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Topological vacuum bubbles by anyon braiding
Cheolhee Han1, Jinhong Park1, Yuval Gefen2 & H.-S. Sim1

According to a basic rule of fermionic and bosonic many-body physics, known as the linked

cluster theorem, physical observables are not affected by vacuum bubbles, which represent

virtual particles created from vacuum and self-annihilating without interacting with real

particles. Here we show that this conventional knowledge must be revised for anyons,

quasiparticles that obey fractional exchange statistics intermediate between fermions and

bosons. We find that a certain class of vacuum bubbles of Abelian anyons does affect

physical observables. They represent virtually excited anyons that wind around real anyonic

excitations. These topological bubbles result in a temperature-dependent phase shift of

Fabry–Perot interference patterns in the fractional quantum Hall regime accessible in current

experiments, thus providing a tool for direct and unambiguous observation of elusive

fractional statistics.
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W
hen two identical particles adiabatically exchange their
positions ri¼ 1,2, their final state c (up to dynamical
phase) is related to the initial one through an exchange

statistics phase y*,

c r2; r1ð Þ ¼ eiy
�
c r1; r2ð Þ; ð1Þ

with y*¼ 0 (p) for bosons (fermions)1.
Anyons2–4 are quasiparticles in two dimensions, not belonging

to the two classes of elementary particles, bosons and fermions.
Abelian anyons appear in the fractional quantum Hall (FQH)
system of filling factor n¼ 1/(2nþ 1), n¼ 1,2,?. They carry a
fraction e*¼ ne of the electron charge e and obey fractional
exchange statistics, satisfying equation (1) with y*¼±pn. Two
anyons gain a phase ±2pn from a braiding, whereby one
winds around the other; ± depends on the winding direction.
Although fractional charges have been detected5–8, experi-
mental measurement of statistics phase pn has been so far
elusive. Existing theoretical proposals for the measurement
involve quantities inaccessible in current experiments or suffer
from unintended change of a proposed setup with external
parameters9–18.

In many-body quantum theory1, Feynman diagrams are used
to compute the expectation value of observables. This approach
invokes vacuum bubble diagrams, which describe virtual particles
excited from vacuum and self-annihilating without interacting
with real particles. According to the linked cluster theorem1, each
diagram possessing vacuum bubbles comes with, hence is exactly
cancelled by, a partner diagram of the same magnitude but of the
opposite sign. Consequently, vacuum bubbles do not contribute
to physical observables.

In the following, we demonstrate that this common wisdom
has to be revised for anyons: a certain class of vacuum bubbles of
Abelian anyons does affect observables. These virtual particles,
which we call topological vacuum bubbles, wind around a real
anyonic excitation, gaining the braiding phase ±2pn. We
propose a realistic setup for detecting them and y*¼ pn.

Results
Topological vacuum bubble. We illustrate topological vacuum
bubbles. In Fig. 1a, a Feynman diagram represents interference
a1a�2 between processes a1 and a2 of propagation of a real particle.
In a1, a virtual particle-hole pair is excited then self-annihilates
after the virtual particle winds around the real particle, forming a
vacuum bubble, while it is not excited in a2. The winding results
in a braiding phase 2pn and an Aharonov–Bohm phase 2pF=F�

0
from the magnetic flux F enclosed by the winding path, contri-
buting to the interference signal as ei 2pF=F�

0 þ 2pnð Þ; F�
0 ¼ h=e� is

the anyon flux quantum9,19.
The limiting cases of bosons (n¼ 0) and fermions (n¼ 1) imply

that this bubble diagram appears together with, and is cancelled
by, a partner diagram in Fig. 1b. The partner diagram has a
bubble not encircling the real particle and involves only 2pF=F�

0.
The two diagrams (and their complex conjugates) yield

Interference signal /Re eið2pF=F
�
0 þ 2pnÞ � e2piF=F

�
0

h i

¼� sinðpnÞsin 2pF=F�
0 þpn

� �
: ð2Þ

For bosons and fermions, the two diagrams fully cancel each
other with sin(pn)¼ 0 in agreement with the linked cluster
theorem; hence, the signal disappears. By contrast, for anyons
they cancel only partially, producing the non-vanishing inter-
ference in an observable, and are topological as the braiding phase
is involved.

