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Quantum mechanical effects in plasmonic
structures with subnanometre gaps
Wenqi Zhu1,2, Ruben Esteban3, Andrei G. Borisov3,4, Jeremy J. Baumberg5,

Peter Nordlander6, Henri J. Lezec1, Javier Aizpurua3 & Kenneth B. Crozier7,8

Metallic structures with nanogap features have proven highly effective as building blocks for

plasmonic systems, as they can provide a wide tuning range of operating frequencies and

large near-field enhancements. Recent work has shown that quantum mechanical effects

such as electron tunnelling and nonlocal screening become important as the gap distances

approach the subnanometre length-scale. Such quantum effects challenge the classical

picture of nanogap plasmons and have stimulated a number of theoretical and experimental

studies. This review outlines the findings of many groups into quantum mechanical effects in

nanogap plasmons, and discusses outstanding challenges and future directions.

A
s a cornerstone of nanophotonics, the field of plasmonics, which studies the coupling
between photons and collective oscillations of electrons, has seen tremendous
development during the past few decades1,2. Originally, research in this field was

mainly concerned with the resonant interaction between light and metallic nanostructures that
enables localization of electromagnetic fields at the sub-wavelength scale, as well as enhancement
of optical absorption and scattering phenomena3,4. The field has quickly expanded to an
interdisciplinary one that spans optics5,6, material science7,8, chemistry9, biology10 and energy11,
owing to the flexibility with which the plasmonic resonances can be engineered12. Interest in
metallic structures with nanogap features has been propelled mostly by important applications in
spectroscopy13–15, and in particular, by the experimental reports of surface-enhanced Raman
scattering (SERS) from single molecules16–18. The extreme level of sensitivity possible with these
structures arises from the localized surface plasmon resonances associated with the nanogap3,19,
in which electric field intensity enhancements can reach E104. The general practice in
modelling such plasmonic resonances is based on classical electromagnetic theory, where the
collective motion of the electrons is lumped into empirical or model local dielectric constants of
the materials1 and the distribution of the electromagnetic field is given by the solution of
Maxwell’s equations. This approach predicts monotonically increasing electric-field
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enhancements with decreasing gap distance, prompting the
development of nanotechnology for producing plasmonic
structures with ever-smaller gaps20–27.

Remarkably, recent theoretical28–31 and experimental32,33

advances show that as the gap distance enters the nanometre
and then subnanometre scale, the quantum nature of the
electrons and the nonlocal screening34,35 associated with them
significantly alter the plasmonic response. In this quantum
regime, the classical descriptions fail to account for the actual
localization of the surface charges induced by an incident
electromagnetic field36–40. The spatial localization of the surface
charges can be characterized by the frequency-dependent
distance parameter dF, the Feibelman parameter41, which is in
the angstrom (Å) range. dF is defined as the position of the
centroid of the induced surface charge density with respect to the
geometrical boundaries36–40. The shift of the induced surface
charges with respect to the geometrical boundaries of the metal is
intimately related to the nonlocal screening of the electrons
and leads to an ‘effective’ modification of the metal interface
boundaries, creating an ‘effective’ gap distance that also
differs from the geometrical value42,43. This effect can be
described using model nonlocal dielectric functions with
different levels of sophistication in the theoretical
descriptions44–51.

Electron tunnelling across the gap at optical frequencies is
another relevant quantum feature that cannot be captured by a
classical theory. The process of electron tunnelling through
a potential barrier at lower frequencies is extensively discussed in
quantum mechanics. Examples of this effect include the strong
field ionization of atomic species that is used in the generation of
attosecond electromagnetic pulses52 and scanning tunnelling
microscopy (STM)—one of the most powerful methods of surface
analysis53,54. The tunnelling current in an STM junction is
triggered by the applied direct-current (dc) bias between the tip
and the surface. In the alternating-current (ac) regime, photon-
assisted tunnelling for metal-dielectric-metal or semiconductor
junctions has been thoroughly studied in the terahertz range55–58.
It is only recently that quantum mechanical theories59–66 and
experimental studies performed in well-controlled metallic gap
junctions67–73 have started to address the tunnelling phenomena
in plasmonics at optical frequencies. For a gap distance
comparable with the length-scale of the electron spill-out from
the interfaces, the electron densities at the metal surfaces start to
overlap. This means that the conduction electrons can tunnel
through the potential barrier across the junction at optical
frequencies, a precursor of the formation of touching metal
surfaces. The existence of such a phenomenon is essential to
explain the observed smooth transition of the plasmonic response
upon variation of the geometry from a subnanometre gap to
touching metal surfaces74–76.

We schematically illustrate the influence of these quantum
mechanical effects on plasmonic resonances of nanogap struc-
tures in Fig. 1. This figure depicts the energies of the plasmonic
modes as the gap distance between a pair of particles in vacuum is
decreased until they merge. Large gap distances correspond to the
classical regime, for which the local Maxwell’s equations correctly
describe the red-shift of the gap plasmon modes. As the gap
distance becomes smaller than a few nanometres (that is, below
E10dF), the system enters the quantum regime, requiring a more
detailed treatment. In the distance range where the conductance
between the particles remains sufficiently small, the nonlocal
screening is the dominant quantum effect on the optical response.
The evolution of the plasmon modes is qualitatively similar to
that predicted by the local classical model, but quantitative
differences emerge. To correctly quantify the nonlocal screening
effects and associated changes in plasmonic response, the surface

charge distribution must be considered accurately. As the gap
distance continues to decrease and the geometry is characterized
by gaps narrower than a ‘threshold tunnel-distance’ dth, the
electron tunnelling effect completely modifies the behaviour of
the plasmonic response: the red-shifting gap plasmon modes
progressively disappear and the blue-shifting charge-transfer
plasmons (CTPs) gradually emerge. Most importantly, this
transition occurs before the two particle surfaces touch. The
distance dth separating the nonlocal and tunnelling regimes is
typically in the subnanometre range. It can be understood as the
separation at which the tunnelling-induced conductance becomes
large enough to allow a significant fraction of the plasmon-
induced surface charges to tunnel across the gap in half an optical
cycle. Such threshold conductance can be estimated by sthEce0/
l, where c is the speed of light, e0 is the vacuum permittivity and l
is the wavelength67,76.

