Mpath next re-ordered the cells along the two branches and
grouped genes with similar trends in expression. This analysis
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revealed seven temporal waves of transcriptional changes during
differentiation (Fig. 7a,b, Supplementary Data 5). Two clusters
(1 and 6) of genes showed distinct expression kinetics along the
muscle versus non-muscle development paths (Fig. 7a,b). Gene

cluster 1, enriched for muscle development process, was upregulated
only on the muscle differentiation path (Fig. 7a–c). Gene cluster 6
was upregulated only on the non-muscle path, and was enriched for
extracellular matrix organization and included genes encoding
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collagen (Fig. 7a,b,d). Other than clusters 1 and 6, the remaining
clusters followed almost identical dynamic trends on both branches.
Gene cluster 5 comprising mostly cell cycle genes was rapidly
downregulated immediately after the earliest state T0_1 (Fig. 7a,b,e).
Genes from cluster 2 were gradually downregulated and were largely
involved in RNA processing and splicing (Fig. 7a,b,f). Genes from
cluster 3 were gradually upregulated involving in amino acid
synthesis and protein translation (Fig. 7a,b,g). Genes from cluster 4
were also gradually upregulated involving in intracellular transport
and cell adhesion (Fig. 7a,b,h). Such synchronized gene expression
patterns again implied close cell–cell interaction and coordination
between the two branches.

Comparing Mpath with existing methods. We compared Mpath
with SCUBA, monocle, diffusion map, PCA and MST on the DC
progenitor data set, and evaluated their performance based on
published experimental data9. Our comparison showed that
Mpath produced more biologically relevant results and it is the
only method that faithfully recapitulates the branching of cDC1-
and cDC2-committed preDCs.

Comparing Mpath with SCUBA. We applied SCUBA (ref. 15)
to the single-cell RNA-seq data of DC progenitors using genes
that passed quality control (Fig. 8a) and mature cDC1 versus
cDC2 DEGs (Fig. 8b). In both cases, SCUBA identified MDP
cluster 1, CDP cluster 2, preDC clusters 3 and 4. And it derived a
binary tree structure in which a bifurcation event stems from
CDP cluster 2 giving rise to preDC clusters 3 and 4 on separate
branches. SCUBA preDC cluster 3 mainly consisted of cells from
Mpath defined early and intermediate preDCs; cluster 4 mainly
consisted of cells from Mpath defined late preDCs that were
committed to cDC1 or cDC2 (Supplementary Fig. 4a). To better

annotate SCUBA preDC clusters 3 and 4 for their biological
relevance, we performed a thorough examination of cells in these
two clusters using several approaches. Firstly, we performed
cMAP analysis using DEGs between mature cDC1 versus cDC2
and calculated the proportion of cDC1- or cDC2-committed cells
in each cluster. cMAP analysis showed that preDCs on one
branch contain both cDC1 and cDC2-committed cells, while
preDCs on the other branch contain cDC2-committed cells.
Secondly, we overlaid median expression of known markers on
SCUBA tree. In the case of using genes that passed QC (Fig. 8a),
early preDC marker Itgax was upregulated only in preDC cluster
3, while genes including Cd74, H2-Aa and Ccr2 which are known
to mark late preDCs were upregulated only preDC cluster 4. The
progression of these DC maturation markers suggests preDC
cluster 3 is early preDCs while preDC cluster 4 is late preDCs.
Furthermore, the well-known cDC1 markers Batf3, Id2 and cDC2
marker Irf4 were upregulated only in preDC cluster 4, suggesting
preDC cluster 4 are subset committed while cluster 3 are
uncommitted. Lastly, differential expression analysis between
SCUBA preDC clusters 3 and 4 revealed that genes upregulated in
cluster 3 were similar to an uncommitted preDC signature9

(Supplementary Data 6), whereas genes upregulated in cluster 4
included both cDC1 and cDC2 markers9 (Supplementary Data 7).
These observations strongly indicate the two branches identified
by SCUBA represented early uncommitted and late committed
preDCs, but not cDC1- or cDC2-committed preDC subsets.
Similar results were observed when SCUBA was applied using
mature cDC1 versus cDC2 DEGs (Fig. 8b). What SCUBA found
is not in agreement with previous report9 wherein solid
experimental validation showed preDC subsets made exclusive
pre-commitment to cDC1 or cDC2. In contrast, Mpath-derived
state transition network was able to recapitulate the branching
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event that starts from early preDC and arrives at cDC1- or cDC2-
committed preDCs separately.

