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Estimation of a general time-dependent
Hamiltonian for a single qubit
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The Hamiltonian of a closed quantum system governs its complete time evolution. While

Hamiltonians with time-variation in a single basis can be recovered using a variety of

methods, for more general Hamiltonians the presence of non-commuting terms complicates

the reconstruction. Here using a single trapped ion, we propose and experimentally

demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. We

measure the time evolution of the qubit in a fixed basis as a function of a time-independent

offset term added to the Hamiltonian. The initially unknown Hamiltonian arises from trans-

porting an ion through a static laser beam. Hamiltonian estimation allows us to estimate the

spatial beam intensity profile and the ion velocity as a function of time. The estimation

technique is general enough that it can be applied to other quantum systems, aiding the

pursuit of high-operational fidelities in quantum control.
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E
stimation of the underlying dynamics, which drive the
evolution of systems is a key problem in many areas of
physics and engineering. This knowledge allows control

inputs to be designed, which account for imperfections in the
physical implementation. For closed quantum systems, the time
dependence of a system is driven by the Hamiltonian through
Schrödinger’s equation. If the Hamiltonian is static in time, a
wide range of techniques have been proposed for recovering the
Hamiltonian1–4, which have been applied to a variety of systems
including chemical processes5 and quantum dots6,7. These
methods often involve estimation of the eigenvectors and
eigenvalues of the Hamiltonian via spectroscopy, or through
pulse–probe techniques for which a Fourier transform of the time
evolution gives information about the spectrum.

These methods are not directly applicable to time-dependent
Hamiltonians, which are becoming increasingly important as
quantum engineering pursues a combination of high-opera-
tional fidelities and speeds, often involving fast variation of
control fields, which are particularly susceptible to distortion
before reaching the quantum device8–12. The time-varying case
has thus far been studied in cases where the variation is
along a single dimension in the Hilbert space, which for the
commonly studied spin is a single spatial direction. In the case
that the measured fields dominate the evolution (strong
field limit), measurement of the system evolution as a function
of time suffices for the reconstruction. For fields which are
weaker than other available control fields (weak-field limit)
the latter can be used to modulate the effect of the
signal Hamiltonian on the quantum system13–15, providing an
excellent signal-to-noise ratio. A further complication arises
when a time-varying Hamiltonian contains non-commuting
terms (for example, time-variation along two spin axes), because
the evolution of the quantum system depends not only on their
separate influences, but also on products arising from the non-
commutativity. For unspecified time-dependent coefficients, no
analytical solution to Schrödinger’s equation exists16,17. In the
weak-field limit, strong control fields can be used to separate out
the different components using modulation, however, when the
Hamiltonian itself is strong (as is the case in fast quantum
control) these techniques cannot be applied.

In this article, we propose and demonstrate a method
for reconstructing a general time-dependent single qubit
Hamiltonian with non-commuting terms. The technique
involves observing the evolution of the spin projection
on the z-axis, while applying a static offset to one of the terms
of the Hamiltonian. By varying the static offset, we build up
data sets, which contain sufficient information to extract
the full time-dependent Hamiltonian. Parameterizing the two
time-dependent terms using basis splines (B-splines), we
introduce an iterative fitting technique, which finds the
Hamiltonian that best matches the data. We benchmark the
reconstruction method experimentally by transporting a single
trapped ion through a static laser beam, a technique suited to
scaling up trapped-ion quantum information processing18,19.
We perform two consistency checks on the Hamiltonian
estimation using four separate reconstructions. For the first
two, we compare two cases which use the same ion velocity
profile, but different laser beam positions. For the second
consistency check, we use the same laser beam, but change the
velocity profile between the two by using different sets of time-
varying control potentials. The method produces consistent
experimental parameters in both cases, indicating the success of
the reconstruction technique. Our method is applicable to spin
Hamiltonians of the general form Ĥ¼

P
i fi tð Þŝi, where the fi(t)

are arbitrary time-dependent functions and ŝi are the Pauli
operators.

Results
Hamiltonian estimation method. In our experiments, a
Hamiltonian with two non-commuting time-dependent terms
arises when we perform quantum logic gates by transporting an
ion through a static laser beam18,19. In this case, the Hamiltonian
describing the interaction between the ion and the laser can be
written in an appropriate rotating frame as

ĤI tð Þ ¼
‘
2

�O tð Þŝx þ d tð Þŝzð Þ ð1Þ

which includes a time-varying Rabi frequency O(t), and an
effective detuning d(t), which is related to the first-order Doppler
shift of the laser in the rest frame of the moving ion (see Methods
for details).

