
ARTICLE

Received 1 Oct 2015 | Accepted 7 Mar 2016 | Published 19 Apr 2016

Integrated multi-omics analysis of oligodendroglial
tumours identifies three subgroups of 1p/19q
co-deleted gliomas
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Eric Letouzé1, Carole Colin6, Karima Mokhtari2,3,4,7, Anne Jouvet8, Emmanuelle Uro-Coste9,

Nadine Martin-Duverneuil10, Marc Sanson2,3,4,5, Jean-Yves Delattre2,3,4,5,11, Dominique Figarella-Branger6,12,
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Oligodendroglial tumours (OT) are a heterogeneous group of gliomas. Three molecular

subgroups are currently distinguished on the basis of the IDH mutation and 1p/19q

co-deletion. Here we present an integrated analysis of the transcriptome, genome and

methylome of 156 OT. Not only does our multi-omics classification match the current

classification but also reveals three subgroups within 1p/19q co-deleted tumours, associated

with specific expression patterns of nervous system cell types: oligodendrocyte,

oligodendrocyte precursor cell (OPC) and neuronal lineage. We confirm the validity of these

three subgroups using public datasets. Importantly, the OPC-like group is associated with

more aggressive clinical and molecular patterns, including MYC activation. We show that the

MYC activation occurs through various alterations, including MYC genomic gain,

MAX genomic loss, MYC hypomethylation and microRNA-34b/c down-regulation. In the

lower grade glioma TCGA dataset, the OPC-like group is associated with a poorer outcome

independently of histological grade. Our study reveals previously unrecognized heterogeneity

among 1p/19q co-deleted tumours.
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O
ligodendroglial tumours (OT), that is, gliomas with an
oligodendroglial differentiation, account for B20% of
adult diffuse gliomas1. They form a heterogeneous

group of gliomas in terms of clinical, histological and molecular
profiles2. The survival times of OT patients range from a few
years to more than 15 years. This clinical heterogeneity reflects
underlying molecular heterogeneity. From a molecular point
of view, three main subgroups of adults diffuse gliomas can
be distinguished on the basis of two biomarkers, the 1p/19q
co-deletion and the isocitrate dehydrogenase (IDH) mutation
status3,4. Gliomas with the 1p/19q co-deletion (which
are virtually all IDH mutated) display the best prognosis. The
IDH-mutated gliomas, without 1p/19q co-deletion, have an
intermediate prognosis. Finally, the non-1p/19q co-deleted and
non-IDH-mutated gliomas have a poor prognosis. OT can
belong to all three molecular subgroups even though pure
oligodendroglial differentiation is strongly associated with the
1p/19q co-deletion1. Several studies have shown that this
molecular classification was very robust and superior to the
histological classification5,6. Accordingly, the revised World
Health Organization (WHO) classification has proposed to use
the IDHmutation and the 1p/19q co-deletion status to provide an
integrated histo-molecular diagnosis of OT7. The aim of the
present study was to assess whether the molecular classification of
OT could be further refined on the basis of the integration of data
from additional molecular levels.

Here we present an integrated analysis of the transcriptome,
genome and methylome of 156 OT. In addition to formerly
described subgroups, we report the identification of three
subgroups within 1p/19q co-deleted tumours. One group is
associated with more aggressive clinical and molecular patterns,
including the MYC pathway activation. Our study reveals
previously unrecognized heterogeneity among 1p/19q co-deleted
tumours.

Results
1p/19q co-deleted OT are molecularly heterogeneous. We used
a series of 156 primary OT, 14 additional primary glioma samples
and 9 normal samples referred henceforth as the Prise en
charge des oligodendrogliomes anaplasiques (POLA) cohort. All
samples (n¼ 179) were profiled on messenger RNA (mRNA)
expression arrays. MicroRNA (miRNA) sequencing was
performed on 177 samples, and most of them were further
profiled on single-nucleotide polymorphism (SNP) arrays
(n¼ 161) and DNA methylation arrays (n¼ 104) as described in
Supplementary Table 1.

A preliminary hierarchical consensus clustering of mRNA
expression identified a subset of tumours (n¼ 29), which
consistently clustered with normal brain and epilepsy surgery
samples. Those tumours were also assigned to the ‘cluster 0’
defined by Gravendeel et al.8 as a group of samples with a high
amount of non-neoplastic brain tissue. These tumours were
considered as too contaminated with normal brain tissue and
therefore removed for further analyses.