Comparing Mpath with monocle. We applied monocle to the
same DC progenitor data set using genes that passed quality
control (Fig. 8c) and mature cDC1 versus cDC2 DEGs (Fig. 8d).
When applied with genes that passed QC, the backbone of
monocle-derived tree connected mainly CDP and preDC cells,
and majority of MDP cells were placed on branches (Fig. 8c).
When informed to construct paths with two end states, monocle
identified one end state being preDC on the backbone and the
other end state being MDP on a side branch. This is inconsistent
with the well-known DC development cascade from MDP to
CDP and then preDC. When applied with mature cDC1 versus
cDC2 DEGs, monocle identified a backbone path that connects
majorities of MDPs, CDPs and preDCs in cascade (Fig. 8d).
When informed of two end states, monocle identified a divergent
branch that comprised a subpopulation of CDPs. Still, monocle
was unable to uncover the previously reported branching event of
preDC commitment to cDC1 or cDC2 (ref. 9).

Comparing Mpath with diffusion map and PCA. We applied
diffusion map14 and PCA to the same DC progenitor data set
using genes that passed quality control (Fig. 8e,g) and mature
cDC1 versus cDC2 DEGs (Fig. 8f,h). Both methods were able to
visualize the developmental continuum spanning from MDP
through CDP to preDC. However, no evident branching structure
was detected even when DEGs between mature cDC1 and cDC2
were used. These two methods are not sensitive enough to
uncover cDC1- or cDC2-committed preDC subsets.

Comparing Mpath with MST approach. When applied to the
DC progenitor data set, Mpath identified two subsets of late
preDCs, that is, preDC_c and preDC_d, which were exclusively
committed to cDC1 or cDC2. Whilst they belonged to two
separate lineages, both are late differentiated preDCs and hence
shared high transcriptional similarities in term of cellular
maturation. This can also be seen in the hierarchical clustering,
in which landmarks preDC_c and preDC_d were grouped

together (Fig. 2a). Hierarchical clustering is usually unable to
inform the developmental relatedness between clusters. An
alternative approach called MST has been adopted by several
methods such as SPADE (ref. 43) and monocle10 to infer
developmental relatedness between cell subsets or individual cells.
MST approach utilizes point-to-point distances and identifies the
shortest path to connect all the cells or cell subsets. Here we
applied the conventional MST approach based on pair-wise
Euclidean distances between landmarks to infer the
developmental relatedness between landmark clusters. The
resulting network placed landmarks preDC_c and preDC_d
(that is, cDC1- or cDC2-committed preDCs) on the same branch
whilst landmark preDC_b (that is, intermediate cDC2 primed
preDCs) on the opposite branch (Fig. 8i). This implies cDC1-
committed preDCs give rise to cDC2-committed preDCs, which
is unlikely to be true. It has been reported solid experimental data
showing that subset committed preDCs exclusively give rise to
only cDC1 or cDC2 (ref. 9). These discrepancies mark the
limitation of conventional distance-based MST approaches.
While in Mpath, rather than point-to-point distances, we use
the count of cells on transitional stage as an indicator of
proximity between landmark states. This strategy of Mpath
heuristically reflects the continuum nature of cellular
development and the fact that cells progress between states
along a continuous path. Hence, by using transitioning cells to
pave the pathways from early progenitors, Mpath was able to split
the two transcriptionally similar end stages preDC_c and
preDC_d into separate branches, which has been biologically
proven. Our comparison highlights the advantages of Mpath over
MST approach in delivering relevant biological insights.

