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Efficient entanglement distillation without
quantum memory
Daniela Abdelkhalek1,2, Mareike Syllwasschy2, Nicolas J. Cerf3, Jaromı́r Fiurášek4 & Roman Schnabel1,2

Entanglement distribution between distant parties is an essential component to most

quantum communication protocols. Unfortunately, decoherence effects such as phase noise

in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement

distillation protocols have long been proposed to overcome decoherence, but their

probabilistic nature makes them inefficient since the success probability decays exponentially

with the number of steps. Quantum memories have been contemplated to make

entanglement distillation practical, but suitable quantum memories are not realised to date.

Here, we present the theory for an efficient iterative entanglement distillation protocol

without quantum memories and provide a proof-of-principle experimental demonstration.

The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil

entanglement for up to three iteration steps. The data are indistinguishable from those that

an efficient scheme using quantum memories would produce. Since our protocol includes the

final measurement it is particularly promising for enhancing continuous-variable quantum key

distribution.
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Polytechnique de Bruxelles, CP 165, Université libre de Bruxelles, Brussels 1050, Belgium. 4Department of Optics, Palacký University, Olomouc 77146,
Czech Republic. Correspondence and requests for materials should be addressed to R.S. (email: roman.schnabel@physnet.uni-hamburg.de).

NATURE COMMUNICATIONS | 7:11720 |DOI: 10.1038/ncomms11720 | www.nature.com/naturecommunications 1

mailto:roman.schnabel@physnet.uni-hamburg.de
http://www.nature.com/naturecommunications


L
ight is the most suitable carrier of quantum information
over long distances. Distribution of entangled states of light
among distant nodes of a quantum communication

network1,2 may be used for various purposes, such as quantum
cryptography3,4 or quantum teleportation5–7. However, the
transmission of quantum states of light is, in practice,
unavoidably affected by losses and other decoherence effects
that usually grow with distance. To fight these detrimental effects,
entanglement distillation can be used, which extracts from a large
number of noisy and weakly entangled states a smaller number of
copies with increased entanglement and purity8–16. Crucially,
entanglement distillation only requires local quantum operations
and classical communication between the spatially separated
parties holding parts of the entangled state. A canonical iterative
entanglement distillation protocol8,9 is illustrated in Fig. 1a.
At each step, two copies of a decohered entangled state are
consumed and, with some probability, one copy of a distilled state
with improved properties is produced, which in turn serves as the
input for the next round of the protocol. An efficient
implementation of this iterative protocol requires a quantum
memory17, which motivates the extensive current effort for
harnessing the quantum light-matter interface, ultimately leading
to quantum repeaters18. Without quantum memory, all
elementary two-copy distillation steps need to succeed
simultaneously, which imposes an exponential overhead in
terms of required resources, and hence drastically reduces the
success rate of the protocol. Let us consider N iterations of the
protocol and suppose, for simplicity, that the success probability
of each elementary distillation step is the same and equal to P. A
single attempt to perform N iterations requires 2N input states,
and all 2N� 1 elementary distillation steps must succeed
simultaneously. To obtain 1 distilled copy, one thus needs to
consume on average 2N=P2N � 1 input states. With quantum
memories, the distillation becomes far more efficient because the
successfully distilled states after each step of the protocol can be
stored and used in the subsequent step as required. Ideally, this
reduces the required number of input states to 2N/PN. Note that

the hardware-efficient pumping Gaussifier proposed in ref. 19
requires only a single quantum memory unit on each side, and
enables sequential processing of the individual copies of distilled
quantum state but achieves similarly inefficient distillation rate as
a purely optical scheme without quantum memory.

To date, single-copy entanglement concentration10,13,14,16,20,
and elementary two-copy entanglement distillation11,12 have been
demonstrated for both discrete- and continuous-variable
quantum states of light. A collective three-copy distillation
of continuous-variable entangled states could even be
implemented15, but it remained inefficient in the absence of a
quantum memory. Aside from this, an efficient realization of the
full iterative multicopy entanglement distillation protocol could
never be done because it is pending on operating an efficient
quantum memory.