In this review, we first outline theoretical advances regarding
quantum mechanical effects in plasmonic structures with
subnanometre gaps. We then describe experimental studies that
have revealed the presence of these quantum effects on plasmonic
resonances. We further discuss potential applications of
combining quantum effects in nanogaps with plasmonic
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Figure 1 | The impact of quantum mechanical effects on plasmonic

resonances. Sketch of the different regimes for the plasmon resonances of

a sphere-dimer in vacuum identified as a function of the gap distance d.

These regimes are illustrated by the energies of the plasmonic modes

predicted by the classical (red dashed line) and quantum calculations (solid

lines). For large gap distances, the system is in the classical regime and its

response can be described using Maxwell’s equations with empirical or

model local dielectric constants of the metal eM. In the nonlocal regime

(dodNL), the actual position of the screening charges with respect to the

geometrical boundaries given by dF leads to an effective correction of the

‘physical’ gap distance compared with the geometrical gap distance d. The

nonlocal screening leads to deviations between the classical (dashed line)

and quantum descriptions (solid line). In the tunnelling regime, the ac

tunnelling current Jo across the junction strongly changes the optical

response, when the conductivity of the junction becomes larger than sth
(which sets the corresponding threshold gap distance dth). The plasmon

modes of the separated dimer are progressively extinguished, and the CTP

modes emerge before their direct geometrical overlap. We denote the

distance range where the electric tunnelling and/or the nonlocal screening

are important as the ‘quantum regime’. The plasmonic resonance in this

regime can be addressed using ab-initio approaches or model descriptions.

The transition between the different regimes is smooth and the boundaries

shown in the figure are only indicative.
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excitation. These exciting studies and their on-going development
clearly show the vitality of this research topic, which opens new
regimes in nanophotonics, bridging plasmonics, and electron
transport in nanoscale gap junctions.

Modelling quantum mechanical effects in the plasmonic
response
We start by discussing in detail the classical electromagnetics
description of plasmons in a nanoparticle dimer, that is, a pair of
nanoparticles separated by a small gap21. In classical modelling of
the plasmonic interaction between light and free electrons,
Maxwell’s equations are employed to describe the oscillating
electromagnetic field, and the collective motion of the electrons is
lumped into the metal permittivity. In the ‘local response’
approximation, the metal permittivity is taken as a local function
given by empirical data77 or by model descriptions, for instance
the Drude model1. This approximation has proven effective for
simulations of many plasmonic nanostructures3–6, and we refer
to such electrodynamic modelling as the ‘local classical model’.
Figure 2a shows local classical simulations of the extinction

cross-section spectra of a small dimer of sodium (Na) spheres
(described through the Drude model) as a function of gap
distance d. Na is often used for such calculations because it is a
good prototype for a free electron metal, and thus appropriate as
a reference for comparison with approaches that incorporate
quantum mechanical effects64. For finite gap distances, the
fundamental gap plasmon mode of the dimer is the bonding
dimer plasmon (BDP), in which the plasmons in the two
nanospheres are ‘bonded’ through Coulomb interaction between
charges of opposite signs distributed across the nanogap
region78,79. The local classical model predicts that the peak
frequency of the BDP monotonically red-shifts as the gap
distance decreases. In addition, it predicts dramatic
enhancement of the electric field in the gap centre for small
gap distances (Fig. 2b). In the regime where the nanospheres
overlap (negative gap distances in Fig. 2a), CTP modes74–76

appear and blue-shift as the nanospheres merge together.
A close look at Fig. 2a,b suggests that the local classical model

exhibits unphysical behaviour as the gap distance tends to zero.
First, in this regime, slight changes in the gap distance result in
extraordinarily large frequency-shifts of the BDP. Similar
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Figure 2 | Modelling of plasmonic dimers with subnanometre gap. (a–f) Comparison of the optical properties of a metallic dimer simulated with

(a,b) local Drude model, (c,d) TDDFTcalculation and (e,f) the QCM. The dimer consists of two Na spheres with radii of 2.17 nm. (a,c,e) The colour plots of the

extinction spectra sext as a function of gap distances. (b,d,f) The simulated near-field enhancements as a function of gap distances. The relevant plasmon

modes are labelled: bonding dimer plasmon (BDP), bonding quadrupolar plasmon (BQP), charge transfer plasmon (CTP) and higher-order charge transfer

plasmon (CTP’). (a–f) Images are reproduced from ref. 64. Copyright 2012 Nature Publishing Group. (g–j) Simulations of nonlocal effects for a metallic bowtie

dimer. The dimer consists of two Au wires with cross-sections comprising equilateral triangles (side length: 45nm, gap distance: 1 nm, tip radius of curvature:

1 nm). (g) Extinction cross-section spectra sext and (h) the near-field enhancement og4 calculated from the local classical model (red dashed lines) and the

NLHD model (blue solid lines). (i,j) Near-field distribution around the gap region of the Au bow-tie dimer calculated from (i) the local classical model and (j)

the NLHD model. The colour scales in i,j represent the enhancement of the electric near-field. (g–j) Figures adapted with permission from ref. 86.
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divergent frequency-shifts of the CTP modes are also predicted
for slightly overlapping nanospheres. As we discuss in later
sections, experimental observations show that these do not occur.
Second, an abrupt change of the plasmonic modes is predicted
when the geometry changes from separated to overlapping
dimer75. In addition, the local classical model predicts diverging
field enhancements for vanishing gaps3,19. These unphysical
behaviours in the subnanometre regime stimulated a more
rigorous investigation of how quantum mechanical effects
influence plasmon resonances.