In summary, our comparison shows that the existing methods
either failed to produce biologically relevant results or were only
able to map the progression from MDP to CDP to preDC. Their
common limitation is that they are unable to detect the branching
event wherein subsets of preDCs are exclusively committed to
cDC1 or cDC2 lineage, which has been reported and supported
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Figure 10 | Mpath constructed reproducible cell lineages when the analysis was repeated with different diversity cut for distinguishing landmark

clusters from non-landmark clusters. We evaluated the robustness of Mpath by repeating the analysis of the DC progenitor data set using different

diversity cut for distinguishing landmark clusters. (a) Mpath results when diversity cut is 0.7. (b) Mpath results when diversity cut is 0.5.
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with solid experimental data9. The reason is mainly due to the
fact that the differences between cDC1 and cDC2-committed
preDCs are subtle, and the existing methods lack the sensitivity to
uncover these subtle but vital differences. In contrast, our Mpath
method by applying the concept of neighbouring cells on
transitional stages is able to rebuild the developmental paths
from MDP to CDP and then early uncommitted preDC towards
cDC1- or cDC2-committed preDC. This highlights the advantage
of our neighboring-state-transition based concept over existing
dissimilarity- or distance-based approaches.

Robustness of Mpath. The number of clusters initially
considered by Mpath is determined by the ‘cut’ position in the
hierarchical clustering dendrogram. We first assessed Mpath’s
robustness over different number of clusters by cutting the
dendrogram iteratively with increasing depth. The number of
landmark clusters distinguished from the entire cluster set first
increased linearly with the number of clusters, subsequently
plateaued when the number of clusters was 11, 12 or 13 (Fig. 2b),
but then decreased when the number of clusters was greater than
13. When we repeated the analysis by cutting the dendrogram at
different levels to generate 12 or 13 clusters, Mpath was able to
designate the same set of landmarks and derive reproducible state
transition networks (Fig. 9).

We continued to assess Mpath’s robustness over different
diversity cuts for distinguishing landmark clusters from the entire
cluster set (Fig. 10). When we increased the diversity cut from 0.6
to 0.7, the landmark number versus total number of clusters plot
showed the same pattern as when diversity cut 0.6 was applied.
The number of landmark clusters also first increased and then
plateaued when the number of clusters was 11, 12 or 13 and
decreased afterwards (Fig. 10a). Due to a less stringent diversity
cut 0.7, the maximum number of landmark clusters increased to
nine. Most importantly, Mpath reproduced similar landmark
cluster set and similar state transition network, which was still
able to recapitulate the development cascade from MDP through
CDP to preDC as well as the branching event from early preDC
to cDC1- or cDC2-committed preDC. The only difference is that
a new landmark MDP_4 was added between MDP_6 and CDP_2,
offering a higher-resolution delineation of MDP heterogeneity
and development. When we decreased the diversity cut to 0.5, the
landmark number versus total cluster number plot reproduced
the same pattern as previous (Fig. 10b). The optimal number of
clusters was still 11, but the number of landmark clusters reduced
to seven. Nevertheless, with 7 landmarks, Mpath was still able to
reconstruct the correct state transition network (Fig. 10b). The
only change is losing one MDP landmark state, which does not
affect the main structure of DC progenitor development pathway.

Collectively, Mpath was found to be robust and to generate
similar networks when input parameters such as diversity cut and
initial cluster number were changed.

Discussion
The Mpath algorithm is able to resolve multi-branching single-
cell developmental trajectories, allowing for multiple cell fates
stemming from a single progenitor cell type. Applied to mouse
bone marrow-derived DC precursors, Mpath reconstructed a
multi-branching state transition network of DC development and
differentiation. Our study revealed early subset-commitment
emerged from late CDP stage onwards and a branching event
occurred at the preDC stage. The branching event led to two
preDC subsets that were exclusively committed to cDC1 or cDC2
lineages. In addition, Mpath identified early transcriptional
markers for cDC1 and cDC2 subset commitment respectively.
These markers comprised known subset-specific genes and

putative novel regulators that were unknown to act in
differentiation. Lastly, it placed individual cells in order along
the developmental trajectories, revealing a switch from prolifera-
tion to differentiation during DC maturation. Furthermore, its
ordering of single cells discovered phase-dependent waves of gene
regulation on the scale of DC development and subset
differentiation continuum.