Here, we address this challenge from an opposite viewpoint
and cancel out the need for quantum memories by exploiting
the recently proposed concept of emulation of a quantum
protocol21,22. The emulation replaces the actual physical
implementation of a certain quantum operation by suitable
postprocessing of measurement data and postselection, which
offers a high potential to circumvent hardware implementation
problems. In particular, the emulation of noiseless quantum
amplification and attenuation by processing the data resulting
from (eight-port) homodyne detection was proposed21,22, and a
proof-of-principle experimental emulation of single-mode
noiseless quantum amplification was reported23.

In this article, we apply such a strategy to multicopy
continuous-variable entanglement distillation. Our scheme is
solely based on the measurement data taken on a single beam of
light that carries a continuous stream of copies of a decohered
entangled state. Remarkably, due to the specific nature of the
measurement and postprocessing, neither quantum memories
nor the simultaneous physical realization of many copies are
required, in contrast to the common knowledge on entanglement
distillation. In principle, an arbitrary number of elementary
(two-copy) distillation steps can be emulated by postprocessing
the experimental data, solely limited by the length of
the measured data stream. Specifically, we demonstrate the
distillation of phase-diffused two-mode-squeezed states of light
by iterative Gaussification24–27 based on the interference of two
copies of the state on balanced beam splitters, followed by
projecting one output port on each side onto a vacuum state,
see Fig. 1b. Here, we show that this scheme can be emulated by
suitable processing of data obtained by eight-port homodyne
detection on each mode of each phase-diffused state. Crucially,
such emulation is completely indistinguishable from a full
physical implementation with even ideal quantum memories to
anyone outside Alice and Bob’s labs. The only difference is that
the distilled states are already detected and not physically
available for further processing.

Nevertheless, the data may be used to fully characterize the
distillation protocol and, for example, to extract a secret key from
the distilled states. Our procedure is therefore particularly suitable
for quantum cryptography, where it can convert seemingly
useless highly noisy states into states that allow for the extraction
of a secret key. It is similarly applicable to all related quantum
communication protocols provided they terminate with suitable
measurements.

Results
Emulation of iterative entanglement distillation. The starting
point of our work is the iterative Gaussification scheme24,25

illustrated in Fig. 1, which can serve for entanglement distillation
of non-Gaussian quantum states of light. Each elementary step of
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Figure 1 | Iterative entanglement distillation. (a) At each elementary step

of the protocol, two copies of the input state, described by the density

matrices r, are combined to produce, with some probability, one output

copy with better properties. (b) Elementary step of iterative Gaussification

of two-mode continuous-variable quantum states. Alice’s and Bob’s modes

locally interfere on balanced beam splitters and one output mode on each

side is measured with a photodetector. The procedure succeeds if both

modes are projected onto vacuum. A quantum memory was previously

deemed necessary for an efficient implementation of such an iterative

protocol as one must store the successfully distilled states in a quantum

memory to make them available for subsequent distillation steps.
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the Gaussification protocol requires two copies of a two-mode
entangled state, whose modes are labelled as A1, B1, and A2, B2,
respectively. Modes A1 and A2 belong to Alice, and modes B1 and
B2 are held by Bob. Both Alice and Bob combine their pairs of
modes on a balanced beam splitter and obtain output modes Aþ ,
A� and Bþ , B� , where þ and � refer to constructive and
destructive interference, respectively. Subsequently, Alice and Bob
perform photon number measurement on the modes A� and B�
and exchange the measurement outcomes. This elementary
distillation step is successful if both modes A� and B� are
projected onto a vacuum state, and the distilled state in modes
Aþ and Bþ provides the input for another round of the iterative
protocol. Suppose now that Alice and Bob decide to measure the
final distilled state with eight-port homodyne detectors, which
perform projections onto coherent states. The generally
impracticable implementation of the full iterative distillation
protocol can be replaced by the following emulation procedure as
depicted in Fig. 2. Alice and Bob perform the eight-port
homodyne detection directly on the distributed decohered
entangled state, and they repeat this measurement many times
to collect a sufficiently large data set. Let aj and bj denote the
measurement outcomes (complex amplitudes of coherent states)
for the jth copy of the distributed state. Alice and Bob then
combine the measurement results into pairs, say (a2n, a2nþ 1) and
(b2n, b2nþ 1), and emulate the interference on beam splitters
making the first layer of the protocol by performing simple
additions and subtractions of the measurement results, which
faithfully mimics interference of coherent states,