In a pioneering study, Zuloaga et al.59 used time-dependent
density-function-theory (TDDFT) to perform fully quantum-
mechanical simulations of the linear response of plasmonic
dimers. Other groups extended this study to treat both linear and
nonlinear effects in a variety of gap configurations31,42,61–63. Most
of these simulations employ a jellium model for the plasmonic
material to describe the temporal evolution of the electron
densities and currents induced in the system. In the jellium
model, the ionic cores of the atoms are represented by a uniform
background charge density, with the jellium edge located at a
distance of half the lattice constant from the last atomic plane at
the surface59. Because of its simplicity, the jellium model enables
the fully quantum mechanical description of metallic nano-
particles that are large enough to support plasmon resonances34.
Figure 2c,d shows the TDDFT-simulated extinction cross-
sections and field enhancements of the dimer considered in
Fig. 2a,b, under sufficiently weak illumination to avoid nonlinear
effects. These results clearly demonstrate the existence of
quantum effects for plasmonic structures with subnanometre
gaps: (i) the red-shift of the bonding modes is smaller than that
predicted by the local classical simulation; (ii) the BDP and
higher-order bonding modes progressively disappear before the
gap distance reaches zero; (iii) the CTP modes of the dimer
emerge prior to the direct geometrical overlap of the two Na
spheres; (iv) along with the extinction of the bonding modes, the
electric near-field enhancement is quenched before the two Na
spheres are in geometrical contact. Thus, in contrast to the local
classical calculations, the quantum results point towards a
continuous transition from a capacitive to a conductive
coupling across the gap76.

More sophisticated quantum treatments are possible in which
the nanoparticles are described atomistically80–82. Results at the
full atomistic level show the sensitivities of the far- and near-field
optical responses to the exact morphology of the plasmonic gap,
and to the presence of atomic-scale features such as
crystallographic edges and vertices at the boundaries between
atomic planes forming the nanoparticle surface. Notably, the
lightning rod effect at the atomistic level might allow
for subnanometre confinement, with important implication for
spectroscopies and microscopies83. Despite these quantitative
details, it is important to stress that the overall behaviour of the
resonances is captured well by the jellium model.

It is computationally unfeasible, however, to perform TDDFT
simulations for large plasmonic structures (sizes\10 nm) that are
commonly used in plasmonics, because they contain too many
electrons to allow first-principles modelling60. To address this
situation, semi-classical approaches have been proposed
(Box 1) to incorporate the quantum effects into the framework
of Maxwell’s equations. In the following, we first concentrate on
the semi-classical modelling of the electron tunnelling effect. As is
well established in STM53, the spill-out of the electron density
outside the surface leads to electron tunnelling across the gap.
The results for plasmonic dimers in the quantum regime can
be explained by considering the electron tunnelling at optical
frequencies: the onset of the electron tunnelling provides
an effective ‘charge transfer’ channel, neutralizing the

bonding-plasmon-induced charges of opposite signs across the
gap and thus quenching the field enhancement59,60. Moreover,
such electron tunnelling implies a resistance55–58 that broadens
the plasmon resonances. As the bonding modes vanish, the
CTPs are established because the two nanoparticles forming the
plasmonic dimer are conductively connected through electron
tunnelling as if they were bridged physically. Hence, for large
plasmonic structures, Esteban et al.64,65 developed a quantum-
corrected model (QCM) to incorporate such electron tunnelling
effect into the local classical formalism. The quantum relationship
between the oscillating field and current is reproduced by
assigning to the gap a local effective conductivity sg(o) (see
Box 1 for the technical description). It can be seen that the QCM
calculations (Fig. 2e,f) are in good agreement with the results of
TDDFT (Fig. 2c,d). By comparing these results, it is found that
the ‘threshold tunnelling-distance’ dth is E4Å in this case. For
larger gap distances, the QCM results are identical to those from
the local classical model (Fig. 2a,b) as the tunnelling effect is
negligible. Following this work, refined treatments have been
proposed84,85 based on the theory of laser-assisted tunnelling in
metal–dielectric–metal junctions55–58. In another effort,
Hohenester et al.66 implemented the QCM in a boundary-
element-method approach by modifying the boundary conditions
of the plasmonic structures. The results showed good agreement
with the original QCM developed by Esteban et al.

Along with electron tunnelling, nonlocal screening34,35 is
another quantum effect that could influence the plasmon
resonances of a metallic dimer. It refers to the fact that, because
of electron–electron interactions, the motion of the conduction
electrons at each point in space depends not only on the field
applied at that point but also on fields at other points28–30.
The nonlocal screening prevents sharp charge localization at
interfaces and is therefore important for small particles36–39 and
narrow gaps28–32. Among different methods developed to address
nonlocal effects46–49, the nonlocal hydrodynamic (NLHD)
model44,45 has been widely used in the context of plasmonics
because of its physical transparency, as well as analytical and
numerical efficiency. In this approach (Box 1), the collective
motion of electrons is governed by the linearized hydrodynamic
Navier–Stokes equation. Unlike the local classical model in which
the plasmon-induced charge densities are strictly confined to the
surfaces, in the NLHD description these charges are effectively
pushed inside the material. This is because of the choice of the
boundary conditions on the free electron current at the metal–
vacuum interface29,30. As a result, the plasmon resonances
obtained with the NLHD approach are always blue-shifted with
respect to the wavelengths predicted by the local classical model
(Fig. 2g)86. The nonlocal screening effect also reduces the electric
field enhancement in the gap for plasmonic dimers (Fig. 2h–j).
Indeed, these behaviours predicted by NLHD model correctly
mimic the measured effect of nonlocal screening for noble metals
such as Au32 and Ag87.