During multi-lineage differentiation, individual cells make
divergent fate decision responding to various environmental cues
or unequally partitioned signalling molecules during asymmetric
cell division4. As demonstrated by the analysis of DC progenitor
cells, Mpath is able to predict individual cell’s fate using signature
genes of differentiated cell types. The algorithm travels back in
time from differentiated cell subsets and maps the developmental
path from known terminal differentiated cell subsets back to
its progenitors. By doing so, Mpath identifies subset-committed
progenitor cells and early key regulators of subset differentiation.
Progenitor cells are usually rare and hence bulk transcriptomic
analysis is often not applicable. Mpath together with single-cell
RNA sequencing enables us to dissect early cellular development
and lineage commitment at progenitor stages.

As recent studies are carried out at single-cell resolution, it has
been discovered cellular continuums which span across different
cell populations9,10. Cellular development is now increasingly
recognized as a continuous process characterized by transitional
stages. For two adjacent stages along the developmental lineage,
one should expect neighbouring cells that are developing from
one stage towards the next. Inspired by this continuum concept,
Mpath uses count of neighbouring cells to estimate potential state
transition. Via neighborhood-based cell state transition mapping,
Mpath is able to resolve complex nonlinear developmental
lineages that could not be explained by pair-wise transcriptional
dissimilarities. Notably, it provides sufficient sensitivity to reveal
subtle but relevant differences in addition to mapping more
dominant changes of global progression. In the case of our DC
progenitor study, the differences between cDC1 and cDC2-
committed preDCs were critical but subtle compared with the
differences between early and late preDCs. Though existing
algorithms were able to recapitulate the global progression from
MDP to CDP to early preDC and lastly late preDCs, they could
not uncover the subtle divergence of subset commitment owing to
the fact that the differences between early and late preDCs
override the differences between cDC1- and cDC2-committed
preDCs. In contrast, Mpath was able to delineate the two separate
branches of cDC1 and cDC2 subset commitment respectively and
meanwhile map the more dominant progression from early to
late preDCs.

Collectively Mpath provides a general framework for detecting
nonlinear multi-branching developmental trajectories from
single-cell RNA-sequencing data without requiring a priori
knowledge of the temporal ordering of developmental subsets,
and utilizing genes only from end-stage contrasts. Our study has
demonstrated its utility in data sets of mouse bone marrow-
derived DC progenitors and primary human myoblasts. In future,
we will extend the Mpath algorithm for development processes
starting from multiple independent progenitor cell types, for
more heterogeneous single-cell data sets in which specific subset
information is not known.

Methods
Mpath constructs multi-branching cell lineages. We implemented the Mpath
methodology into an R package and will submit it to bioconductor. The Mpath
R-package and all data used for this study are publicly available for download at
https://github.com/JinmiaoChenLab/Mpath. A reference manual of Mpath is given
in Supplementary Software. As illustrated in Supplementary Fig. 1, Mpath takes as
inputs TPM, RPKM or FPKM values that are generated by third party programs,
and constructs cell lineages using the following steps.
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Landmark designation. Mpath first performs unsupervised hierarchical clustering
of cells using Euclidean distance and Ward.D agglomeration method. It subse-
quently generates cluster sets by iterative cutting of the dendrogram at increasing
depth. Each cluster set is then ranked according to ‘purity’, using the a priori FACS
sorting information and Shannon’s index, and size (relative number of cells in the
cluster). A cluster is then designated as a landmark cluster if it passes the
empirically determined cutoffs of 0.6 and 5% for purity and size, respectively.
Examination of a plot of landmark numbers versus total number of clusters for
each cluster set (Figs 2b and 6b) revealed an inflection point at which landmark
numbers reached a plateau and then decreased despite increasing numbers of
clusters. Mpath uses this information to determine the optimal cut of the
dendrogram. An average per gene expression for each of the designated landmark
clusters was then generated from all of the single cells in the respective clusters.
These averages which represent canonical cellular states were referred to as
‘landmarks’. The landmarks were named by the major cell type in the cluster.

Mpath defines landmarks as cell clusters that are of high purity and reasonable
size. More landmarks are favourable as it increases the resolution of cellular states.
With more clusters delineated, cluster purity increases while size decreases. The
number of landmarks first increases and then reaches a stabilized phase. Mpath
achieves the optimal number of landmarks at the point where the number of
landmarks starts to plateau whilst number of clusters increases. By using high
purity and large size as criteria for landmark designation, Mpath overcomes the key
challenge for any clustering algorithm, which is defining the optimal number of
clusters without a prior knowledge of the underlying cell subsets.