Unsupervised consensus clustering analysis of the 141
remaining tumour samples was then performed using three types
of omics data (transcriptomic arrays (n¼ 141), miRNA
sequencing (n¼ 137) and DNA methylation arrays (n¼ 87))
independently. Transcriptome-based consensus clustering
identified five robust transcriptomic subgroups, while
miRNA-based and methylation-based clustering both identified
four subgroups (Fig. 1a). The transcriptomic classification was
highly associated with the classifications on the basis of the
miRNA data (w2 P valueo1.0� 10� 36) and methylation data
(w2 P valueo1.0� 10� 19). A multi-omics classification was

subsequently obtained by consensus clustering of these three
partitions (Supplementary Fig. 1b). Remarkably, the five resulting
classes (C1–C5) nearly perfectly matched the transcriptomic
classification, thereby suggesting that mRNA expression profiling
would be sufficient to define robust molecular classes among OTs.
We further characterized those five classes using SNP data and
other histological and clinical annotations of the POLA tumours
cohort. As expected the five classes were strongly associated with
IDH mutations (w2 P valueo3.0� 10� 16) and with 1p/19q
co-deletion status (w2 P valueo5.0� 10� 23) (Fig. 1b).
IDH-mutated non-1p/19q co-deleted OT clustered into cluster
C3. Their genomic profile was characterized by chromosome 7
gain (54%), chromosome 11p loss (41%) and copy neutral loss
(LOH) of chromosome 17p (68%) as shown in Fig. 2. IDH
wild-type OT formed cluster C2 and had a genomic profile
as typically observed in glioblastomas, characterized by
gains of chromosome 7, EGFR amplifications, CDKN2A
deletions and losses of chromosome 10 (Fig. 2). As for 1p/19q
co-deleted tumours, they were unexpectedly split into
three different clusters C1, C4 and C5, thereby revealing
previously unrecognized molecular heterogeneity among 1p/19q
co-deleted OT.

Molecular characterization of 1p/19q co-deleted OT subtypes.
On the basis of the previous results, we decided to focus on
1p/19q co-deleted OT. To check the robustness of the three
previously related classes (C1, C4, C5), we repeated a consensus
clustering analysis restricted to 1p/19q co-deleted tumours. For
sake of clarity we limited this analysis to the transcriptome, which
perfectly summarised multi-omics clusters (Supplementary
Fig. 1). We identified three robust subgroups O1, O2, O3
matching almost perfectly the previously identified clusters C1,
C4 and C5, respectively (w2 P value¼ 1.0� 10� 30, Fig. 3a,b).
To validate the three subgroups of 1p/19q co-deleted OT, we
performed an unsupervised consensus clustering of mRNA data
using the 1p/19q co-deleted OT from three additional public
cohorts (The Cancer Genome Atlas5 (TCGA), Gravendeel et al.8,
and REMBRANDT project9, Supplementary Fig. 2). As in our
dataset, unsupervised consensus clustering optimally partitioned
each public dataset into three clusters. We analysed the
correlation patterns of class centroids in both our dataset and
public datasets, and observed a high similarity between all three-
group partitions (Fig. 3c), thereby confirming our findings.

In the POLA cohort, patients in O1 tended to be older than
patients in O2 and O3 (48.7 years vs 44.8 years, t-test
P value¼ 0.08) and had less frequently seizures at diagnosis
(43 vs 79%, Fisher test P value¼ 0.001). This may be related to
the fact that grade II oligodendrogliomas were mostly present in
O2 and O3, while O1 tumours consisted nearly exclusively of
anaplastic oligodendrogliomas (Fisher test P value¼ 9.9� 10� 6).
Consistently, O1 was significantly enriched in tumours
demonstrating microvascular proliferation (89 vs 45%, Fisher
test P value¼ 2.0� 10� 5) and necrosis (36 vs 10%, Fisher test
P value¼ 0.001). The two 1p/19q co-deleted tumours classified as
glioblastomas with oligodendroglioma component (GBMO)
according to the 2007 WHO classification clustered with O1.
The genomic profile of O1 tumours differed from O2 and O3
tumours with significantly higher frequencies of chromosomes 4,
9p, 14q and 18q losses, even when considering only grade III
tumours (see Fisher tests P values in Supplementary Fig. 3); 66%
of O1 tumours showed at least 1 loss of those 4 chromosomal
regions, and 32% of O1 tumours had at least 2 or more regions
lost. Tumour cellularity was higher in O1 and O2 tumours than
in O3 tumours suggesting that this last subtype may have a more
infiltrative growth pattern.
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According to Gravendeel’s and Verhaak’s classifications8,10,
most tumours within cluster O1 and O2 were classified as IGP 9
and as proneural, while most tumours within O3 were classified
as IGP17 and as either proneural, neural or mesenchymal.