Interferometer setup. In Fig. 2a, we propose a minimal setup for
observing topological vacuum bubbles. It is a Fabry–Perot
interferometer9,17,20–23 in the n¼ 1/(2nþ 1) FQH regime,
coupled to an additional edge channel (Edge 1) via a quantum
point contact (QPC1). At QPCi, there occurs tunnelling of a
single anyon (rather than anyon bunching), fulfilled24 with
gi � kBT ; gi is the tunnelling strength and T is the temperature.
Gate voltage VG is applied, to change the interferometer loop
enclosing Aharonov–Bohm flux F. The interference part IintD3

of
charge current at drain D3 is measured with bias voltage V
applied to source S1; the other Si’s and Di’s are grounded.
Together with ‘virtual’ (thermal) anyon excitations in the
interferometer, a voltage-biased ‘real’ anyon, dilutely injected at
QPC1 from Edge 1 to the interferometer, forms topological
vacuum bubbles, as shown below. The bubbles contribute to IintD3

at the leading order ðIintD3
/ g21g2g3Þ in QPC tunnelling, as Edges

2 and 3 are unbiased. It is noteworthy that in the setups
previously studied9–18, topological bubbles do not contribute to
current at the leading order.

We consider the regime of e�V � kBT\‘ vp=L, where the
size LV�‘ vp/(e*V) of the dilutely injected anyons is much smaller
than interferometer size L and the injection of hole-like anyons at
QPC1 is ignored; vp is anyon velocity along the edges and e*V
should be much smaller than the FQH energy gap. Because of the
dilute injection and LV � L, anyon braiding is well defined in
the interferometer. As shown below, the dependence of IintD3

on F
or on VG provides a clear signature of the topological bubbles,
consequently, y*¼ pn in both of the pure Aharonov–Bohm
regime (where Coulomb interaction of the edge channels with
bulk anyons localized inside the interferometer loop is negligible)
and the Coulomb-dominated regime (where the interaction is
strong)22,25. Below, we first ignore bulk anyons.

Interference current. Employing the chiral Luttinger liquid
theory26,27 for FQH edges and Keldysh Green’s functions10,12,
we compute IintD3

ð/ g21g2g3Þ at the leading order in g.
There are four types of the processes mainly contri-
buting to IintD3

’ II� 1
D3

þ II� 2
D3

þ IIID3
þ IIIID3

; see Fig. 2b. For
e�V � kBT � ‘ vp=L, we obtain the analytical expression of
I intD3

: The interference current contributed by Type I-1 processes is

a1 e 2i�� a2

a2a1 1

a

b

Figure 1 | Topological vacuum bubble. Feynman diagrams for interference

involving a real particle and a virtual particle–hole excitation from vacuum.

Full (empty) circles represent particles (holes). Solid (dashed) lines denote

propagations of real (virtual) particles. (a) Diagram for the interference a1a
�
2

of two processes: (a1, blue) A real particle propagates, a virtual particle–

hole pair is excited, then the pair self-annihilates after the virtual particle

winds around the real one. (a2, magenta) A real particle propagates. The

entire virtual process constitutes a vacuum bubble. For anyons, the bubble

gains a topological braiding phase 2pn from the winding. (b) Partner

diagram of a. Here a virtual particle, constituting another bubble, does not

encircle a real one and hence gains no braiding phase. The diagrams in

a and b contribute to observables for anyons, while they do not for bosons

and fermions.
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II� 1
D3

pVn� 2Tn� 1g V ;Tð Þcos 2pF=F�
0 þ e�VL=‘ np

� �
, which by

Type I-2 is II� 2
D3

pV � 1g V ;Tð Þ sin2pnð Þcos 2pF=F�
0

� �
, and those

by Type II and III are

IIID3
’ g V ;Tð Þ 2LþCðnÞLT

‘ vp
sin2pn
� �

cos 2pF=F�
0 þpn

� �
; ð3Þ

IIIID3
’ g V ;Tð ÞCðnÞLT

‘ vp
sin2pn
� �

cos 2pF=F�
0 � pn

� �
; ð4Þ

where g V ;Tð Þ / g21g2g3 VTð Þ2n � 1e� 2L=LT ; e� 2L=LT is a thermal
suppression factor, thermal length LT�‘ vp/(pnkBT) and
Cðn ¼ 1=3Þ ’ 0:43; see Methods and the Supplementary Note 3.