To reconstruct the Hamiltonian, we make use of two additional
capabilities. First, we can switch-off the Hamiltonian at time toff
on a timescale much faster than the qubit evolution. Subsequently
measuring in the ŝz basis, we can obtain ŝz toffð Þh i. On its own,
this does not allow us to separate the contributions from O(t) and
d(t). To do this, we use a second capability, which is the ability to
add a controlled offset Ĥs¼‘dLŝz=2 to the Hamiltonian, resulting
in ĤI tð Þþ Ĥs. The resulting spin measurement is now dependent
on both toff and the set value of dL. Repeating the experiment for a
range of values of dL but with otherwise identical settings, we
obtain an estimate of the expectation value which we denote as
ŝmeas
z toff ; dLð Þ

� �
.

Hamiltonian extraction involves finding the functions d(t) and
O(t), which generate spin populations ŝsimz toff ; dLð Þ

� �
that most

closely match the data. We minimize the reduced w2 cost
function.

J ¼ 1
n

X
toff

X
dL

ŝmeas
z toff ; dLð Þ

� �
� ŝsimz toff ; dLð Þ
� �

smeas toff ; dLð Þ

� �2
ð2Þ

where n¼N� n� 1 is the number of degrees of freedom, with N
the number of data points, n the number of fitting parameters
and smeas(toff, dL) the s.e. on the estimated hŝmeas

z toff ; dLð Þi. This
is subject to the initial condition C t ¼ 0; dLð Þj i¼ 0j i, and the
following restrictions, which are imposed by quantum mechanics

i‘
@

@t
C t; dLð Þj i ¼ ĤI tð Þþ Ĥs

� �
C t; dLð Þj i;

ŝsimz t; dLð Þ
� �

¼ C t; dLð Þh jŝz C t; dLð Þj i
ð3Þ

for all dL.
One challenge in obtaining an estimate for the Hamiltonian is

that we must optimize over continuous functions d(t) and O(t).
To address this, we represent d(t) and O(t) with a linear
combination of B-spline polynomials, which allow the construc-
tion of smooth functions using only a few parameters20. Any
smooth function S(t) can be written in terms of B-spline
polynomials Bi,k(t) and a set of weights ai as

S tð Þ ¼
Xn
i¼0

aiBi;k tð Þ: ð4Þ

The polynomial B-spline functions Bi,k(t) are of order k with each
polynomial centred at a time ti, which is parameterized by the
index i. Further details and an example can be found in Methods.
Using the B-spline form for d(t) and O(t), the cost function is
minimized by adjusting the weights of the B-spline
decomposition. Solving this optimization problem in general is
hard, because it is non-linear and non-convex due to the nature
of Schrödinger’s equation and the use of projective
measurements. This produces a non-trivial relation between the
weights and the spin populations as discussed in Methods. To
overcome this challenge, we have implemented a method which
we call ‘Extending the Horizon Estimation’ (EHE) in analogy to a
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well-established technique called ‘Moving Horizon Estimation’
(MHE)21.

The key idea is that because our measurement data arises from
a causal evolution, we can also estimate the Hamiltonian in a
causal way. Instead of optimizing J over the complete time span at
once, we first restrict ourselves to a small, initial time span
reaching only up to the start of the qubit dynamics 0otoffoT0,
where we denote T0 as the time horizon for the first step.
Optimizing J over this short time span requires fewer optimiza-
tion parameters and is simpler than attempting to optimize over
the full data set. Once we have solved this small sub-problem, we
extend the time horizon to T1 where T1¼T0 þ t and re-run the
optimization, extrapolating the results of the initial time span into
the extended region to provide good starting conditions for the
subsequent optimization. This procedure is iterated until the time
span extends over the whole data set Tnmax¼ max toffð Þð Þ. The
method allows us to reduce the number of B-spline functions
used to represent d(t) and O(t), and also reduces the amount of
data considered in the early stages of the fit, when the least is
known about the parameters. This facilitates the use of non-linear
minimization routines, which are based on local linearization of
the problem and converge faster near the optimum. More details
regarding the optimization routine can be found in Methods.