Tests for differential gene expression between subgroups and
gene-set enrichment analysis demonstrated that the three
subgroups were characterized by the expression of specific markers
of differentiation (Fig. 4; Supplementary Table 2; Supplementary
Data 1). O1 tumours were characterized by a higher expression of
oligodendrocyte precursor cell (OPC) markers, especially
GPR17 (ref. 11) and CCND1 (ref. 12) which was validated by
immunohistochemistry (Fig. 3b); O2 tumours strongly over-
expressed neuron markers13,14 and genes implicated in
neurogenesis; and O3 tumours specifically expressed mature
oligodendrocyte markers14,15. Astrocytic markers were
overexpressed in both O2 and O3 compared to O1.

O1 tumours also overexpressed cell-cycle genes, genes
implicated in glioma angiogenesis, and key epithelial–
mesenchymal transition markers (for example, TWIST1, SNAI2

and POSTN), a feature associated with tumour progression in
gliomas16 and observed in glioblastomas17. The most striking
differential activity among the oncogenic pathways was observed
in O1 tumours where several gene sets reflecting MYC activity
were found among the most significantly deregulated gene sets
(GSA score41, P valueo0.05; Supplementary Table 2).

As in our dataset, O1 TCGA tumours tended to originate from
older patients (mean age at diagnosis 51.8 vs 42.8 years, t-test P
value¼ 0.08). They were also associated to a higher grade and
with more frequent losses of chromosomal arms 9p and 14q
(Fisher test P values¼ 0.04 and 0.009, respectively,
Supplementary Fig. 4a). With the exception of NOTCH1, which
was almost never found mutated in O3 subtype, TCGA exome
data analysis did not identify any mutation significantly
associated with a specific subgroup (Supplementary Fig. 4b).
As in the POLA dataset, CIC mutations were found in all
subgroups. Gene enrichment analysis in each TCGA class was
consistent with O1, O2 and O3 gene expression characteristics in
the POLA cohort (Supplementary Fig. 5). In particular, a striking
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Figure 1 | Histo-molecular characterization of the five subtypes of oligodendroglial tumours robustly identified in POLA cohort. (a) An integrative

‘cluster of cluster’ approach was used to define robust molecular subtypes of 141 oligodendroglial tumours. Consensus clustering was used to assign

molecular classes on the basis of mRNA data, DNA methylation data and microRNA data independently. Consensus ‘clusters of clusters’ were

subsequently identified on the basis of the classes labels resulting from previous independent classifications. (b) Clinical annotations and common genomic

alterations associated to each subtype. Genomic alterations were identified through the analysis of SNP arrays. For each clinical and molecular

characteristic we performed w2 tests to assess the strength of association with the five-class system.
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enrichment in gene sets related to the MYC pathway was also
observed in TCGA O1 tumours.

Multi-level deregulation of MYC activity in O1 tumours. The
MYC pathway activity was assessed in each tumour as the
mean expression of MYC target genes. Consistently this measure
was higher in O1 than in O2 and O3 tumours (t-test
P valueo1.0� 10� 3; Supplementary Fig. 6). MYC expression

profile was also higher in O1 tumours (t-test P valuer0.013;
Supplementary Fig. 6). To determine which molecular
mechanisms could trigger MYC activation in O1 tumours, we
looked for genomic, epigenetic and post-transcriptional events
reported to enhance the MYC pathway activity in both the POLA
and TCGA datasets.

At the genomic level, gains of MYC locus and losses of MAX
(Myc-associated factor X), a negative regulator of MYC18, were
more frequent in O1 than in O2 and O3 tumours (t-test
P values¼ 0.02 and 0.0002, respectively; Fig. 5a). At
the epigenetic level, MYC exon 3 hypomethylation19,20 was
specifically associated with O1 tumours in both datasets
(P valueo0.0001) and correlated with a higher MYC expression
(Fig. 5a and Supplementary Fig. 7). In addition, two negative
regulators of MYC, mir34b and mir34c21–23, were down-
regulated in O1 tumours and their transcription start sites,
lying within the mir34b/c CpG island, were hypermethylated in
both POLA and TCGA datasets (Supplementary Fig. 7).

These four mechanisms—MYC genomic gain (9% of O1
tumours), MAX genomic loss (35% of O1 tumours), MYC exon 3
hypomethylation (20% of O1 tumours) and mir34b/c locus
hypermethylation (28% of O1 tumours)—were not all required to
observe an increase of MYC activity. Consistently, MYC
targets mean expression increased in samples having at least
one of this events, in both POLA and TCGA datasets (Fig. 5b).
Moreover, MYC alterations (genomic gain or exon 3
hypomethylation) tended to be exclusive with mir34b/c locus
hypermethylation (binomial test P value¼ 0.003; Fig. 6) and
MAX genomic losses (binomial test P value¼ 8.0� 10� 4; Fig. 6).
In the TCGA dataset, MYC gain and MYC exon 3 hypomethyla-
tion never occurred with the FUBP1 mutation, which is thought
to increase MYC activity24.