Type I-1 processes describe interference between two paths of
an anyon moving from S1 to D3 via (i) QPC2 and (ii) QPC3,
respectively. They were previously studied9.

In Type I-2, an anyon injected from S1 interferes with a
particle-like anyon excited at a QPC or annihilates a hole-like
anyon; particle-like and hole-like anyons are pairwise excited
thermally at QPCs. For example, consider the two following
interfering histories: (i) an anyon is injected from S1 to D2,
an anyon pair is excited at QPC3 and then the particle-like
(hole-like) anyon of the pair moves to D3 (D2). (ii) An anyon is

injected from S1 to D3 via QPC2 without any excitations. The
hole-like anyon annihilates the injected anyon on Edge 2 in
history (i) and the particle-like anyon of (i) interferes with the
injected anyon of (ii) on Edge 3. The sum of such interference
processes yields II� 2

D3
/ sin2pncos 2pF=F�

0

� �
. The sin2pn factor

appears, because relative locations of anyons on Edge 2 or 3 differ
between the processes, leading to an exchange phase ±pn, and
because a process with an excitation (of a particle-like anyon
moving to D2 and a hole-like one to D3) yields charge current in
the opposite direction to another with its particle-hole conjugated
excitation (of a particle to D3 and a hole to D2).

In Types II and III, a real anyon injected from S1 moves to D2

and a virtual anyon pair excited at QPC2 interferes with another
at QPC3. The interference path effectively encloses the real
anyon, forming a topological vacuum bubble (cf. Fig. 1). In Type
II, when the real anyon is located on Edge 2 between QPC2 and
QPC3, a virtual pair is excited at QPC2 in history (i) and at QPC3
in history (ii). Next, the hole-like (particle-like) anyon of each
pair moves, for example, to D2 (D3). The interference of the two
histories corresponds to the winding of a virtual anyon around
the real one and F, forming a topological bubble with interference
phase � 2pF=F�

0 þ 2pn
� �

; ±depends on whether the hole-like
anyon moves to D2 or D3. In the interference, the winding of a
virtual anyon around the real one effectively occurs through the
exchanges of the positions of the anyons in each of Edges 2 and 3,
as relative locations of anyons on Edges 2 and 3 differ between
(i) and (ii) (see Supplementary Fig. 2 and Supplementary Note 6).
This interference is accompanied by a partner process. The latter
has a bubble that winds around F (gaining phase � 2pF=F�

0),
but not around a real anyon. The two partner processes partially
cancel each other, yielding IIID3

/ sinpncos 2pF=F�
0 þ pn

� �
; the

remaining sin pn factor in equations (3) and (4) has a similar
origin to the sin2 pn factor of II� 2

D3
.

In Type III, the two interfering histories are as follows: (i) a
virtual pair is excited at QPC2 before a real anyon injected from
S1 arrives at QPC2 and (ii) another pair is excited at QPC3 after
the real one arrives at QPC3. The ensuing chronological sequence
on Edge 2 is opposite to Type II: an anyon excited at QPC2
arrives at QPC3; the real one arrives at QPC3; a pair is excited at
QPC3. The resulting topological bubble effectively winds around
the real anyon in the direction opposite to its winding around F,
yielding a phase � 2pF=F�

0 � 2pn
� �

. Partial cancellation of the
bubble and its partner leads to IIIID3

/ sinpn cos 2pF=F�
0 � pn

� �
.