Interestingly, the NLHD model fails to describe the nanopar-
ticle size effects on plasmon energies in free-electron materials
such as alkali metals or aluminum, with its predicted blue-shifts
being contrary to the red-shifts that are measured88 and obtained
using the TDDFT calculations89. These plasmon energy shifts are
ultimately related to the microscopic spatial distribution of the
plasmon-induced screening charges42,43. The screening charges
are pushed into the material in noble metals (Au and Ag, where
delocalized s-p and localized d-electrons participate in the
screening of external fields), but are slightly displaced out of
the metal surface in alkali metals and aluminum (where only
conduction s-p band electrons provide the screening). As pointed
out by Teperik et al.42, if one accounts for the actual position of
the plasmon-induced charges, local classical calculations with an
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‘effective’ gap distance can be used to recover the nonlocal effects.
Similarly, Toscano et al.43 also showed that the NLHD model
could be greatly improved by accounting for the electron density
profile at the surface. This crucial input, together with the
consideration of a polarizable background accounting for d-
electron screening, allows consistent results to be obtained for
nanoparticles of different metals.

Theoretical efforts have also been made in developing
generalized models that cover both the tunnelling and the

nonlocal regimes. It has been shown that the QCM approach can
be implemented in the NLHD model (NLHD-QCM)65,90,
allowing simultaneous treatment of both nonlocal screening
and tunnelling effects. Meanwhile, Mortensen et al.51 extended
the hydrodynamic approach and proposed a generalized nonlocal
response model in which an electron diffusion term is added to
the NLHD model, resulting in a progressive broadening of
bonding modes in the subnanometre gap regime that is in line
with quantum TDDFT results. However, contrary to TDDFT

Box 1 | Semi-classical models of quantum effects in plasmonic structures.

Quantum-corrected model (QCM)
The computational limitation of time-dependent density functional theory (TDDFT) simulations has motivated the development of
semi-classical models. In the QCM64, the plasmonic response is determined by solving Maxwell’s equations, but with electron tunnelling
accounted for by ascribing an effective dielectric function eg(l,o) to the gap (schematic a in the figure of the box). Here, l is the ‘local’ separation
distance (schematic b in the figure of the box) that varies at different gap positions, and o is the optical frequency. This function is parameterized in a
manner that leads to its corresponding conductivity

sg l;oð Þ ¼ � ioe0½eg l;oð Þ� 1�; ð1Þ
where e0 is the vacuum permittivity, being equal to the dc tunnelling conductivity s0 in the static limit (o¼0), as determined from a quantum
mechanical calculation of the tunnelling probability T(l) across the potential barrier (schematic b in the figure of the box). This leads to the relationship
between the field and the tunnelling current across the gap being correctly reproduced. More specifically, a convenient approach to parameterize
eg(l,o), keeping the model simple and facilitating the extrapolation of the gap dielectric function to the situation of full contact (l¼0), is to consider a
Drude-type permittivity:

eg l;oð Þ ¼ e1 l;oð Þ�
o2

g

oðoþ igg lð ÞÞ ; ð2Þ

where eN(l,o) is a background dielectric function that depends on the particular nature of the metal and on the surrounding material (eN(l,o)¼ 1 for a
pure Drude-like metal in vacuum), og is the plasma frequency of the metal that constitutes the plasmonic structure and gg(l) is the effective damping
term. The latter is taken as having an exponential dependence on the distance l, as this is typical for tunnelling processes:

gg lð Þ ¼ gg l ¼ 0ð ÞexpðqlÞ: ð3Þ
Here gg(l¼0) is the damping frequency of the metal and q is a material-dependent characteristic parameter that is retrieved by requiring that
sg(l,o¼0)¼s0 for a given distance as discussed above.
Here, we have presented a Drude-type approach to construct the QCM. However, if computationally feasible, sg(l,o) could be obtained directly from
fully time-dependent quantum mechanical calculations85, and equation (1) could be inverted to obtain the eg(l,o) needed for the QCM. The major
advantage of the QCM is that it is practical for use with large plasmonic structures, as standard solvers of classical electromagnetic equations can be
employed with electron tunnelling taken into account.

�

T(�)

�g (�,�)

�g (�,�)

a b

Pictorial description of the QCM. (a) Schematic of a plasmonic gap where the gap is described by means of an effective local gap dielectric function
eg(l,o) which depends on the gap separation, l, at each point. (b) Model configuration of a flat metal-insulator-metal cavity of width l that allows
determination of the electron transmission probability T(l), used as an input in eg(l,o).

Nonlocal hydrodynamic model (NLHD)
One method for addressing the nonlocal screening consists of using the hydrodynamic model for the motion of electrons in a metal28,29. In the NLHD,
the linearized Navier–Stokes equation is used to describe the motion of the interacting electron gas. The electron current density
J inside a metal induced by an electric field E oscillating at frequency o is governed by:

b2

o2 þ igo
= = � Jð Þþ J ¼ sDE; ð4Þ

where sD is the Drude conductivity and parameter b is proportional to the Fermi velocity of the electrons. This results in a longitudinal component of the
permittivity tensor of the metal in wavevector-space (k-space), given by:

eL k;oð Þ ¼ 1�
o2

p

o oþ igð Þ�b2 kj j2
: ð5Þ

The transverse component is still given by the Drude model (equation (5) with b¼0). This new permittivity tensor of the metal is then used when
solving the Maxwell equations. It can be seen why this dielectric function corresponds to a ‘nonlocal’ model—its dependence on propagation vector
means that the electric displacement D does not depend solely on the electric field E at a particular location, but also on E in the surrounding medium.
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calculations, the generalized nonlocal response model simulations
do not show the establishment of CTPs in the gap distance regime
of 0rdrdth. This difference indicates that the electron
tunnelling effect needs to be accounted for in order to fully
understand the optics of subnanometre gaps.

In addition to the modification of far- and near-fields in the
linear plasmonic response, quantum effects can lead to a variety
of nonlinear effects. For example, Marinica et al.62 and Wu
et al.84 showed that strongly enhanced fields could trigger
tunnelling currents at gap distances for which there would
be negligible tunnelling in the linear response regime. This
electronic discharge could produce high-frequency components
of the electron current across the gap, and offers interesting
prospects for attosecond pulse generation52. These new
phenomena and the on-going theoretical developments clearly
show the vigour of this research topic.