an;þ ¼ 1ffiffi
2

p a2n þ a2nþ 1ð Þ; an;� ¼ 1ffiffi
2

p a2n � a2nþ 1ð Þ;
bn;þ ¼ 1ffiffi

2
p b2n þb2nþ 1

� �
; bn;� ¼ 1ffiffi

2
p b2n �b2nþ 1

� �
:

ð1Þ

Projection of the output modes A� and B� onto vacuum is
equivalent to conditioning on an,� ¼ bn,� ¼ 0. After the

conditioning we obtain a reduced set of pairs a 1ð Þ
j ¼ anj;þ and

b 1ð Þ
j ¼bnj;þ where nj represent the values of n for which

the conditioning was successful. These pairs of data represent
effective measurement outcomes of eight-port homodyne
detections on modes A and B of the distilled two-mode state
after the first iteration of the distillation protocol. This procedure
can be repeated, and outputs of the kth round of the protocol,

a kð Þ
j and b kð Þ

j , can be used as inputs of the next round of the

protocol, resulting in a kþ 1ð Þ
j and b kþ 1ð Þ

j .
Since the probability to obtain the specific outcomes an,� ¼

bn,� ¼ 0 in eight-port homodyning vanishes, we need to modify

the conditioning to make the protocol practicable. A theoretically
appealing modification is to impose an acceptance probability
that is a Gaussian function of the complex amplitudes,

Pacc a� ; b�ð Þ ¼ exp � a�j j2

�n

� �
exp � b�j j2

�n

� �
: ð2Þ

Physically, this corresponds to a modified conditioning in Fig. 1b,
where modes A� and B� are projected onto thermal states with
a mean number of thermal photons equal to �n. The choice of
Gaussian Pacc guarantees that the iterative Gaussification protocol
indeed converges to a Gaussian state25,27, which greatly simplifies
its theoretical treatment and allows us to derive analytically the
asymptotic state to which the protocol converges.

To be more specific, let us consider as an example the
distillation of phase-diffused two-mode-squeezed states, as used
in our experiment. A covariance matrix of the initial Gaussian
symmetric two-mode-squeezed state before phase diffusion
reads1

gAB ¼

a 0 b 0
0 a 0 � b
b 0 a 0
0 � b 0 a

0
BB@

1
CCA: ð3Þ

Here, a denotes the (symmetric) variance of phase space
projections of the complex amplitude (quadratures) of the
individual modes, and b represents the correlations between
quadratures of modes A and B. Suppose now that modes A and B
are sent through noisy channels where random phase shifts fA

and fB are imposed. For the sake of simplicity, we shall
assume that the phase diffusions are independent and have the
same statistics for both modes (although our results can be
easily extended to more general scenarios). Note that the
phase-noise does not modify the value of parameter a, since
each mode is locally in a thermal state that is invariant under
phase-shift. So the covariance matrix of the phase-diffused
non-Gaussian state at the output of the noisy channels preserves
the form (3), but the phase diffusion reduces the intermodal
correlations,