Taken together, these results suggest that various molecular
mechanisms concur to MYC activity in O1 tumours: genomic
alterations, hypomethylation and down-regulation of its silencers
mir34b and mir34c through hypermethylation of their promoter
region.

Association with survival. In the POLA, Gravendeel and
REMBRANDT cohorts we did not observe any significant asso-
ciation between O1/O2/O3 partition and prognosis. However,
due to still limited follow-up, median overall survival was not
reached in the POLA cohort. As for Gravendeel and
REMBRANDT cohorts, their sizes were limited and their median
survival (6 years) was not fully representative of the median
survival usually observed in 1p/19q co-deleted tumours25

(410 years) (Supplementary Table 3). In contrast, a remarkable
association with prognosis was observed within the TCGA cohort
(Fig. 7a), and was independent of grade and age (Supplementary
Fig. 8). Consistently, 1p/19q co-deleted tumours with the highest
MYC activity score had a worse prognosis (log-rank P
value¼ 0.01; Supplementary Fig. 9). When pooling survival
data from the four cohorts, there was a trend towards an
association of O1 subtype with a worse prognosis (log-rank P
value¼ 0.049; Fig. 7b). Moreover, also consistent with the higher
aggressiveness of O1 subtype, analysis of all patients for whom
treatment data was available showed that an initial treatment
without radiotherapy (that is, with initial follow-up or with
chemotherapy alone) was associated with shorter survival in O1
but not in O2 and O3 tumours (log-rank P value¼ 0.052; Fig. 7c).

Discussion
In agreement with the TCGA low-grade glioma study, we show
here a strong correlation between the classification of OT based
either on the different omics separately or on the integrated
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clustering of the omics (‘cluster of clusters’ analysis) and the 1p/
19q co-deletion, and IDH mutation status5. These findings
further illustrate the robustness of the subgroups defined by these
two biomarkers and support their integration into the revised
classification of diffuse gliomas6. Moreover, because of its
enrichment in 1p/19q co-deleted gliomas, our study identified
three expression-based subgroups within these tumours and
robustly reproduced this classification in public datasets through
unsupervised analysis of 1p/19q co-deleted glioma samples.

The three subgroups of 1p/19q co-deleted tumours had
different patterns of differentiation related to OPC, astrocytic,
neuronal and oligodendrocytic marker genes expression. O1
OPC-like gliomas had a more aggressive histological and genomic
profile with frequent chromosome 9p and 14q losses. It remains
to be determined whether these three subgroups correspond to
different oncogenic pathways or to different steps during
oligodendrogliomagenesis. Yet, the absence of clear differences

regarding the somatic mutational landscape of the three
subgroups rather discards the first hypothesis. The second
hypothesis is supported by the higher age observed among O1
patients in both POLA and TCGA cohorts and by the fact that
MYC activation which was frequently observed in O1 tumours,
has recently been implicated in the malignant progression of IDH
mutant gliomas26. Besides, strong evidence suggests that OPC are
the cell of origin of oligodendrogliomas27. These cells can
differentiate into oligodendrocytes, astrocytes and may also
differentiate into neural cells28. Therefore, in the more
differentiated O2 and O3 subgroups, tumour cells could still be
able to differentiate, while this differentiation capacity would be
lost in the O1 OPC-like tumours as additional genomic
alterations are acquired. The study of the gene expression
profile of initial and recurrent tumours would be of great
interest to determine whether tumours from the differentiated
groups can evolve into OPC-like tumours over time. The better
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prognosis of the differentiated subgroups also argue towards the
use of differentiation therapies in O1 tumours, such as inhibitors
of the membrane receptor GPR17, which was highly expressed
in the OPC-like group and has been suggested to block OPC
differentiation29,30. Interestingly, such inhibitors are being
developed to promote myelin repair in multiple sclerosis29.