The factor 2LþCLT of IIID3
(CLT in IIIID3

) in equation (3)
(equation (4)) comes from the time window compatible with
the chronological sequence on Edge 2.

Type II and III processes of topological bubbles do not affect
any observables at n¼ 1 (fermions), due to full cancellation
between partner bubbles (the linked cluster theorem). They
are distinct from I-2. I-2 processes produce, for example,
non-vanishing current noise hðIintD3

�hIintD3
iÞ2i at n¼ 1, as the

particle-hole conjugated excitations (mentioned before) equally
contribute to the noise (although the contributions of the
conjugations to II� 2

D3
cancel each other, leading to II� 2

D3
¼ 0).

In the more general regime of e�V � kBT\‘ vp=L, we
employ the parametrization

IintD3
/ cos 2pF=F�

0 þ y
� �

: ð5Þ

The phase y is determined by competition between the various
contributions to IintD3

and contains information about statistics
phase pn. At e�V � kBT\‘ vp=L, IIID3

þ IIIID3
is much larger than

II� 1
D3

þ II� 2
D3

and dominates IintD3
, because the interfering anyon of

Types I-1 and I-2 is voltage biased and has width LVpV� 1 much
narrower than the thermal anyon excitations (whose width
LTpT� 1) of II and III, showing much weaker interference. From
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Figure 2 | Interferometry for detecting topological vacuum bubbles.

(a) In the setup, anyons move (see arrows) along FQH edge channel

i¼ 1,2,3 that connects source Si and drain Di, and jump (dashed) between

the channels via tunnelling at QPCs. The loop defined by Edges i¼ 2,3,

QPC2 and QPC3 encloses magnetic flux F, forming a Fabry–Perot

interferometer. Distance between QPC2 and QPC3 (QPC1) is L (d). (b) Two

interfering paths (i) and (ii) of each main interference process at

e�V � kBT \�hvp=L. Following Fig. 1, filled (empty) circles represent

particle-like (hole-like) anyons and solid (dashed) lines denote propagation

of an anyon injected from S1 (anyon pair excitation at QPCs). Type II and III

processes involve a topological vacuum bubble.
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IIID3
and IIIID3

, we find

y ’ arctan
L

LþCðnÞLT
tan pnþð1� 2nÞarctan 2LV

LT

� �� �

!arctan
L

LþCðnÞLT
tanpn

� �
as T=V ! 0

!pn as LT=L ! 0 and T=V ! 0: ð6Þ

The arctan 2LV/LT term represents an error in the braiding phase
2pn of the topological bubbles. It occurs when the size LV of a real
anyon is not sufficiently smaller than the winding radius of a
virtual anyon around the real one. It is negligible at e�V � kBT ,
as the radius is effectively large when LV � LT ; those
corresponding to the error are ignored in equations (3)
and (4), and are shown in Supplementary Note 3. For
e�V � kBT � ‘ vp=L, IIID3

dominates I intD3
and y-pn. Remark-

ably, y depends on T, contrary to common practice in electron
interferometry28.

Coulomb-dominated regime. In experimental situations of a
Fabry–Perot interferometer in the FQH regime, it is expected that
there exist bulk anyons localized inside the interferometer loop.
There are two regimes of Fabry–Perot interferometers, the pure
Aharonov–Bohm regime and the Coulomb-dominated regime. In
the former regime, Coulomb interaction between the bulk anyons
and the edge of the interferometer is negligible, whereas it is
crucial in the latter25. The Fabry–Perot interferometers of recent
experiments17,20–23 in the FQH regime are in the Coulomb-
dominated regime. Below we compute the interference current
ID3 in the presence of the Coulomb interaction and show that
equation (6) is applicable to both of the pure Aharonov–Bohm
regime and the Coulomb-dominated regime.