aPD ¼ a; bPD ¼ qb; ð4Þ
where q¼hcosfA cosfBi quantifies the phase diffusion for
uncorrelated noise. The stronger the phase diffusion, the smaller
is |q|. We assume here that the phase noise is symmetric,
hsinfAi¼ hsinfBi¼ 0. If no phase diffusion is present (fA and
fB always zero) q equals unity. If the phases are fully random q
equals zero. For given fixed values of the random phase shifts fA
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Figure 2 | Emulation of iterative Gaussification protocol. A single, continuously operated source distributes copies of the entangled and decohered states

r to Alice and Bob. The states’ coherent amplitudes are locally measured with two out-of-phase BHDs each, the so-called eight-port homodyne detectors.

By prolonging the measurement time any quantity of copies may be generated. An emulated iterative distillation protocol based on the local operations and

classical communication is realized as described in the main text. In the end, Alice and Bob share data that are equivalent to that from measurements on

distilled entangled states.
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and fB, the covariance matrix gAB of an input two-mode
state is transformed according to RgABRT with

R fð Þ ¼

cosfA sinfA 0 0
� sinfA cosfA 0 0

0 0 cosfB sinfB
0 0 � sinfB cosfB

0
BB@

1
CCA ð5Þ

describing the action of the particular phase-shift values fA and
fB at the level of the covariance matrix. This expression has to be
averaged over the random phase shifts to obtain the resulting
covariance matrix of the de-phased state. Note that in this last
averaging step we assume that the mean values of quadratures of
the input state vanish, which is satisfied in our experiment where
we utilize squeezed vacuum state. If non-zero, the mean values
can be eliminated and set to zero by suitable local coherent
displacements, which in our emulation-based scheme can be
implemented simply as displacements of the measured data. With
the help of the general theory of iterative Gaussification protocols
presented in ref. 27, one can derive the following analytical
expression for the covariance matrix of the asymptotic Gaussian
state,

gAB;1 ¼ R fð Þ gAB þ 2�nþ 1ð ÞI½ �� 1RT fð Þ
� �� 1

f � 2�nþ 1ð ÞI: ð6Þ

Where, I denotes the identity matrix and h.if represents statistical
averaging over random phase diffusions.

The performance of the distillation protocol and its usefulness
for quantum key distribution is illustrated in Fig. 3. The
squeezing properties of the two-mode state can be characterized

by the squeezed variance Vsq defined as the minimum eigenvalue
of the covariance matrix, Vsq¼min(eig(gAB)), while entangle-
ment can be detected using the Duan–Simon criterion28,29.
Technically, one has to determine the minimum symplectic
eigenvalue m of a covariance matrix corresponding to the partially
transposed state, and entanglement is witnessed if mo1. For a
symmetric two-mode-squeezed state as in equation (3), we find
that Vsq¼ m¼ a� |b|, hence the presence of squeezing, Vsqo1,
also indicates that the state is entangled. In Fig. 3a, the
dependence of m on the dephasing parameter q is plotted for
the phase-diffused state (blue solid line) and the asymptotic
distilled state for different �n (red lines). The enhancement of
entanglement by distillation is clearly visible, and the closer we
choose �n to zero (which corresponds to projection on vacuum)
the stronger is the effect. Importantly, the distillation protocol can
even recover seemingly lost quadrature entanglement as the
distilled state can exhibit mo1 even if the initial phase-diffused
state exhibited m41. Distillation of entanglement necessarily
implies that the input state was (weakly) entangled too. However,
its initial entanglement is not visible via the covariance matrix
(which is consistent with a separable Gaussian state) but hidden
in higher-order correlations of the quadratures.