In the O1 group, the MYC pathway appeared as a particularly
important oncogenic pathway. FUBP1 inactivating mutations are
thought to activate MYC24. However, they were not significantly
associated with the OPC-like group (Supplementary Fig. 4).
Here, we identified four distinct molecular mechanisms that
could concur to increase MYC activity in the OPC-like group:

Transcriptomic profile of 1p/19q co-deleted tumour subroups (POLA cohort)
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eight clusters of probe sets highlighted on the heatmap we performed gene-set enrichment analysis and annotated the clusters on the right with the most

relevant significantly enriched gene sets (hypergeometric test P valueo0.05) and corresponding relevant gene markers.
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Figure 5 | Overview of MYC-related genomic and epigenomic alterations frequently observed in O1 tumours. (a) Summary of MYC-related genetic and

epigenetic alterations in pooled data from both POLA (80 co-deleted gliomas) and TCGA (131 co-deleted gliomas) cohorts. The pooled sample sizes of O1, O2

and O3 classes are respectively 90, 61 and 60 tumours. The mean expression ofMYC targets was computed for each sample to get a measure ofMYC activation.

(b) Relation between the presence of at least oneMYC deregulation event (MYC genomic gain,MAX genomic loss,MYC exon 3 hypomethylation, mir34b/c TSS

hypermethylation) and MYC activity measured through the mean expression of MYC targets. For each dataset, y axis show the mean expression values after

centring on the samples. For each box and whiskers plot, bottom and top of the boxes are the first and third quartile of the data and whiskers represent the

lowest (respectively highest) data point still within 1.5 interquartile range of the lower (respectively upper) quartile. Bold lines represent median values.
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MYC locus genomic gain, MAX locus genomic loss,
hypomethylation of MYC exon 3, and down-regulation of MYC
silencers mir34b and mir34c through promoter
hypermethylation. MYC locus genomic gain, together with
MAX and FBXW7 locus genomic losses have been suggested to
activate the MYC pathway during the malignant progression of
IDH-mutated gliomas26. FBXW7 locus genomic loss was not
significantly associated with the OPC-like group, but MAX locus
genomic loss at 14q was observed in 35% of O1 tumours. MAX, a
MYC-associated factor, is a tumour suppressor gene whose
mutations cause hereditary pheochromocytoma31. MYC locus
genomic gain at 8q24 was observed in about 10% of O1 tumours.
Interestingly, a strong association has been shown between
1p/19q co-deleted IDH-mutated gliomas and SNPs mapping to
the 8q24 locus, which is rich in long non-coding RNA that
may modulate MYC expression32. Hypomethylation of MYC
exon 3 at the same CpG position than in our O1 tumours
(Chr8: 128,752,988-hg19, GRCh37) has been reported in
myeloma, leukaemia, B-cell malignancies and colorectal
cancer19,20,33. This particular site seems to be important for
MYC expression auto-regulation. In colorectal carcinoma, partial

MYC pathway deregulation in O1 tumours (POLA + TCGA cohorts)

O1 tumours (POLA+TCGA, 90 samples)

MAX copy number loss

MYC copy number gain
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mir34b/c hypermethylation

68%

Mutual exclusion:
P val = 0.003

mir34b/c
27%

9%
20%

35%

MYC

MAX
Mutual exclusion:
P val = 0.003
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Figure 6 | Focus on O1 tumours and their specific MYC signalling

related alterations. Percentages refer to the proportion of O1 tumours

(pooled data from POLA and TCGA) harbouring the alterations.

P values refer to one-sided binomial tests, which assess the probability

that two of the three genetic loci are both altered in the same tumour

sample.
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Figure 7 | Overall survival of 1p/19q co-deleted tumours (a) Overall survival of TCGA patients with 1p/19q co-deleted tumours according to O1 subtype

membership. We used the available clinical data from 118 patients with co-deleted tumours (59 with grade III tumours and 59 with grade II tumours).

(b) Overall survival of all 278 patients with 1p/19q co-deleted tumours after pooling patients with available clinical data from TCGA (n¼ 118 patients),

POLA (n¼80 patients), Gravendeel (n¼42 patients) and REMBRANDT (n¼ 37 patients) cohorts. (c) Overall survival of O1, and other O2 or O3 patients

who did or did not receive radiotherapy as initial treatment after surgery. We used data from 222 patients with 1p/19q co-deleted tumours that were pooled

from the four cohorts: POLA (n¼ 75 patients), TCGA (n¼ 66 patients), REMBRANDT (n¼49 patients) and Gravendeel (n¼ 32 patients). Patients were

included if their treatment and survival data were available and if they had not deceased within the first 3months after diagnosis so that they could have

effectively received radiotherapy. For each subgroup of patients (with O1, O2 or O3 tumours) we compared the five-year survival of patients treated with an

initial radiotherapy (RT, red curves)—combined or not with chemotherapy—against patients who had not received initial radiotherapy and were managed

with initial follow-up or with chemotherapy alone (No RT, grey curves).
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hypomethylation of this position was associated with the
deregulation of cell proliferation. Mir34b and mir34c have been
broadly reported to be negative regulators of MYC, and silencing
of miR34b/c locus through promoter hypermethylation has been
reported to up-regulate MYC expression21–23. However, 32% of
O1 tumours didn’t harbour any of these four alterations despite
showing a high MYC activity. Further analysis may identify other
alterations impacting
the MYC signalling pathway. OPC-like tumours might be
candidates for strategies aiming at inhibiting MYC activity such
as bromodomain and extraterminal bromodomain (BET)
inhibition that has been shown to suppress MYC
transcriptional activity in several cancers34 and to inhibit cell
growth in IDH1-mutant glioma primary cell cultures26.