Realization of metallic structures with subnanometre gaps
Much of the interest in developing theoretical models to describe
quantum mechanical effects for plasmons in nanogap structures
was prompted by the emergence of reliable fabrication methods
for such structures. Previous methods for fabricating narrow
gap structures typically relied on top–down electron-beam
lithography (EBL)4–6 approaches or bottom–up approaches
based on the self-assembly of nanoparticles21. The resolution of
single-exposure EBL is primarily limited by electron scattering in
the substrate, limiting gap distances down to E2 nm with fair
yield26, while sometimes24 enabling gap distances of E5Å.
In bottom–up methods, the gap distances achieved are typically
defined by the sizes of the surfactant molecules used to
assemble the plasmonic nanoparticles. Previous efforts had

focused on the use of relatively large molecules such as
cetyltrimethyl ammonium bromide91 or DNA22 resulting in gap
distances around E1 nm. In this section, we summarize some
recent key fabrication approaches that have enabled the
experimental observation of tunnelling and nonlocal effects.
These works can be generally categorized into the ‘tip-based’ and
‘nanoparticle-based’ gap-configurations.

‘Tip-based’ gap-configurations are usually implemented by
modifying atomic force microscopes (AFMs) or STMs. These
configurations enable precise gap control53,92 in the subnanometre
regime. They are advantageous in that the metallic tips and/or
surfaces act as electrodes, enabling the estimation of the gap
distance through conductivity or tunnelling-current measure-
ments54,57 and simultaneous optical characterization of the
plasmonic resonances. For example, Savage et al.67 showed that
gap distances in the tunnelling regime can be achieved by pushing
two gold-coated AFM cantilever tips together using a piezoelectric
stage (Fig. 3a). Subnanometre gap distances can be achieved, with
physical contact between the tips indicated when the dc tunnelling
conductance G across the gap exceeds the quantum conductance
G0¼ 2e2/h (where e is the elementary charge and h is the Planck’s
constant). The ability to sweep across a wide range of the gap
distances using this method is helpful in identifying and studying
quantum effects. Using similar configurations, sharp tips have been
brought to subnanometre distances from planar surfaces by
monitoring the dc tunnelling current53 or the shear force71,72.
Tip-based structures with subnanometre gaps have also been
produced by electromigration93.

The ‘nanoparticle-based’ configuration with subnanometre
gaps offers the advantage of allowing direct imaging of the gap
junction, for example, with a transmission electron microscope
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Figure 3 | Subnanometre gaps formed in metallic structures. (a) Schematic illustration of the plasmonic dimer formed by pushing two AFM cantilevers in

tip-to-tip configuration. Reproduced from ref. 67. Copyright 2012 Nature Publishing Group. (b) High-resolution TEM images of Ag nanosphere dimer

formed by pushing two Ag nanoparticles together using focused electron beam. The diameter of each Ag nanoparticle is 9 nm. Top panel: overview of the

dimer. Scale bar is 5 nm. Bottom panel: Zoomed-in view of the Ag dimer showing the gap distance dE3.5Å. Scale bar is 2 nm. Reprinted with permission

from ref. 68. Copyright 2013 American Chemical Society. (c) TEM image of Au nanodisk dimer form by two-step electron beam lithography. The diameter

of each nanodisk is 90 nm. Top panel: overview of the dimer. Scale bar is 50 nm. Bottom panel: zoomed-in view of the Au dimer showing the gap distance

dE2.0Å. Scale bar is 2 nm. Reproduced from ref. 70. Copyright 2014 Nature Publishing Group. (d) High-resolution TEM image of the Ag dimer formed by

linking molecules, with zoomed-in TEM image showing the subnanometre gap distance. Image reproduced from ref. 97. Copyright 2014 AAAS.

(e) Schematic of particle-on-film geometry, with the nanoscale gap defined by a thin self-assembled monolayer layer. Image reproduced from

ref. 32. Copyright 2012 AAAS.
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(TEM) capable of providing atomic-scale resolution. Such
‘nanoparticle-based’ gap structures have now been demonstrated
using innovative fabrication methods. One novel bottom–up
approach for forming such structure was recently demonstrated
by Scholl et al.68,69, who used electron beams to manipulate
plasmonic nanoparticles of sizes up to E25 nm (Fig. 3b). In this
method, a focused electron beam induces an attractive Coulomb
force between two closely spaced Ag nanoparticles, causing them
to move even closer and subsequently merge. The nature of the
stress that moves nanoparticles together involves the presence of
electromagnetic forces induced by the plasmonic fields, together
with other less straightforward effects such as particle diffusion.
These effects overcome the cohesion forces between the particles
and substrate, thus producing a latched motion that merges the
particles94. The nanoparticle velocity was controlled by the
intensity of the electron beam and can be as low as 0.2 Å s� 1,
making it possible to image the nanoparticles via TEM while
simultaneously monitoring the plasmon modes via electron
energy loss spectroscopy95.

Subnanometre gap distances between two larger (sizes
\25 nm) nanoparticles have also been achieved using a

top–down process that involves the use of two EBL steps70. The
two parts of the dimer are defined sequentially in separate
EBL steps, thereby circumventing many of the resolution
challenges facing EBL patterning. This method allows the
fabrication of dimers with gap distances down to E2Å
(Fig. 3c). It also yields dimers fixed to a TEM membrane,
meaning that the results of the optical and structural
characterization of each dimer can be compared, although the
mobility of Au atoms at room temperature means great care has
to be exercised in their treatment.