We can determine the maximum tolerable phase noise
(minimum |q|) for which we can still distil Gaussian entangle-
ment. For the pure symmetric two-mode Gaussian state with
covariance matrix given by equation (3), and a¼ cosh(2r) and
b¼ sinh(2r) we find that the Gaussian entanglement is asympto-
tically distilled provided that

�n
�nþ 1

tanh ro qj j: ð7Þ

Here, r denotes the squeezing parameter of the squeezed input
states. If we project on vacuum (�n¼ 0) then entanglement is
distilled for any r40 and |q|40. For �n40, however, entangle-
ment is only distilled in the asymptotic limit if the dephasing
is not too large (|q| not too small). For mixed states, the
entanglement might not be distillable even if �n¼ 0, c.f. the red
solid line in Fig. 3a which crosses the horizontal line m¼ 1 at
non-zero q.

We can go further and calculate the distillable secret key in
continuous-variable quantum key distribution K¼ IAB� wAE
(Fig. 3b), where IAB is the mutual information between Alice’s
and Bob’s data and wAE is Eve’s classically accessible information
on Alice’s quantum state. The key rate can be calculated
analytically using the optimality of Gaussian attacks30–32 and
the well-known formulas for entropies of Gaussian probability
distributions and Gaussian quantum states (see refs 1,21,33 for
more details). As shown in Fig. 3b, the distillation protocol can
significantly enlarge the range of q values for which a secret key
can be distilled. Crucially, the key rate for the distilled state can be
positive even if the initial phase-diffused state does not exhibit
squeezing, Vsq41, that is, if its covariance matrix is compatible
with that of a Gaussian separable state. In such a case, no secure
key could be obtained from the decohered state by any protocol
involving Gaussian measurements and a security analysis based
on the covariance matrix of that state. The emulation of iterative
entanglement distillation can thus efficiently convert seemingly
useless noisy data into data from which a non-zero secret key
could be extracted.

Experimental setup. A schematic picture of the experimental
setup is shown in Fig. 4. In a first step, we generated two Gaussian
entangled light fields, which was achieved by superimposing two
squeezed vacuum states on a balanced beam splitter with a 90�
phase-shift (refs 6,34). Previous realizations of multicopy
continuous-variable entanglement distillation protocols used the
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Figure 3 | Entanglement distillation of phase-diffused two-mode-

squeezed states. Squeezing variance Vsq (a) and distillable secret key K

(b) are plotted for the phase-diffused state (blue) and for the asymptotic

distilled state for different �n (red lines). �n gives here the mean number of

thermal photons of the state we project onto. The parameter q quantifies

the strength of the phase diffusion: q¼ 1 indicates that no phase noise is

present, whereas q¼0 corresponds to a completely randomized phase. The

parameters of the input state before phase-diffusion read a¼ 3.583 and

b¼ 3.417, which corresponds to variances of squeezed and anti-squeezed

quadratures Vsq¼ 1/6 and Vantisq¼ 7.
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so-called v-class entangled states12,15, which are simply achieved
by superimposing a squeezed-vacuum mode and an ordinary
vacuum mode on a balanced beam splitter. Replacing the vacuum
mode by a second squeezed light field increases the experimental
effort, but also allows, in principle, stronger entanglement, which
is needed for QKD. Our scheme has the advantage that the
(efficient) multistep iterative distillation of entanglement only
requires at-most two squeezed light sources, whereas an
actual hardware implementation of a (still inefficient) iterative
distillation without quantum memories requires doubling the
number of squeezed light sources with each iteration step. In our
proof-of-principle experiment the squeezed-vacuum sources
produced slightly different squeezing values, around 3 dB. Due
to this asymmetry the covariance matrix of the entangled state did
not hold the form given by equation (3) but was given by

gAB;exp ¼

3:20 � 0:13 � 2:90 � 0:04
� 0:13 6:24 � 0:03 6:08
� 2:90 � 0:03 3:70 � 0:06
� 0:04 6:08 � 0:06 6:83