The clinical significance of the three gene expression subgroups
of 1p/19q co-deleted tumours remains to be determined since
association with survival was only observed in the TCGA dataset
and not in the three other cohorts. However, the poorer outcome
associated with classification into the O1 group and with high
MYC activity would be in line with previous studies showing
that (1) necrosis, 9p loss and a high number of genomic
alterations are associated with worse prognosis in 1p/19q
co-deleted tumours35,36, and (2) increased MYC activity is
associated with malignant progression and worse prognosis in
IDH-mutated tumours26,37. Identifying patients with 1p/19q
co-deleted tumours with poorer outcome is an important issue.
Since these tumours are usually chemo sensitive, these patients
might be candidates to receive more intensive chemotherapy
regimens. On the other hand, patients with a favourable
molecular profile might be the best candidates to benefit from
less intensive treatment strategies, for example, initial treatment
with chemotherapy alone to reduce the potential side effects of
brain radiotherapy. The present study suggests that such a
strategy might be appropriate in O2 and O3 but not in O1
tumours. Future studies will have to determine efficient molecular
markers to rapidly label 1p/19q co-deleted patients according to
this stratification.

Methods
Patient samples and consent. Samples were obtained with informed and written
consent after approval of the institutional review boards of respective hospitals
participating in the POLA network. All patients were aged 18 years or older at
diagnosis, and tumour histology was centrally reviewed and validated according to
WHO guidelines38. A total of 179 samples were included in this study: 156 gliomas
with an oligodendroglial phenotype, as well as 11 glioblastomas, 2 diffuse
astrocytomas, 9 normal brain samples and 1 NOS sample. A summary of each
sample of the tumour cohort and respective pathological information on the
patients is provided in Supplementary Table 1.

DNA and RNA extraction. DNA and total RNA were extracted from frozen
tumour samples using the iPrepChargeSwitch Forensic Kit and the RNeasy Lipid
Tissue Mini Kit (Qiagen), respectively. DNA and RNA integrity and quantity were
assessed on the basis of the quality control criteria established by CIT
(Cartes d’Identité des Tumeurs) programme protocols (http://cit.ligue-cancer.net).
A 1-mg volume from each DNA and RNA sample was used for SNP array
experiments (outsourced to the Integragen Company Paris, France) and to perform
the gene expression analysis, respectively.

SNP arrays analysis. Illumina SNP arrays were used to analyse the DNA samples
from 161 tumour samples (74 Illumina HumanCNV610-Quad v1.0, 52
HumanCNV370, 34 HumanOmniExpress-12v1 and 1 HumanCore-12v1).
Integragen SA (Evry, France) carried out hybridization, according to the
manufacturer’s recommendations. The BeadStudio software (Illumina) was used to
normalize raw fluorescent signals and to obtain log R ratio (LRR) and B allele
frequency (BAF) values. Asymmetry in BAF signals due to bias between the two dyes
used in Illumina assays was corrected using the tQN normalization procedure.39 We
used the circular binary segmentation algorithm40 to segment genomic profiles and
assign corresponding smoothed values of log R ratio and B allele frequency. The
Genome Alteration Print method was used to determine the ploidy of each sample,
the level of contamination with normal cells and the allele-specific copy number of
each segment41.

mRNA expression profiling and analysis. The IGBMC Microarray and
Sequencing Platform performed mRNA expression profiling using
HumanGeneChip HG-U133 Plus 2.0 arrays (Affymetrix) for the 179 samples from
the study. We used the RMA algorithm (Bioconductor affy package) to normalize
the data. Probe set intensities were then averaged per gene symbol.

We used the Bioconductor ConsensusClusterPlus package for consensus
clustering analysis and identification of homogeneous gene expression clusters.
The 5% most variant probe sets were selected to determine the consensus partitions
of the data set in K clusters (for K¼ 2, 3, ..., 8). Computations were performed on the
basis of the 1,000 resampling iterations of hierarchical clustering, using Pearson’s
dissimilarity as the distance metric and Ward’s method for linkage analysis. To
determine the optimal number of clusters, we used the cumulative distribution
functions (CDFs) of the consensus matrices and considered both the shape of the
functions and the area under the CDF curves, as previously described42.