Conceptually EHE is very similar to MHE. The main difference
is that in MHE the time span has a fixed length and thus its origin
is shifted forward in time along with the horizon. In EHE, the
origin stays fixed at the expense of having to increase the time
span under consideration. MHE avoids this by introducing a
so-called arrival cost to approximate the previous costs incurred
before the start of the time span. This keeps the computational
burden fixed over time, which is very important as MHE is
usually used to estimate the state of a system in real-time, often
on severely constrained embedded platforms. Since neither
constraint applies to our problem, we decided to extend the
horizon rather than finding an approximate arrival cost. This is
advantageous since finding the arrival cost in the general case is
still an open problem22. Due to the similarity between MHE and
EHE, we anticipate future improvements by adapting techniques
used in MHE to EHE. This might be used to reduce the
data-processing required for reconstruction, which for EHE scales
as T2

nmax
.

Experimental implementation. To test the ability of the method
to reliably extract a Hamiltonian from data, we apply it
to the Hamiltonian for an trapped-ion qubit during transport
through a near-resonant laser beam. Our qubit is encoded
in the electronic states of a calcium ion, which is defined by
0j i � 2S1=2;MJ¼1=2

�� �
and 1j i � 2D5=2;MJ¼3=2

�� �
. This tran-

sition is well-resolved from all other transitions, and has an
optical frequency of o0/(2p)C411.0420 THz. The laser beam
points at 45� to the transport axis, and has an approximately
Gaussian spatial intensity distribution. The time-dependent
velocity _z tð Þ of the ion is controlled by adiabatic translation of the
potential well in which the ion is trapped. This is implemented by
applying time-varying potentials to multiple electrodes of a seg-
mented ion trap, which are generated using a multi-channel
arbitrary-waveform generator, each output of which is connected
to a pair of electrodes via a passive third-order low-pass Butter-
worth filter. The result is that the ion experiences a time-varying
Rabi frequency O(t) and a laser phase which varies with time as
F(t)¼f(z(t))�oLt, where f(z(t))¼ kz(z(t))z(t) with kz(z(t)) the
laser wave vector projected onto the transport axis at position z(t)
and oL the laser frequency. The spatial variation of kz(z(t))
accounts for the curvature of the wavefronts of the Gaussian laser
beam. To create a Hamiltonian of the form of equation (1), we

work with the differential of the phase, which gives a detuning
d tð Þ¼dL � _f¼dL � k0z zð Þzþ kz zð Þ

� �
_z with dL¼oL�o0 the laser

detuning from resonance. For planar wavefronts, k0z zð Þ¼0, and
d(t) corresponds to the familiar expression for the first-order
Doppler shift (see Methods for details).

The experimental sequence is depicted in Fig. 1. We start in
zone B by cooling all motional modes of the ion to �no3 using a
combination of Doppler and electromagnetically induced
transparency cooling23, and then initialize the internal state by
optical pumping into 0j i. The ion is then transported to zone A,
and the laser beam used to implement the Hamiltonian is turned
on in zone B. The ion is then transported through this laser beam
to zone C. During the passage through the laser beam, we rapidly
turn the beam off at time toff and thus stop the qubit dynamics.
The ion is then returned to the central zone B to perform state
readout, which measures the qubit in the computational basis ŝz
(for more details see Methods). The additional Hamiltonian Ĥs is
implemented by offsetting the laser frequency used in the
experiment by a detuning dL. For each setting of toff and dL the
experiment is repeated 100 times, allowing us to obtain an
estimate for the qubit populations ŝmeas

z toff ; dLð Þ
� �

.
We first perform a comparison in which the ion velocity is the

same but the beam position is changed. Thus we expect to obtain
two different profiles for O(t) but the same velocity profile, which
is closely related to d(t). Experimental data is shown in Fig. 2
alongside the results of fitting performed using our iterative
method. The beam positions used for each data set differ by
B64 mm along the transport axis, but the transport waveform
used was identical. It can be seen from the residuals that the
estimation is able to find a Hamiltonian, which results in a close
match to the data.
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Figure 1 | Experimental sequence and timing. (a) The experiment is