Construct weighted neighbourhood network of landmarks. Theoretically, cells
that are transitioning from one to another state share similarity in gene expression
with both end states9–11. Mpath thus calculates the Euclidean distance of each cell
to the landmarks. Subsequently each cell is placed in between its two nearest
neighbouring landmarks. Based on the count of cells placed between each pair of
landmarks, Mpath constructs a weighted neighbourhood network in which nodes
represent landmark states; edges connecting landmarks are weighted by the
number of neighbouring cells. Rather than pair-wise correlation or distance, Mpath
uses the number of neighbouring cells to estimate the likelihood of there existing a
true transition between states.

Trim the neighbourhood network to state transition network. Single-cell RNA-
seq data is noisy as a result of technical and biological variability8,44,45, including
low amount of starting material; amplification bias; and cell-to-cell variation in
sequencing efficiency. In addition, inherently stochastic gene expression can cause
heterogeneity among otherwise-identical cell populations. In the neighbourhood
network derived by Mpath, some connections made between landmarks can be
artifacts due this noise. To account for this, every connection in the network is
weighted by w(e), the number of cells that support the state transition. A higher
number of cells increase the likelihood of the reality of putative transition between
the landmark states. The Mpath algorithm trims the neighbourhood network to
remove connections that have low cell count support. Rather than choosing an
arbitrary cutoff value of cell numbers required for a transition to be accepted,
Mpath uses a heuristic approach to achieve an optimal trimmed network that
connects all landmarks and includes the maximum number of transitional cells by
using minimal number of edges. The trimming process uses �w(e) to measure the
distance between landmarks, and applies MST to find the shortest path that
connects all the landmarks. The resulting trimmed network is used to present a
candidate state transition network of cellular development.

Landmark annotation. To annotate the trimmed state transition network with
respect to the developmental system being studied, Mpath identifies DEGs between
landmark cells via ANOVA analysis. We adjusted the P values for multi-test
correction using Benjamini–Hochberg and identified DEGs using adjusted P values
threshold 0.05 (Supplementary Data 1, Supplementary Data 8). We then performed
gene ontology analysis of DEGs using DAVID: Functional Annotation Tools; and
identified significantly enriched biological processes using Benjamini adjusted
P value threshold 0.05. Based on gene ontology enrichment analysis of DEGs, we
inferred the biological processes involved at different cellular states and annotated
the landmarks as biologically meaningful cell populations. Furthermore, Mpath
overlays the median expression of marker genes on the state transition network to
visualize and verify the progression of gene expression along the developmental
paths.

In addition to differential expression analysis, Mpath annotates the landmarks
via cMAP (ref. 18) analysis using signature genes derived from literature or bulk
transcriptomics data. Signature genes for mature cDC2 and cDC1 were identified
from microarray data set GSE60783. They were used respectively as up and
downregulated genes to perform cMAP analysis to each single-cell. The P values
were calculated through 1,000 permutations. Cells whose gene expression profile
was significantly correlated with signature genes were selected by P valueo0.05.
cMAP scores were scaled to the range from � 1 to 1. Cells with positive cMAP
score are correlated with cDC2; cells with negative cMAP scores are correlated with
cDC1. By cMAP analysis, Mpath identifies cDC1 or cDC2 pre-committed cells at
MDP, CDP and preDC stages.