We used the Bioconductor package limma to test for gene differential
expression between different conditions43.

DNA methylation profiling and analysis. We analysed whole-genome
DNA methylation in 104 tumour samples using the Illumina Infinium Human-
Methylation450 Beadchips. Integragen SA (Evry, France) carried out microarray
experiments and hybridized to the BeadChip arrays following the manufacturer’s
instructions. Illumina GenomeStudio software was used to extract the beta value
DNA methylation scores for each locus together with detection P values.

As described elsewhere44, we replaced data points with detection P value40.05
with ‘NA’ values. We also masked data points as ‘NA’ for probes that contained
SNPs or overlapped with a repetitive element that was not uniquely aligned to the
human genome or regions of insertions and deletions in the human genome.
Homogeneous tumour subgroups with similar methylation profiles were identified
using consensus clustering. We used the Bioconductor package
ConsensusClusterPlus as described above, using the 5% most variant CpG sites, the
Euclidean distance metric, and R ‘‘ward.D’’ method for linkage analysis.

We determined CpG Island Methylator Phenotype (CIMP) by restricting the
consensus clustering analysis to CpG sites located within CpG islands. Samples
with a CIMP phenotype were determined according to the classification results
from the partition in two classes. Samples falling within the class showing strong
hypermethylation were assigned a positive CIMP status.

miRNA profiling and analysis. miRNA profiling was performed on 177 samples.
A PCR barcoding method45 was used to prepare multiplexed miRNA libraries that
were sequenced by Integragen SA (Evry, France) on an Illumina HiSeq 2000
sequencer. Image analysis, base calling, demultiplexing and conversion of BCL to
FASTQ format were performed using Illumina CASAVA 1.8.2 software.
MirExpress software46 was used to remove adaptor sequences. MiRanalyzer0.3
software47 was used to process FASTA files for each sample and to quantify read
counts for each miRNA referenced in mirBase74 v18.

Unsupervised classification was performed using 757 miRNAs that were
expressed (410 reads) in at least two samples. The miRNA counts were log2
transformed, divided by the total number of reads in each sample and centred on
the mean expression level of each gene. Consensus clustering was performed as
described above. Pearson’s dissimilarity was used as the distance metric and Ward’s
method for linkage analysis. We determined the optimal number of clusters on the
basis of the CDF curves.

We used the Bioconductor package limma to test for microRNA differential
expression between different conditions43.

Immunohistochemical staining. Immunohistochemistry was performed on
4-mm-thick sections of formalin-fixed paraffin embedded blocks with a ventana
Benchmark XT Device. The following antibodies were used after antigen retrieval
to assess ATRX (anti-ATRX, Sigma, polyclonal, dilution 1/400), p53 (anti-p53,
Dako clone DO.7, dilution 1/200) and CCND1 (anti-CCND1, Ventana, clone SP4).
p53 protein was defined as ‘highly expressed’ when we observed a strong nuclear
expression in more than 10% of the nuclei.

IDH and CIC mutations. IDH1 codon 132 and IDH2 codon 172 were sequenced
using the Sanger method with the following primers: IDH1-Forward: TGTGT
TGAGATGGACGCCTATTTG; IDH1-Reverse: TGCCACCAACGACCAAGTC;
IDH2-Forward: GCCCGGTCTGCCACAAAGTC and IDH2-Reverse:
TTGGCAGACTCCAGAGCCCA.

Coding exons (1–20) of the CIC gene were first amplified using primers used by
Gleize et al.48. Primers are available in Supplementary Table 4. PCR products were
purified conforming to the Agencourt AMPure XP PCR purification protocol
(Beckman Coulter) with the Biomek 3000 Automation Workstation. Universal
tailed amplicon resequencing approach (454 Sequencing Technology, Roche) was
used for the sequencing of coding exons of CIC. Sequences analysis was performed
using CLC Genomics Workbench software.

pTERT mutations. The promoter region of TERT gene was amplified as follow:
TERT-F: GGCCGATTCGACCTCTCT and TERT-R AGCACCTCGCGGTAGT
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GG; 3 min at 94 �C; 35 cycles at 94 �C—15 s, 60 �C—45 s, 72 �C—1min, with a final
step at 72 �C for 8min. PCR products were then purified with the Agencourt
AMPure XP PCR purification protocol (Beckman Coulter). Purified PCR products
were used as templates for the sequencing reaction performed with the Big-Dye
Terminator Cycle Sequencing Ready Reaction (Perkin Elmer). Extension products
were purified with the Agencourt CleanSEQ protocol according to manufacturer’s
instructions (Beckman Coulter). Purified sequences were analysed on an ABI Prism
3730 DNA Analyzer (Applied Biosystems).