carried out in three zones of the trap indicated by A, B and C. (b) The

experimental sequence involves steps (i) through (v). Preparation and

readout are carried out on the static ion in zone B. The qubit evolves while

the ion is transported through the laser beam in zone B in a transport

operation taking the ion from zone A to zone C. (c) Experimental sequence

showing the timing of applied laser beams and ion transport, including

shutting off the laser beam during transport.
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The estimated coefficients of the Hamiltonian extracted from
the two data sets are shown in Fig. 3a,b. To estimate the relevant
errors of our reconstruction, we have performed non-parametric
resampling with replacement, optimizing for the solution using
the same set of B-spline functions as was used for the
experimental data to provide a new estimate for the Hamiltonian.
This is repeated for a large number of samples, resulting in a

distribution for the estimated values of d(t) and O(t) from which
we extract statistical properties such as the s.e. The error bounds
shown in Fig. 3 correspond to the s.e. on the mean obtained from
these distributions (see Methods for further details). It can be
seen that the values of d(t) for the two different beam positions
have a similar form but a fixed offset for the region where
the reconstructions overlap. We believe that this effect arises
from the non-planar wavefronts of the laser beam. Inverting the
expression for d(t) to obtain the velocity of the ion, we find
_z tð Þ¼ dL � d tð Þð Þ= k0z zð Þzþ kz zð Þ

� �
. Using this correction, we find

that the two velocity profiles agree if we assume that the ion
passes through the centre of the beam at a distance of 2.27mm
before the minimum beam waist, a value which is consistent with
experimental uncertainties due to beam propagation and possible
mis-positioning of the ion trap with respect to the fixed final
focusing lens. The velocity estimates taking account of this effect
are shown in Fig. 3c.

Our second comparison involves using two different velocity
profiles but with a common beam position. The resolution in
both time and detuning were lower in this case than for the data
shown in Fig. 2 (see Methods for the data). Figure 4 shows the
results of the reconstruction. We observe that the estimated Rabi
frequency profiles agree to within the error bars of the
reconstruction. One interesting feature of this plot is that the
error bars produced from the resampled data sets increase near
the peak. We believe that this happens because the sampling time
of the data is 0.5 ms, which starts to become comparable to the
Rabi frequency (the Nyquist frequency is 1MHz). To optimize
the efficiency of our method, it would be advantageous to run the
reconstruction method in parallel with data taking, thus allowing
updating of the sampling time and frequency resolution based on
the current estimates of parameter values.

Discussion
Our method for directly obtaining a non-commuting time-
dependent Hamiltonian uses straightforward measurements of
the qubit state in a fixed basis as a function of time and a
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Figure 2 | Measured data, best fit and residuals. Spin population as a function of detuning and switch-off time of the laser beam. a is for a laser beam

centred in zone B, while for b the beam was displaced towards zone C by 64mm. From left to right are plots of the experimental data, the populations

generated from the best fit Hamiltonian, and the residuals. Each data point results from 100 repetitions of the experimental sequence. The data in a consist
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reconstructed Hamiltonian for the latter. For the Hamiltonian estimation, the data was weighted according to quantum projection noise.
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controlled offset to the Hamiltonian. Unlike schemes based on
dynamical modulation or continuous strong driving, it avoids the
need for control fields which act more strongly on the qubit than
the Hamiltonian to be measured. This is a key advantage in
quantum technologies where the Hamiltonian of interest is often
already close to the limit of system drive strength. A process-
tomography-based approach would require that for every time
step multiple input states be introduced, and a measurement
made in multiple bases24–26. This requires a much greater level of
control than the method presented above. An effective
modulation of the measurement basis arises in our approach
due to the additional detuning dL. Nevertheless, it is also worth
noting that tomography provides more information than our
method: it makes no assumptions about the dynamics aside from
that of a completely positive map while we require coherent
dynamics. Extensions to our work are required to provide a
rigorous estimation of the efficiency of the method in terms of the
precision obtained for a given number of measurements, and to
see whether a similar approach could be taken for non-unitary
dynamics. We have recently used these methods to improve the
control over the ion velocity, which is of direct value in
optimizing transport operations in scalable trapped-ion
quantum information processing11,12,27, and will be essential
for realizing multi-qubit transport gates18. We expect them to be
applicable across a wide range of physical systems where such
control is available, including those considered for quantum
computation4,6,7,28–31.