Bottom–up approaches based on small surfactant
molecules23,96,97 or inorganic two-dimensional van der Waals
spacer materials27 present other opportunities for achieving
subnanometre gaps in large plasmonic dimers. Organic molecules
with thiol-groups are typically used because of their strong bonds
to Au/Ag surfaces and their appropriate sizes (E3Å to E2 nm)
for this application. Tan et al.97 reported that dimers with
gap distances of E4Å could be obtained in this way with yields
of E30% (Fig. 3d). Small surfactant molecules have also been
used as dielectric spacers in the particle-on-film geometry
(Fig. 3e)32,33. In these configurations, the gap distance created
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by the molecular spacer were either measured via ellipsometry
(for thicknesses 42 nm) or estimated based on the number
of chain-linkers of the molecules (for thicknesses o2 nm).
Recent work has also demonstrated the possibility of narrowing
the gap to the subnanometre level by illuminating the spacer
molecules with an external illumination source that induces
photo-oxidative desorption98.

Several other techniques have also been developed to achieve
subnanometre gaps in plasmonic structures99–101. As we discuss
in the following sections, these novel techniques provide
important insight into quantum effects in plasmonics. As an
active research area in itself, the development of nanogap
fabrication methods will continue to propel the field of
plasmonics.

Observations of quantum effects via far-field measurements
Recent success in fabricating plasmonic structures with
subnanometre gaps enable the experimental examination of the
quantum mechanical effects in these structures. As discussed in
the theory section, the quantum nature of the nanogap plasmons
leads to four major linear effects that cannot be captured by local
classical theories: (i) a non-divergent frequency shift of plasmonic
modes; (ii) the progressive vanishing of the bonding plasmon
modes in narrow gaps; (iii) the emergence of charge-transfer
plasmon modes before direct physical contact; (iv) the quenching
of field enhancement. In this section, we highlight several key
optical far-field studies (related to effects (i)–(iii)) that have
demonstrated the impacts of the quantum mechanical effects on
plasmonic resonances. These studies also provide insight into the
validity of the semi-classical approaches for modelling quantum
effects in plasmonics. The discussion of the near-field effect (iv) is
addressed in the next section.

The tunnelling effect and the QCM model were first examined
by Savage et al.67 using the tip-based gap-configuration
depicted in Fig. 3a. The dark-field scattering spectra recorded
as the gap distance d reduces from the nanometre scale to the
touching state (GZG0) are shown in Fig. 4a. Also included are
the predictions from the QCM approach (Fig. 4b) and the
local classical model (Fig. 4c). Two regimes can be identified
from the measured spectra, demarcated by the gap distance dQR
that denotes the onset of the quantum regime (note that dQR is
the same as the threshold tunnel-distance dth defined in the
Theory section). For dZdQR, the peak positions of all three
bonding plasmon modes (labelled as A, B and C) red-shift as gap
distance d decreases, a behaviour that is consistent with the
local classical models. For drdQR, effects (i)–(iii) are
indeed observed: the measured bonding modes gradually evolve
into the CTP modes (labelled as D and E), with a blue-shift of the
peak positions as d is further reduced. These effects clearly
support the existence of the tunnelling effect predicted by the
QCM model (Fig. 4b), while significantly deviating from the
predictions of the local classical model (Fig. 4c). This behaviour is
also generally consistent with the predictions of TDDFT
calculations for much smaller structures described in the
Theory section.

The impact of the tunnelling effects on plasmonic resonances
have also been observed for nanoparticle-based dimers. Scholl
et al.68 performed correlated TEM and electron energy loss
spectroscopy measurements on a dimer consisting of two small
Ag nanoparticles with diameters of E9 nm (Fig. 3b). The results
(Fig. 4d) are consistent with the general behaviour predicted by
the TDDFT62 and QCM64,65, revealing a ‘threshold tunnel
distance’ of around 5Å. This work has recently been extended
to trimers69. Meanwhile, Zhu et al.70 used TEM to image
plasmonic dimers comprising two large Au nanodisks (Fig. 3c).
The plasmon resonance of each dimer was characterized by dark-

field scattering spectroscopy (Fig. 4e). The tunnelling regime was
reached for gap distances below 7Å, as indicated by the
suppression of the bonding plasmon modes. These results,
together with the studies on tip-based structures, provide
strong evidence for electron tunnelling in plasmonic structures
with sub-nanometre gaps.

To examine the nonlocal screening effect in nanoscale gaps,
Ciracı̀ et al.32 studied the plasmon resonances of the particle-on-
film structure, with the gap formed via molecular spacers
(Fig. 3e). The peak position of the plasmonic resonance was
found to monotonically red-shift as the gap distance reduced
from E11 nm to E5Å (Fig. 4f) though accurately measuring
these separations is not without problems (as for many of the
techniques here). This red-shifting trend is qualitatively
consistent with the local classical model75,78. However, for gap
distances less than E3 nm, the measured peak wavelengths
deviate considerably from the predictions of the local classical
model. These deviations can instead be accounted for by the
NLHD, highlighting the importance of the nonlocal effects. Zhu
et al.70 also found that the measured peak positions for plasmonic
nanodisks with subnanometre gaps were generally in agreement
with QCM simulations, but with some differences that could be
due to other effects such as the nonlocality and the morphology of
the nanoparticles and the gap80–82,102,103.

Quenching of plasmonic near-field enhancement
One of the main motivations for fabricating plasmonic substrates
with nanoscale gaps has been the optimization of plasmonic
enhancement, that is, the generation of intense electric fields
confined to subwavelength dimensions21. As discussed in the
Theory section, one can expect plasmonic field enhancement to
be reduced by the onset of tunnelling and nonlocal screening
(effect (iv)). In this section, we highlight experimental studies of
both linear and nonlinear optical processes in subnanometre gap
structures that have demonstrated quenching of plasmonic
enhancement by quantum mechanical effects.