Cluster of clusters analysis. We performed a consensus clustering of 85 and 141
tumours samples on the basis of the results from mRNA, DNA methylation and
miRNA consensus clustering analyses. The samples were clustered on binary
variables for each of the previously defined classes: five variables for mRNA classes,
four variables for DNA methylation classes and four variables for miRNA
classes. For each sample, the class variables had values 1 when the sample was in
the class, 0 if in another class of the partition, ‘NA’ when the sample was not
classified at the given molecular level. Pearson’s dissimilarity was used as the
distance metric and Ward’s method was used for linkage analysis.

Analysis of public data. We downloaded TCGA Low Grade Glioma data with last
update on 17th October 2014. 1p/19q co-deleted status was assigned by using
Gistic2 results by chromosome arm as found on the TCGA data portal. A total of
131 gliomas were labelled as 1p/19q co-deleted.

REMBRANDT and Gravendeel mRNA data were downloaded from public
databases (accession codes are respectively GSE16011 and E-MTAB-3073). For
both datasets, 1p/19q co-deleted status was assigned using mRNA expression data.
For each sample we computed the centred mean expression values of probe sets
located on chromosome arms 1p and 19q and optimized the two-class partition
(1p/19q co-deleted vs non-1p/19q co-deleted) of the samples according to these
two values. We labelled respectively 42 and 58 gliomas as 1p/19q co-deleted in
Gravendeel and REMBRANDT cohorts.

REMBRANDT survival data was downloaded from NIH (http://rembrandt.
nci.nih.gov) in august 2014 and treatment information from the G-DOC plus
portal (http://gdoc.georgetown.edu/gdoc/).

Validation of classification results on public datasets. We validated our mRNA
classification results by applying the same unsupervised classification approach on
the 1p/19q co-deleted samples of three additional public sample cohorts
(TCGA Low Grade Glioma, Gravendeel cohort and REMBRANDT cohort). Then,
for each class of each dataset, we computed a centroid profile on the basis of the
samples within the class as the mean expression of the 10% most variant genes
within the dataset. For each pair of classes to be compared, the 10% most variant
genes were selected among the genes which were measured in both datasets.
We could then compare our initial classification system to the ones achieved on
each public dataset using pairwise correlations between centroids to measure the
inter-dataset similarity of the classes.

Gene-set enrichment analysis. We used the R package GSA49 to perform
gene-set enrichment analysis for each molecular subtype compared to the others.
Gene-set members lists were retrieved online from MSigDB, GO and SMD
databases. Additional gene lists were added to this main set on the basis of
specific publications of interest: OPC markers from Dougherty et al.15, VEGF
activity markers from Dieterich et al.50 and MYC targets from Zeller et al.51.
Gene list from Zeller et al. was also used to assign to each tumour a score of MYC
activation on the basis of the mean expression of its targets.

Alterations in the MYC pathway. Genomic gains of MYC and genomic losses of
MAX were estimated from the gain normal loss (GNL) values computed from SNP
arrays. In POLA dataset, tumours verifying GNL¼ 1 (resp. GNL¼ � 1) for all
SNP positions within MYC (resp. MAX) genomic region were considered to have a
genomic gain of MYC. For TCGA dataset we used the public GNL data which are
given at gene level only: Tumours with GNL¼ 1 (resp. GNL¼ � 1) for MYC
(resp. MAX) were assigned a positive status for MYC (resp. MAX) genomic gain.

Hypomethylation of MYC exon 3 was measured from DNA methylation arrays.
For both POLA and TCGA datasets we considered that tumours were
relatively hypomethylated on MYC exon 3 if the beta value at CpG position
cg00163372 was o0.5.

Hypermethylation of mir34b/c genomic locus was also measured from DNA
methylation arrays. We identified four CpG positions within CpG island on
mir34b/C locus promoter region that were hypermethylated in O1 tumours
(cg22879515, cg21881253, cg13767940 and cg23211240), and used the cg22879515
position to define mir34b/c hypermethylation in both POLA and TCGA tumours.
For each dataset we defined a tumour as hypermethylated for the locus if the beta
value was greater than the mean beta value plus twice the standard deviation.
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Neurosurgery Department, 75475 Paris, France; 49Hospices Civils de Lyon, Hôpital Neurologique, Neuro-oncology Department, 69677 Bron, France; 50CHU
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