Methods
Derivation of Hamiltonian. The interaction of a laser beam with frequency oL

and wave vector k(z(t)) with a two-level atom with resonant frequency o0 and
time-dependent ion position z(t)¼ (0, 0, z(t)) can be described in the Schrödinger
picture by the Hamiltonian

ĤS ¼ � ‘o0

2
ŝz � ‘O z tð Þð Þcos k z tð Þð Þ � z tð Þ�oLtð Þŝx ; ð5Þ

where the Rabi frequency O(z(t)) gives the interaction strength between the laser
and the two energy levels. We can define the laser phase at the position of
the ion as F(t)¼f(t)�oLt with f(t)¼ k(z(t)) � z(t)¼ kz(z(t))z(t) and kz(z(t))¼
|k|cos(y(t)) being the projection of the laser beam onto the z-axis along which the
ion is transported. Here y(t) is the angle between the wave vector k(z(t)) and the
transport axis evaluated at position z(t). Moving to a rotating frame using the

unitary transformation U¼e� iF tð Þ
2 and applying the rotating wave approximation

with respect to optical frequencies, we obtain

ĤI ¼
‘
2

�O tð Þŝx þ �o0 � _F tð Þ
� �

ŝz
� �

: ð6Þ

Defining a static detuning dL¼oL�o0, we obtain

ĤI ¼
‘
2

�O tð Þŝx þ dL � _f tð Þ
	 


ŝz
	 


: ð7Þ

with

d tð Þ ¼ dL � _f tð Þ; ð8Þ
which is the expression used in the main text.

B-spline curves and optimization algorithm. The set of polynomial B-spline
functions Bi,k(t) of order k are recursively defined over the index i over a set of
points K¼ {t0, t1, .., tnþ k}, which is referred to as the knot vector20.

Bi;1 tð Þ ¼ 1 ti � t � tiþ 1

0 otherwise

�
Bi;k tð Þ ¼ oi;k tð ÞBi;k� 1 tð Þþ 1�oiþ 1;k tð Þ

� �
Biþ 1;k� 1 tð Þ:

oi;k tð Þ ¼
t� ti

tiþ k� 1 � ti
if ti 6¼ tiþ k� 1

0 otherwise

� ð9Þ

Figure 5 gives a visualization of the B-splines Bi,k(t) and a B-spline curve. The
B-spline construction ensures that any linear combination of the B-splines is
continuous and has (k� 2) continuous derivatives. The knot vector K determines
how the basis functions are positioned within the interval [t0, tnþ k]. We notice that
for our Hamiltonian the spacing of the B-splines is not critical, which we think is
due to the smoothness of the variations in our Hamiltonian parameters d(t) and
O(t). We therefore used the Matlab function spap2 to automatically choose a
suitable knot vector and restricted ourselves to optimizing the coefficients ai.
We collect all coefficients ai for d(t) and O(t) and store them in a single vector a.

A detailed algorithmic summary of our implementation of the EHE method is
given below.

1. Searching for a starting point: here we reconstruct the Hamiltonian for a first,
minimal time horizon such that we can then use this as a starting point to
iteratively extend the horizon as described in step 2.

(a) Choose an initial time horizon such that it contains the region where the
first discernible qubit dynamics occur.

(b) Cut down the number of fitting parameters as much as possible, for
example, by using few B-splines of low order. This amounts to choosing
empirically a low number of B-splines (and thus the length of a0), which
might represent d(t) and O(t) over the given region.

(c) Use a non-linear least-squares fitting routine to minimize J by varying the
parameters a0. In the case that the initial fit is poor or no minimum is
found, try new initial conditions, change the number of B-spline
functions, or manually adjust the function using prior knowledge of the
physical system under consideration.
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Figure 4 | Time-dependent detuning and spatial Rabi frequency.
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This procedure is used to provide a starting point for the optimization over the
initially chosen window, which is typically performed with a set of higher order
B-splines. From this starting point, we iteratively extend the fitting method to the
full data set as follows.

2. Extend the horizon: this step is repeated until the whole time horizon is covered.
It consists of the following sequence, which is illustrated in Fig. 5.

(a) Extend the time horizon by t from Tn to Tnþ 1¼Tn þ t.
(b) Extrapolate fopt,old(t) within t, for example, using fnxtr in Matlab.
(c) Adapt the B-splines to the new time horizon Tnþ 1 and represent

fpred,old(t) in the new basis, giving fpred,new(t). In Matlab one can use spap2
to do this.

(d) Use fpred,new(t) as the initial guess for a weighted non-linear least-squares
fit over the extended time span up to Tnþ 1.