For e�V � kBT\‘ vp=L, we numerically compute
IintD3

ð/ g21g2g3Þ in Fig. 3, combining our theory with the capacitive
interaction model25 that successfully describes thermally
fluctuating bulk anyons and the interaction (see the Method
and Supplementary Note 5). We find the gate-voltage dependence
of IintD3

pcos(2pVG/VG,0þ y) with periodicity VG,0 in the
Coulomb-dominated regime and IintD3

/ cosð2pF=F0 þ yÞ in the
pure Aharonov–Bohm limit; here the periodicity of the F
dependence is F0�h/e rather the period F�

0 of equation (5),
because of the fluctuation of the number of bulk anyons9,19. In
both the regimes, the interference processes discussed before
(Fig. 2) appear in the same manner; hence, y satisfies the analytic
expression in equation (6) (cf. Fig. 3c).

How to measure the phase h. Experimental measurements of y
can be affected by possible side effects, including the external-
parameter (magnetic fields, gate voltages and bias voltages)
dependence of the size, shape, QPC tunnelling and bulk anyon
excitations. Below we propose how to detect y with avoiding the
side effects, using the setup in Fig. 2a.

The phase y is experimentally measurable, by comparing IintD3

with a reference current I intRef ; D3
. IintRef ; D3

is measured at D3 in the
same setup under the same external parameters (temperature,
gate voltages, magnetic field and so on) with I intD3

, but with
applying infinitesimal bias voltage Vref/2 to S2 and �Vref/2 to S3
and keeping S1 and all Di’s grounded9 (cf. Supplementary
Note 4). In any regimes I intD3

shows the same interference
pattern with IintRef ; D3

, but is phase-shifted from IintRef ; D3
by y;

IintRef ; D3
/ cos2pVG=VG;0ðIintRef ; D3

/ cos2pF=F0Þ in the Coulomb-
dominated (pure Aharonov–Bohm) limit. Importantly, the side
effects modify IintD3

and IintRef ; D3
in the same manner; hence, the

phase shift between the patterns remains as y.

The fractional statistics phase is directly and unambiguously
identifiable in experiments, by observing y-pn at e�V �
kBT � ‘ vp=L with excluding the side effects as above, or one
applies the fit function of arctan [A1/(1þA2/T)] with fit
parameters A1 and A2 to measured data of y(T) and extracts
arctan A1¼ pn from the fit (cf. the second line of equation (6)).
Observation of y¼pn or y(T) will suggest a strong evidence of
anyon braiding and topological bubbles.

The parameters in Fig. 3 are experimentally accessible17,20–23.
For the QPCs, there are constraints (i) that the number of voltage-
biased anyons injected through QPC1 is at most one in the
interferometer loop at any instance (to ensure that the braiding
phase of a topological vacuum bubble is 2pn), (ii) that the anyon
tunnelling probabilities at QPC2 and QPC3 are sufficiently small
(to ensure that the double winding of an anyon along the
interferometer loop is negligible) and (iii) that anyon tunnelling
(rather than electron tunnelling) occurs at the QPCs. The
constraint (i) is satisfied when the anyon tunnelling probability
at QPC1 is o‘ vp/(2Le*V), which is B0.05 under the parameters.
To achieve the constraints (ii) and (iii), each tunnelling probability
of QPC2 and QPC3 is typically set to be 0.4 in experiments22,29;
then the amplitude of the double winding is smaller than that of
the single winding by the factor 0.4 exp(� 2L/LT), which is B0.04
at 30mK. With the constraints we estimate the amplitude of
I intD3

tðne2V=hÞð‘ vp=ð2Le�VÞÞ0:4exp ð� 2L=LTÞ, which is 1.5 pA
at 30mK and 0.6 pA at 40mK under the parameters. It is
noteworthy that y¼ 0.9pn is reached at 30mK, while y¼ 0.95pn at
40mK under the parameters. The estimation is within a
measurable range in experiments, where current \0:5 pA is well
detectable30.
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Figure 3 | Detection of anyon phase pn from interference phase shift h.