One technique to probe plasmonic field enhancement is
surface-enhanced Raman scattering14,15, in which vibrational
transitions in molecules are probed indirectly using inelastic
Raman scattering of visible or near infrared light. The
cross-section of this process scales approximately as the fourth
power of the near-field enhancement. Zhu et al.70 measured the
SERS enhancements of thiophenol molecules adsorbed on
nanoparticle dimers as a function of gap distance (Fig. 5a).
Quenching of the SERS enhancement was observed below the
threshold tunnel-distance that was identified through far-field
measurements. QCM calculations that were performed to predict
the SERS signals (that is, near-field) and plasmonic spectra (that
is, far-field) were found to be consistent with the experimental
results, providing support for attributing the quenching of the
plasmonic enhancement to electron tunnelling.

Photoluminescence (PL) from plasmonic structures also
depends on local plasmonic field enhancements. Kravtsov
et al.72 measured PL from a system consisting of a sharp AFM
tip positioned over an atomically flat gold surface (Fig. 5b). The
maximum PL intensity was achieved for a gap distance
dE1.5 nm, with quenching occurring for smaller gap widths
(Fig. 5c). This was accompanied by blue-shifting of the PL
spectral peaks for smaller gaps—an indication of the onset of
electron tunnelling.

Nonlinear optical processes can also be boosted by plasmonic
enhancements. In several studies, a change in the trend of
nonlinear signals was reported for subnanometre gaps. For
example, Danckwerts et al.71 observed a slower increase than
expected of the enhancement for four-wave mixing in
subnanometre gaps in an STM configuration. The four-wave
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mixing count rate was observed to vary with separation distance
d, as pd� 1.8 for large gaps, but evolved into a weaker
dependence (pd� 0.5) for gaps narrower than dE2Å (Fig. 5d).
Recently, Hajisalem et al.73 studied third harmonic generation in
a particle-on-film geometry where the subnanometre gap was
formed via molecular spacers. The third harmonic intensity
dropped as the gap distance decreased to 5.1 Å (Fig. 5e), again in
agreement with the QCM simulations.

Photo-induced current in plasmonic gaps
As has been addressed both theoretically and experimentally, the
coupling of light and electronic excitations leads to measurable
modifications of the electron transport across a junction104,105.
Among the processes that trigger photocurrent in nanogaps,
optical rectification57 is a second-order nonlinear process that
enables simultaneous access to tunnelling currents and their
corresponding plasmonic fields. We focus this section on the
aspects of optical rectification connected with quantum effects in
plasmonic gaps. Additional information about other aspects
involving thermal and band structure effects can be found in a
recent work by Stolz et al.106

Ward et al.93 first demonstrated that a dc rectification current
can be generated in subnanometre gaps upon optical

illumination. This current is generated by nonlinear electron
tunnelling assisted by plasmonic resonances, making it
(and therefore the voltage, Fig. 6a) closely related to the gap
distance. In another work, Ittah et al.107 studied plasmon-
modulated current across quantum contacts made of a few gold
atoms. A grating formed at one of the electrodes allows coupling
of the incident light to propagating plasmons, which are launched
towards the gap junction (Fig. 6b). The change of conductance as
a result of the incident light—and thus the launching of
plasmons—is shown in Fig. 6c, but is not easy to directly
disentangle from induced thermal effects.

Plasmon enhanced rectification of the tunnelling current
and the associated increase of conductance has been also
reported in molecular junctions108,109. For instance, in a
junction filled with thiol-based self-assembled monolayers, the
number of carbon atoms in the molecules determines
the gap distance108. The magnitude of the rectified current
can thus be used to estimate the field enhancement as a function
of the gap distance. For a gap distance of 1.3 nm, the
enhancement was estimated to be as large as 550-fold
(Fig. 6d). However, the molecular conductance in this
situation was insufficient to trigger quenching of the plasmonic
near-field.
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Molecular control over quantum plasmonic systems
If well controlled, the spectral changes associated with quantum
effects in plasmonic gaps could lead to new applications in the
fields of optical spectroscopy83 and optoelectronics110,111.
Recently, Tan et al.97 showed that plasmon resonances can be
tuned via molecular tunnel junctions. The junctions comprised
two Ag nanocubes on whose surfaces self-assembled monolayers
of thiol-group molecules had been attached (Figs 3d and 7a). If no
molecules were present in the gap, the tunnelling barrier would
only depend on the work function of the electrode material and
the gap distance. The presence of the molecules, however, lowers
the tunnelling barrier by an amount that depends on the
electronic structure of the molecules (Fig. 7b,c). For example,
electron tunnelling across a vacuum junction with gap distance of
1.3 nm is negligible. However, as the gap is bridged by the
molecules, CTP modes are observed at this separation, indicating
the presence of through-molecule tunnelling. This makes it
possible to switch the CTP modes by controlling the properties of
the molecules in the gap.

In a similar application, Benz et al.112 demonstrated plasmonic
tuning in the nanoparticle-on-mirror configuration by using
two groups of molecules as the spacer (Fig. 7d). The biphenyl-

4,4’-dithiol (BPDT) molecules have two thiol groups that bond to
Au surfaces, permitting conductive links across the gap to be
formed. The biphenyl-4-thiol (BPT) molecules lack the second
thiol group and are therefore not able to create a conductive link.
It was shown that a spacer comprising both types of molecules
could be formed. By adjusting the relative concentrations of the
molecules, the conductivity of the junction could be tuned. A
large tuning range (up to 50 nm) for the peak wavelength of the
plasmonic resonance was demonstrated (Fig. 7e). Benz et al. also
noted that this could enable quantification of the number of
molecules in a nanoscale gap, provided that the conductance of
the individual molecule was known. Similar tunability of the
plasmonic response has also been reported for a sphere dimer
forming a junction functionalized with alkanedithiols113,114,
whose change in length is associated with a modification of the
molecular conductance.