Re-ordering of single cells. To generate a more fine grained analysis, and move
from clusters back to the single-cell information, Mpath re-orders individual cells
along the developmental trajectories. Mpath computationally reconstructs cell
developmental pathways as a multi-destination journey on a map of connected
landmarks wherein individual cells are placed in order along the paths connecting
the landmarks (Supplementary Fig. 5a). Given a sequence of landmarks (a, b, c, d)
along a development path, Mpath places the cells in order on the edge connecting
the adjacent landmarks. It first identifies cells (ab1, ab2,y, abi,y) that are
potentially transitioning from landmark a to b based on their transcriptional
proximities to both landmarks. To determine the ordering of these cells along the
transition from landmark a to b, Mpath locates their projection points on the line
spanning landmark a and b (Supplementary Fig. 5b). A given cell ab1 is ortho-
gonally projected to the line spanned by landmarks a and b, and the projection
point x1 is identified. Mpath repeats this process for individual cells (ab1, ab2,y,
abi,y) and identifies their respective project points (x1, x2,y, xi,y). Cells (ab1,
ab2,y, abi,y) are then sorted according to the ordering of (x1, x2,y, xi,y) with
respect to landmarks a and b. The above procedure is then repeated for every two
adjacent landmarks, that is, (b, c) and (c, d), giving rise to a concatenated pseudo-
temporal ordering (ab1, ab2,y, abi,y) (bc1, bc2,y, bci,y) (cd1, cd2,y, cdi,y)
along the developmental path spanning landmarks a, b, c and d. The same process
is repeated for the developmental path spanning landmarks a, b, c and e. If a cell is
‘before’ the first landmark or ‘after’ the last landmark, we placed it on the extension
of the edges connecting its two nearest landmarks (Supplementary Fig. 5c).

Single-cell RNA-sequencing data mapping and preprocessing. Short reads
were aligned to mouse reference genome MM10 using RSEM (ref. 46). Transcripts
per million reads (TPM) values were calculated by RSEM using gencode annotation
version M4. TPM values were transformed to log2 scale. Outlier cells were
identified by SINGuLAR toolsets and were excluded for downstream analysis. Low
expression genes that have TPM values o1 in more than 95% of cells in each
group were excluded.

Differential expression analysis. For the DC progenitor data set, we applied
Mpath using mature cDC1 versus cDC2 DEGs derived from microarray data of
splenic DCs. Microarray data were quantile normalized and DEGs were identified
using Limma47. The DEGs include 1920 cDC2 upregulated and 2,180
downregulated genes (contrasted with cDC1). For the human myoblasts data set,
we performed ANOVA analysis of cells at 0, 24, 48 and 72 h and used the ANOVA
DEGs for Mpath analysis. We have used adjusted P value threshold 0.05 for DEG
selection and the P values were adjusted for multi-test correction using Benjamini–
Hochberg method. Analyses were performed in R version 3.0.2/Bioconductor.

Preparation of cell suspension and flow cytometry. Bone marrow was flushed
from the femur and tibia of one leg and was used after red blood cell lysis using
eBioscience RBC lysis buffer. Multi-parameter analyses of labeled cell suspensions
were performed on an LSR II (Becton Dickinson) and data were analyzed with
FlowJo software (TreeStar). Fluorochrome- or biotin-conjugated monoclonal
antibodies (mAbs) to the following were used: mouse IA/IE (M5/114.15.2) and
CD172a (P84) (both from BD Biosciences); CD11c (N418), CD209a (MMD3),
CD117 (2B8), Ly6C (HK1.4), SiglecH (440c), B220 (RA3-6B2), CD135 (A2F10),
CD49b (DX5) and CD19 (eBio1D3) (all from eBioscience); Ly6G (1A8) and CD3e
(145-2C11); CD74 (OX6) (from Abcam); and CX3CR1 (Catalog # FAB5825P)
(from RnD Systems). The streptavidin–phycoerythrin-CF594 conjugate (25-4317-
82) was from BD Biosciences. The dilution of antibodies was as follows: CD117
(2B8) 1:100, CD135 (A2F10) 1:100, CD74 (OX6) 1:50, CX3CR1 (Catalog #
FAB5825P) 1:50, streptavidin–phycoerythrin-CF594 conjugate (25-4317-82) 1:400,
all other antibodies 1:200.

Data availability. Data utilized in this study are available in Gene Expression
Omnibus with the accession codes GSE60781 (single-cell RNA-sequencing data of
mouse DC progenitor cells), GSE52529 (single-cell RNA-sequencing data of
human myoblast cells), GSE60782 (microarray data of mouse cDC1 and cDC2
cells). The Mpath R-package and all data used for this study are publicly available
for download at https://github.com/JinmiaoChenLab/Mpath.
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