0
BB@

1
CCA: ð8Þ

We reconstructed this covariance matrix by measuring the
prepared state without additional phase diffusion with the

eight-port homodyne detectors and using the formula
gAB,exp¼ 2gEHD� I, where gEHD is a covariance matrix
calculated directly from the eight-port homodyne data, and I
denotes the identity matrix. The small values at the off-diagonal
elements are not exactly zero due to imprecisions in the
quadrature phases. The different values of the diagonal
elements are mainly caused by the different squeezing values.
The matrix gAB,exp was reconstructed without correcting for
detection inefficiencies and detector dark noise. For this reason,
the covariance matrix is a good description of the actual
measurement data (but a less good description of the quantum
state before detection). We note that two-mode squeezing of
410 dB has already been demonstrated34 and our scheme would
work equally well with these higher squeezing strengths.

Our entangled modes were distributed between Alice and
Bob’s sites. During transmission, the modes were exposed to
independent phase noise, which models a noisy transmission
through, for example, optical fibres. The noise was applied by
varying the position of steering mirrors in the path, driven by
piezo electric transducers. We varied the strength of the noise by
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takes into account additional losses induced by the implementation of our

de-phasing channel, and, for simplicity, we assume an uncorrelated

Gaussian distribution of the random phase shifts with equal variances. The

general good agreement between simulation and experiment suggests that

our model represents a good approximation. The discrepancy for Vsq can be

explained by the fact that the actual phase noise does not precisely meet

our assumptions. By a slight change of q we could get a good fit for Vsq at

the expense of a worse fit for m. The short fading horizontal lines represent

the asymptotic limit for projection onto vacuum (�n¼0).
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amplifying or attenuating the voltage given to the actuators to
examine the behaviour of the protocol for different noise
strengths. For all measurements shown in the next section we
used the same phase diffusion which corresponded to q¼ 0.78. At
the sites, the received light beams were absorbed in eight-port
homodyne detectors, consisting of a balanced beam splitter and
two conventional balanced homodyne detectors (BHDs), which
measure the amplitude and phase quadrature on the first and the
second beam, respectively. This measurement corresponds to a
projection onto coherent states. The recorded data provided the
basis to execute the emulated distillation protocol.

Experimental results. In the experiment, we collected up to
5� 108 data points for a fixed strength q of phase noise, and we
emulated up to three rounds of the iterative entanglement
distillation protocol. To simplify data processing, we used a
deterministic conditioning rule and the elementary entanglement
distillation step was taken successful if |a� |oTacc and |b� |
oTacc, where Tacc is a tunable threshold. While such conditioning
may lead to some residual non-Gaussianity of the asymptotic
state, it does not modify the qualitative properties of the
distillation protocol. We have used the resulting data to
reconstruct the covariance matrix g of the two-mode state after
each iteration of the distillation protocol, and we have used the
covariance matrix to determine various properties of the distilled
state. The results are plotted in Fig. 5, which shows the two-mode
squeezing variance Vsq, the symplectic eigenvalue m witnessing
entanglement, and the quantity PG¼1=

ffiffiffiffiffiffiffiffiffi
det g

p
, which for

Gaussian states coincides with the state purity.
Figure 5a–c illustrate that each iteration of the protocol

increases squeezing and (Gaussian) entanglement of the distilled
state for a fixed threshold Tacc, as indicated by the reduction of
Vsq and m. Furthermore, PG increases with the number of
iterations, which is a strong indication that the purity of the state
is increased by the protocol. The absolute bounds presented in all
panels are the asymptotic bounds for projection onto vacuum
(�n¼ 0) calculated with equation (6). Statistical properties of the
random phase shifts required for evaluation of the phase average
in equation (6) were determined by comparing the covariance
matrices of the initial and the de-phased states. It is remarkable
how close the data come to the absolute bound with only three
iteration steps and a finite threshold Tacc. Figure 5d–f show the
practically more relevant dependence of Vsq, m and PG on the
total success probability of the protocol p, which was determined
as the ratio of the number of distilled copies of the state versus the
total number of input copies of the state. These plots fully
demonstrate the usefulness of an iterative distillation scheme.
For a fixed total success probability, more iterations may be
advantageous as they lead to better squeezing, entanglement and
purity. The crossover between one and two iterations is clearly
and unambiguously demonstrated by the data, while the
crossover between two and three iterations can be seen in the
region of 10� 4oPo10� 3, albeit the results in this region are
already affected by statistical uncertainties. We have repeated the
experiment for several different strengths of phase noise, and
the results were in all cases qualitatively similar to those shown
in Fig. 5.