(a) Dependence of IintD3
(blue, normalized) and IintRef; D3

(cyan, normalized) on

F in the pure Aharonov–Bohm regime and (b) their dependence on VG in

the Coulomb dominated regime. We choose n¼ 1/3, T¼ 30mK,

e*V¼45meV, L¼ 3mm and vp¼ 104m s� 1 (L/LT¼ 1.2 and L/LV¼ 20); see

Supplementary Note 5 for the Coulomb interaction parameter of the

regimes. For these parameters, the phase shift y between IintD3
and IintRef; D3

is

0.9pn. (c) Dependence of y on T. The same parameters (except T) with

(a) and (b) are chosen. y-pn as T increases (yet e�V � kBT � �hvp=L). In

both the pure Aharonov–Bohm regime and the Coulomb-dominated regime,

the same numerical result (blue curve) of y(T), which agrees with

equation (6) (magenta), is obtained.
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We remark that the above strategy of detecting the fractional
statistics phase is equally applicable to the more general quantum
Hall regime22 of filling factor n0 ¼ nþ n0, in which the edge
channels from the integer filling n0 are fully transmitted through
the QPCs, while the channel from the fractional filling n forms the
interferometry in Fig. 2. For this case we compute IintD3

and IintRef ; D3
,

and find that in both of the pure Aharonov–Bohm regime and the
Coulomb-dominated regime the interference-pattern phase shift
between them is identical to the phase y of the n0¼ 0 case
discussed in equation (6) and Fig. 3 (cf. Supplementary Note 5).

Certain anyonic vacuum bubbles involve topological braiding
and affect physical observables surprisingly, contrary to vacuum
bubbles of bosons and fermions. They can be detected with
current experiment tools, which will provide an unambiguous
evidence of anyonic fractional statistics. We expect that they
are relevant also for other filling fractions n¼ p/(2npþ 1),
non-Abelian anyons17,21 and topological quantum computation
setups31.

Methods
Hamiltonian for the interferometer. We present the Hamiltonian for the setup.
We recall the chiral Luttinger liquid theory for FQH edges.

The Hamiltonian H¼
P

iHedge,iþHtun for the interferometer in Fig. 2a consists
of Hedge,i for edge channel i and Htun for anyon tunnelling at QPCs. Edge channel 1
is biased by V and its Hamiltonian, employing the bosonization26 for chiral
Luttinger liquids, is given by

Hedge;1 ¼
‘ vp
4pn

Z 1

�1
dx : @xf1ðxÞð Þ2: þ e�VN̂1: ð7Þ

For the other unbiased channels, Hedge;i¼2;3 ¼ ‘ vp=4pn
� � R1

�1 dx : @xfiðxÞð Þ2:
Here, e*40, N̂i is the anyon number operator of channel i and fi(x) is the bosonic
field of channel i at position x, which describes the plasmonic excitation of anyons.
The tunnelling Hamiltonian is Htun ¼ T!

1 þT#
2 þT#

3 þ h:c:, T!
1 is the operator

from Edge channel 1 to 2 at QPC 1, T#
2 from Edge 2 to 3 at QPC2 and T#

3 from
Edge 2 to 3 at QPC3. These are written as

T!
1 ðtÞ ¼ g1C

y
2 ð0; tÞC1ð0; tÞ; ð8Þ

T#
2 ðtÞ ¼ g2e

� ipF=F�
0Cy

3 ðL; tÞC2ðd; tÞ; ð9Þ

T#
3 ðtÞ ¼ g3e

ipF=F�
0Cy

3 ð0; tÞC2ðdþ L; tÞ; ð10Þ
where Cy

i ðx; tÞ ¼ F
y
i ðtÞe� ifiðx;tÞ=

ffiffiffiffiffiffiffiffi
2pa

p
creates an (particle-like) anyon at position

x and time t on Edge i, a is the short-length cutoff, gi is the tunnelling strength at
QPC i (chosen as real) and the Aharonov–Bohm flux F enclosed by Edges i¼ 2,3,
QPC2 and QPC3 is attached to T#

2 and T#
3 , respectively, under certain gauge trans-

formation; the dynamical phase common to the all edge channels is absorbed to
2pF=F�

0. The Klein factor Fy
i increases the number of anyons on Edge i by 1 and

satisfies Fy
i Fi ¼ FiF

y
i ¼ 1; NiF

y
j

h i
¼ dijF

y
i ; F1ðtÞ ¼ F1ð0Þe� ie�Vt=‘ and fi; Fj

	 

¼ 0.