(e) Judge the results of the fit based on its reduced w2-value w2red. If it is below
a specified bound, continue with an additional iteration of steps a–d,
repeating until the full region of the data is covered. Otherwise, attempt
the following fall-back procedures:

i Reduce t, the time by which the time horizon is extended, and try again.
ii Increase the number of B-splines and try again.
iii Try again using a different starting point.

If all these fail, we have to resort to increasing the bound on w2red.

3. Post-processing: the following steps are optional and were performed manually
in cases where we wished to improve the fit or examine its behaviour.

(a) The optimization over the whole time horizon was re-run using different
numbers of B-splines for d(t) and O(t). This was used to check the
sensitivity of the fit.

(b) The optimization over the whole time horizon was re-run using a starting
point based on the previously found optimum plus randomized
deviations. This tested the robustness of the final fit.

Wavefront correction. For plane waves, we find that _f tð Þ¼k � v tð Þ, which is the
well-known expression for the first-order Doppler shift. For transport through a
real Gaussian beam, the wave vector direction changes with position. Taking this
into account, the derivative of f(t) becomes

_f tð Þ ¼ k0z z tð Þð Þz tð Þþ kz z tð Þð Þ
� 

_z tð Þ ð10Þ

where k0z¼ dkz=dz and _z tð Þ is the component of the ion velocity along the z-axis.
We extract d(t) using our Hamiltonian estimation procedure, thus to obtain the
velocity of the ion we use

_z tð Þ ¼ � d tð Þþ dL
k0z z tð Þð Þz tð Þþ kz z tð Þð Þ : ð11Þ

As the ion moves through the beam it experiences the same magnitude of the wave
vector |k|¼ 2p/l, but the angle y between the ion direction and the wave vector
changes. Written as a function of this angle, the velocity becomes

_z tð Þ ¼ � d tð Þþ dL
� kj jsin y z tð Þð Þð Þy0 z tð Þð Þz tð Þþ kj jcos y z tð Þð Þð Þ ð12Þ

where y0(z(t))¼ dy(z(t))/dz(t). We parameterize our Gaussian beam according to
Fig. 6. The phase is given as a function of both the position along the beam axis x

and the perpendicular distance from this axis k by32

j k; xð Þ ¼ kj jx� z xð Þþ kj jk2
2R xð Þ : ð13Þ

where the Gaussian beam parameters include the beam waist W(x), the radius of
curvature R(x), the Rayleigh range xR and the Guoy phase shift z(x). These are
given by the expressions

W xð Þ ¼ W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

xR

	 
2
r

R xð Þ ¼ x 1þ xR
x

	 
2
� �

z xð Þ ¼ tan� 1 x
xR

	 

xR ¼ pW2

0
l

k ¼ 2p
l

ð14Þ

where W0 is the minimum beam waist and l the laser wavelength. The ion moves
along the z-axis as shown in Fig. 6. In the kx-plane a unit vector el(k, x)
perpendicular to the wavefronts is given by

el k; xð Þ ¼ rj k; xð Þ
rj k; xð Þk k ð15Þ

and the unit vector ev pointing along the direction of transport is given by

ev ¼
cos að Þ
sin að Þ

� �
ð16Þ

The angle y(x) between the wave and position vector is then given by the dot
product

y kð Þ ¼ cos� 1 en � evð Þ: ð17Þ

which can be written in terms of the full set of parameters above as

y kð Þ ¼ cos� 1 g1 þ g2ð Þ

g1 ¼ cos að Þ � 2xR x2 þ x2Rð Þþ kk2 x2R � x2ð Þþ 2k x2 þ x2Rð Þ2
� �

Z kð Þ

g2 ¼ sin að Þ2kkx x2 þ x2Rð Þ
Z kð Þ

Z k; xð Þ ¼ x2 þ x2R
� �

4 kkx
x2 þ x2R

	 
2
þ � 2xR

x2 þ x2R
þ k 2þ k2 x2R � x2ð Þ

x2 þ x2Rð Þ2
� �� �2

" #

k tð Þ ¼ z tð Þsin að Þ
ð18Þ

where in our experiments a¼ 3p/4.
Using equations (12) and (18), we examined the value of xcl required for the

velocity to match for our two beam positions. We find that they agree for
xcl¼ � 2.27mm, which is within the experimental uncertainties for our set-up.