We emphasize that the emulated iterative entanglement
distillation presented here is inherently as efficient as if the
protocol had been implemented with quantum memories, which
would store successfully distilled states from previous rounds of
the protocol to be utilized in the next rounds of the protocol. In
the emulation, we naturally use in the subsequent rounds of the
protocol only the successfully distilled states from previous
rounds, which ensures that the average number of input copies

that are consumed to produce a single distilled copy scales exactly
as if quantum memories had been used.

Discussion
Our proof-of-principle experiment paves the way to efficient
quantum communication protocols, where a specific data proces-
sing mimicks quantum memories (hence, provides the same
advantage in terms of resources) without actually requiring them.
This strategy can be applied at the end points of any entanglement
distribution scheme where the end users perform eight-port
homodyne detection. Importantly, our protocol is not limited to
schemes where entanglement is physically distributed, but is also
applicable to a prepare-and-measure quantum key distribution
schemes where Alice prepares Gaussian-modulated coherent states
and sends them to Bob who performs eight-port homodyne
detection35. Indeed, since the preparation of coherent states by Alice
is indistinguishable from the preparation of two-mode-squeezed
vacuum followed by eight-port homodyne detection on Alice’s
mode, the preparation can be equivalently interpreted as a
measurement on a (virtual) shared entangled state. Similarly, our
procedure is also applicable to the recently proposed and
demonstrated measurement-device independent continuous-
variable QKD protocol36,37, where Alice and Bob both prepare
randomly modulated coherent states and send them to an untrusted
relay which performs a continuous-variable Bell measurement on
the two modes and publicly announces the results of the
measurement. Given its wide range of potential applications, our
proposal represents a promising tool for improving the
performance of various quantum communication systems.

Methods
Squeezed-light preparation. The main light source was a Nd:YAG laser
that produced a continuous-wave field at a wavelength of 1064 nm, as well as fre-
quency-doubled light at 532 nm. The infrared light provided the control fields for the
active-length stabilization of two squeezed-light resonators containing 7% magne-
sium-oxid-doped lithium-niobate crystals (MgO:LiNbO3), as well as the optical local
oscillators for homodyne detection. The green light field was mode-matched into the
squeezed-light resonators to pump degenerate type I parametric-downconversion
processes, which provided resonator output modes at 1064nm in squeezed-vacuum
states. The squeezed-light resonators were singly resonant for 1064 nm, had a
standing-wave and half-monolithic design, and a length of about 40mm. The reso-
nators’ coupling mirrors were attached to piezo electric transducers to stabilize the
cavity lengths on resonance using the Pound–Drever–Hall locking scheme38,39. An
active temperature control stabilized the crystal temperatures at phase matching of the
fundamental and the harmonic fields at about 60 �C.

Light detection and data acquisition. The two-mode (squeezed) state was
detected with two eight-port homodyne detectors incorporating altogether
four conventional BHDs. Each BHD consisted of a balanced beam splitter, two
high-quantum efficiency PIN photodiodes and used a homodyne local oscillator
power of about 3mW at 1064 nm. The difference photo-electric current of the two
photodiodes was amplified and transferred to a voltage by a trans-impedance
amplifier. The voltage signal was then mixed with a 6.4MHz electronic local
oscillator, anti-alias filtered with a corner frequency of 400 kHz and finally
synchronously sampled at a frequency of 1MHz.

Data availability. The data that support these findings are available from the
corresponding author on request.
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