The exchange rule in equation (1) is described by fi and Fi. On Edge i, it is
satisfied by

fi x1ð Þ;fj x2ð Þ
h i

¼ ipndijsgn x1 � x2ð Þ: ð11Þ

The exchange rule between anyons on different edges is achieved with the
commutators of Fi,

FiFj ¼ FjFie
� ipnsgnði� jÞ; F

y
i Fj ¼ FjF

y
i e

ipnsgnði� jÞ: ð12Þ
A conventional way32 for obtaining the commutators is to think of an extended
edge connecting the different channel segments with no twist (cf. Fig. 4). The
connection should preserve the chiral propagation direction of the channels. The
exchange rule Cðx1ÞCðx2Þ ¼ Cðx2ÞCðx1Þe� ipnsgnðx1 � x2Þ of anyons of the extended
edge agrees with equations (11) and (12).

We consider the regime of weak tunnelling of anyons and treat Htun as a
perturbation on

P
iHedge,i. Perturbation theory is applicable24 in the

renormalization group sense, when e*V and kBT are higher than Cg1/(1� n), C being
a non-universal constant.

The current ID3 is expressed as ID3 ¼ ie� N3;H½ � ¼ ie�ðT#
2 �T"

2 þT#
3 �T"

3 Þ. ID3

is decomposed, ID3 ¼ IdirD3
þ IintD3

, into direct current IdirD3
/ g21g

2
2; g

2
1g

2
3 and

interference current IintD3
/ g21g2g3 depending on F (the leading-order contribution).

Equations (3) and (4) are obtained by employing Keldysh Green’s function
technique with semiclassical approximation (see Supplementary Fig. 1 and
Supplementary Notes 1, 2 and 3).

Coulomb interaction. In the presence of Coulomb interaction between bulk
anyons and edge channels, we compute IintD3

, combining our chiral Luttinger liquid

theory with the capacitive interaction model25 that successfully describes the
Coulomb-dominated regime. The interferometer Hamiltonian
H¼

P
iHedge,iþHtun is modified by the Coulomb interaction as

H !HþUbulkQ
2
bulk

þUintQbulk

Z L

0
dx : @xf2ðxþ dÞ : þ : @xf3ðxÞ :ð Þ

¼
X
i¼1;2;3

‘ vp
4pn

Z 1

�1
dx : @x �fiðxÞ

� �2
: þHbulk þHtun:

ð13Þ

Here, Qbulk ¼ nBAarea=F0 þ nNL � �q is the number of the net charges localized
within the interferometer bulk (inside the interference loop), Aarea is the area of the
interferometer, NL is the net number of quasiparticles minus quasiholes and �q is the
number of positive background charges induced by the gate voltage applied to the
interferometer. Uint is the strength of Coulomb interaction between the charges
of the interferometer edge and the charges localized in the interferometer bulk,
and Ubulk is the strength of interaction between the bulk charges. In the second
equality of equation (13), we introduce a boson field �fi for each Edge i,
�fiðxÞ ¼ fiðxÞþ 2pn

‘ up
UintQbulk

R x
�1 Kiðx0Þdx0 , where K2(x)¼ 1 for doxodþ L,

K3(x)¼ 1 for 0oxoL and Ki(x)¼ 0 otherwise. The second term of �f describes the
charges � 2pn

‘ up
UintQbulk induced per unit length by the interaction. In equation (13),

the Hamiltonian is quadratic in �fi and has Hbulk ¼ ðUbulk � 2pnL
‘ up

U2
intÞQ2

bulk . It is
noteworthy that Ubulk � 2pnL

‘ up
U2
int40. The main interference signal IintD3

and the
reference signal IintRef ; D3

are computed by taking ensemble average over the thermal
fluctuations of NL (see Supplementary Note 5).
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