� �

�c1W0
W (�c1)

Zκ

Figure 6 | Beam and ion transport. The beam propagation direction lies

along the x-axis and the ion is transported along the z-axis lying on the

kx-plane as indicated. Normalized vectors representing el(k, x) lying
perpendicular to the wavefronts are indicated by the blue arrows.
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Figure 7 | Parametric bootstrap resampling. Predictions for the effective

detuning d(t) in a, Rabi frequency O(t) in b and velocity _zðtÞ in c. Blue and red

solid lines show data obtained having the beam centred in zone B and with the

beam displaced by a few tens of micron. Dashed lines represent the s.e. on

the mean of these estimates obtained using parametric bootstrap resampling,

assuming quantum projection noise. This can be compared with the error

bounds obtained from the non-parametric method, which are shown in Fig. 3

in the main text. The bounds are tighter for the parametric bootstrapping.
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Error estimation. To estimate the errors of the time-dependent functions, we use
non-parametric bootstrapping33. The process is summarized as follows:

1. Estimate initial solution: estimate the time-dependent functions from the
original data using Hamiltonian estimation.

2. Resampling: create Ns sample solutions for all time-dependent functions in the
following way:

(a) Form a sample set by randomly picking with replacement from the
photon count data used in qubit detection.

(b) Re-estimate new time-dependent functions by optimizing over the full
time span, using the solution found in (1) as a starting point.

(c) Record the reduced w2-values w2red;r for each sample r along with the
B-spline curve coefficients ar.

3. Post-process samples:

(a) Form a histogram of the w2-values w2red;r.
(b) Find and fit a normal-like distribution to the histogram with preference

to the spread with lowest lying w2red;r in the case of a multi-modal
distribution. From the fit obtain the mean reduced-w2-value hw2red;ri, as
well as the s.d. sw.

(c) Eliminate the outlier samples by removing all ar with w2red;r values that are
3–5sw from the mean hw2red;ri.

(d) Form a matrix Y, where each row vector is a sample set of coefficients ar
that remained after step 3(c).

4. Obtain statistics:

(a) Find the mean B-spline coefficients ah i of equation (4) by taking the
mean over the column vectors of Y with each element of the mean given
by ah ii¼ aih i.

(b) Find the covariance matrix �¼ cov Yað Þ with �ij¼ E ai � aih ið Þ½
aj � aj

� �� �
� with E the expectation operator. The s.d. of each of the

mean coefficients aih i is given by s aih i¼
ffiffiffiffiffiffi
�ii

p
. We record these values in a

row vector r aih i.

In evaluating errors using bootstrapping, we use the same set of spline
polynomials as were used for the final optimization stage in the data, which makes
the reconstruction more reliable in converging to a minimum. We thus expect that
the parameter space explored in evaluating the errors is not the same as for the
ab initio estimation of the Hamiltonian. This is apparent in the regions of the data
where the final estimate has large error bounds (for example, in Fig. 4), where an
even larger spread might be expected (the dynamics has stopped evolving at this

point). We think that the net effect is to under-estimate the errors in the regions
where the Hamiltonian is uncertain, but that the error bars given in the central
region (where the Hamiltonian is well-defined) are close to what would be obtained
through a full optimization.

We have also applied parametric bootstrapping to obtain the error bounds
shown in Fig. 7. The difference to the non-parametric case is that in point (2) the
samples are created using the solutions obtained from (1) and adding quantum
projection noise. For each sample the Hamiltonian is estimated. The estimates
from multiple samples are used to construct error bounds in the same manner as
for the non-parametric resampling. We have found that the error bounds obtained
from parametric bootstrapping are lower compared with that of the non-
parametric case as shown in Fig. 3. We think this is due to the latter exploring
deviations around a single minimum in the optimization landscape, while the case
resampling arrives at different local minima, which are spread over a wider region.

Single beam profile with two different velocity profiles. To verify that our
method can also consistently estimate the Rabi frequency profile, we measure a
second pair of data sets in which we take two different velocity profiles using the
same beam position. This data is shown in Fig. 8. Also shown are the best-fits
obtained from the reconstructed Hamiltonians. The parameter variations obtained
from the reconstructed Hamiltonians for these data sets can be found in the main
text in Fig. 4. The sampling rate of the data in these data sets was 2MHz, resulting
in a Nyquist frequency of 1MHz.
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