A number of other exciting prospects could arise from
molecular tunnel junctions. One could employ optically switch-
able molecules in the gap, enabling real-time control over the
plasmon resonance, although steric limitations on molecular
re-orientation do not make this simple to achieve. One might be
able to observe a few molecules on a nanoparticle undergoing

40

30

20

10

1 2 3 4

In(G0/G)

V
op

t/I
n(

G
0/

G
 )

 (
m

V
)

0.05 0.10 0.15 0.20

Gap distance (nm)

0.8

0.6

0.4

0.2

E
opt  (G

V
 m

–1)

TAU NANO SEI 15.0 kV X8,500 1	m WD 7.1mm

Junction

Vb

200

150

100

50

0
1.04 1.06 1.08 1.12 1.14 1.161.10

G/G0

‘Light off’
‘Light on’

C
ou

nt
s

F
ie

ld
 e

nh
an

ce
m

en
t

600

400

200

0
1.3 1.6 1.9

Gap size (nm)

Light

s s s s s s s s s
e

C8 C10 C12

z

y

x

0.739 μm

1.324 μm

a b

c d

Figure 6 | Photo-induced current in plasmonic gaps. (a) Optical rectification voltage Vopt as a function of gap distance (top axis) or junction

conductance G (bottom axis) for nanogap junctions fabricated via electromigration. Error bars indicate the statistical uncertainty in Vopt and ln G. Image

reproduced from ref. 93. Copyright 2010 Nature Publishing Group. (b) Schematic illustration of an Au electrical plasmon detector. Creation of SPPs is

achieved by normal illumination of the grating by a laser via a microscope objective. (c) SPP-modulated conductance histogram measured with the set-up

in b. Irradiation appears to shift the Gaussian describing the distribution of conductance values around B1G0 (‘light-off’ conductance) to a new and higher

mean value (‘light-on’ conductance). (b,c) Images are reprinted with permission from ref. 107. Copyright 2011 American Chemical Society. (d) Field

enhancement in a plasmonic nanogap estimated from the rectification current. Reprinted with permission from ref. 108. Copyright 2011 American

Chemical Society.

REVIEW NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11495

10 NATURE COMMUNICATIONS | 7:11495 | DOI: 10.1038/ncomms11495 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


chemical reactions. Dark-field optical microscopy over a large
field-of-view could enable many such events to be monitored
simultaneously. We emphasize that the molecular tunnel junction
is a workhorse of this field, but normally only characterized with
dc or low-frequency ac measurements. In the two studies
described in this section, molecular conductances are probed at
optical frequencies. This could open up a rich area of exploration,
due to emergence of phenomena such as electron–electron
and electron–vibrational scattering115. Indeed, conductive
molecules bridging plasmonic junctions have been addressed
not only in the context of transport properties115,116, but also in
Raman scattering studies117–120.

Perspectives and future directions
Recent experimental advances have enabled fabrication of
metallic structures with subnanometre gaps, thereby bringing
plasmonics into the regime of quantum mechanics. Nonlocal
screening and the coupling between tunnelling electrons and
photons enhanced by the strong electromagnetic fields in a
plasmonic gap lead to new phenomena that are of fundamental
and practical interest, and furthermore challenge existing
theories. Fully quantum-mechanical simulations of large
plasmonic structures are still not practical and will remain
challenging in the near future. Several semi-classical approaches

have been proposed that account for quantum effects within
classical electromagnetic theory. The predictions of these models
regarding the interplay between photons and electron dynamics
at optical frequencies have been backed up both by far- and
near-field experimental observations, although in some cases only
qualitatively. Despite careful studies correlating plasmonic
resonances and physical gap distances, knowing the precise
morphology of the gap region would greatly facilitate progress in
this field. Recent advances in electron tomography could be very
fruitful for this121. In addition, theoretical studies have predicted
that the optical response is sensitive to changes in the
conductance that arise from atomic-scale rearrangements in the
junction122,123. The ability to precisely reconstruct the gap
morphology would allow these phenomena to be studied
experimentally. A result of such studies might be the emergence
of optics as a probe for atomic-scale electron transport.

The link between plasmon response and electron transport
through gap junctions is of fundamental interest as it represents
the physical mechanism that governs how the plasmonic response
behaves in the transition from separated to overlapped
nano-objects. In particular, by properly accounting for this effect,
the divergence in the response predicted by the classical approach
is corrected for. In addition to the use of plasmonics for
field-enhanced spectroscopies and nonlinear effects, the
opportunity to exploit quantum effects in the interplay between
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optics and electron transport in practical applications is one of
the most exciting prospects of the field. Indeed, it was recently
pointed out that by controlling electron transport one might tune
the plasmon response of the nanostructure112. STM124 and
molecular electronics97 present opportunities to achieve active
control through narrow junctions in a flexible manner as the gap
distance can be readily adjusted. Other methods for achieving
this control might include applying a dc bias across a
junction125,126 or introducing a gate electrode in a junction
functionalized with self-organized molecular layers127. This might
enable fast and versatile electrical control over the plasmon
response of metallic nanostructures in the optical range, similar to
that widely reported for graphene structures at lower
frequencies128. The role that such control would play in the
tuning of plasmon-exciton couplings should not be
underestimated. Conversely, the coupling between tunnelling
electrons and photons leads to plasmon generation and photon
emission from inelastic tunnelling events129, thereby realizing
nanoscale localized light sources124,130,131. These represent a new
paradigm in optoelectronics, motivating experimental and
theoretical efforts aimed at understanding the underlying physics.

Although the studies performed thus far have been mainly
concerned with materials such as gold and silver, quantum
mechanical effects should also be considered for other plasmonic
materials7, such as aluminum, conductive oxides and nitrides, as
well as two-dimensional materials such as graphene. We also note
that the possibilities for applications of molecular tunnel
junctions go beyond the simple option of plasmonic tuning, as
the tight confinement of light across the gap as well as the
tunnelling electrons could also enable possibilities for controlling
the physical and chemical properties of the molecules
themselves115. With so many directions open for exploration,
we foresee that the study of quantum effects associated with
subnanometre gaps will continue to be an active research topic as
a sub-field of quantum plasmonics132.
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