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Zyxin-Siah2–Lats2 axis mediates cooperation
between Hippo and TGF-b signalling pathways
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The evolutionarily conserved Hippo pathway is a regulator that controls organ size, cell

growth and tissue homeostasis. Upstream signals of the Hippo pathway have been widely

studied, but how microenvironmental factors coordinately regulate this pathway remains

unclear. In this study, we identify LIM domain protein Zyxin, as a scaffold protein, that

in response to hypoxia and TGF-b stimuli, forms a ternary complex with Lats2 and Siah2 and

stabilizes their interaction. This interaction facilitates Lats2 ubiquitination and degradation,

Yap dephosphorylation and subsequently activation. We show that Zyxin is required for

TGF-b and hypoxia-induced Lats2 downregulation and deactivation of Hippo signalling in

MDA-MB-231 cells. Depletion of Zyxin impairs the capability of cell migration, proliferation

and tumourigenesis in a xenograft model. Zyxin is upregulated in human breast cancer and

positively correlates with histological stages and metastasis. Our study demonstrates that

Zyxin-Lats2–Siah2 axis may serve as a potential therapeutic target in cancer treatment.
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T
he Hippo signalling pathway has been implicated in
controlling the size of developing organs by coordinated
regulation of cell growth, proliferation and apoptosis1–4.

Dysregulation of the Hippo pathway contributes to loss of
cell contact inhibition, cell over-growth and epithelial–
mesenchymal transition (EMT)5,6. All these factors can
promote tumourigenesis and metastasis. The large tumour
suppressors (Lats1/2), the homologues of drosophila Warts, are
serine/ threonine kinases and the core components of the Hippo
pathway7–10. When Hippo signalling is activated, Lats1/2 are
phosphorylated and activated by Mst1/2, which allows Lats1/2 to
phosphorylate the oncoproteins Yap and Taz (ref. 11), initiating
their cytoplasm retention and deactivation, resulting in
inhibition of cell growth and tumourigenesis5,12. Reduced
expression of Lats has been observed in a variety of human
cancers such as colorectal cancers, prostate cancers and breast
cancers13–16, which reveals that Lats downregulation may
contribute to tumourigenesis.

Upstream signals that regulate the Hippo pathway were widely
studied, including physical stimuli from cell–cell contact5,
hypoxia15,17 and diffused chemical signal from growth factors18.
Transforming growth factor beta (TGF-b) was one of these growth
factors that previously reported involved in regulation of the Hippo
signalling19,20, but the molecular mechanism remained elusive. We
previously reported that hypoxia could induce Lats2 degradation
through activating E3 ubiquitin ligase Siah2 (ref. 15), this is step
one for hypoxic tumour cells to shut down the Hippo signalling. In
this work, we present step two by showing that under
pathophysiological conditions, such as hypoxia microenviron-
ment, not only the activity of Siah2 is elevated, but also the
secretion of TGF-b, a growth factor that has complicated function
in tumour development. We show that LIM domain protein Zyxin,
as a scaffold protein, in response to hypoxia and TGF-b stimuli,
forms a ternary complex with Siah2 and Lats2, thus stabilizes their
interaction, and facilitates deactivation of the Hippo signalling,
thereby promoting tumour progression. We suggest that hypoxia-
induced autocrine of TGF-bmay serve as a magnifying mechanism
that works together with Siah2 to negatively regulate Hippo
signalling. Thus, our findings provide insights into the mechanism
of TGF-b-induced deactivation of the Hippo pathway and a
potential role of this regulation in tumour progression.

Results
Hypoxia-induced TGF-b activates Yap through Zyxin. Hypoxia
is an important microenvironment factor that contributes to
tumour progression and it is also a common feature in solid
tumours21. Hypoxic tumour cells can secret variety of cytokines to
sustain their survival under hypoxia22 and autocrine TGF-b is
necessary for the growth and survival of human breast cancer
MDA-MB-231 cells23. So we wondered whether hypoxic condition
could induce the secretion of TGF-b. Indeed, hypoxic conditions
not only dramatically increased the level of autocrine of TGF-b in
MDA-MB-231 cells (Fig. 1a), but also increased the transcriptional
level of TGF-b (Fig.1b). Based on our previous finding that
hypoxia could deactivate the Hippo signalling15, thus giving us a
notion that hypoxia-induced secretion of TGF-b may also
contributes to deactivation of the Hippo signalling since TGF-b
was reported to facilitating the deactivation of the Hippo signalling
in an unknown mechanism19,20. Intriguingly, we found that Zyxin,
a scaffold protein that induced by TGF-b (ref. 24) (Supplementary
Fig. 1a,b), involved in TGF-b induced deactivation of the Hippo
signalling (Fig. 1c,d). Efficient knockdown of Zyxin almost
completely attenuated TGF-b-induced downregulation of both
Lats2 and p-Yap (Fig. 1e,f). Furthermore, the Hippo target genes
CTGF and CYR61 were also downregulated in both protein and

transcriptional levels in Zyxin-knockdown cells (Fig. 1e,g), which
have a similar pattern of Yap knockdown (Fig. 1g). Consistently,
knockdown of Zyxin attenuated hypoxia-induced Lats2
degradation and Yap dephosphorylation (Fig. 1h,i), suggesting
that Zyxin is required for hypoxia and TGF-b-induced
deactivation of the Hippo signalling, which means hypoxia-
induced TGF-b may also participate in regulation of the Hippo
signalling through Zyxin.

Loss of Zyxin stabilizes Lats2 and activates Hippo signalling.
Next, we want to further investigate the mechanism how Zyxin
affects the Hippo signalling. We found that knockdown of
Zyxin could stabilize Lats2 in both MDA-MB-231 and HeLa cells
(Fig. 2a,b and Supplementary Fig. 1c,d), and these alterations
were not caused by upregulation of Lats2 messenger RNA
(mRNA) levels (Fig. 2a), indicating that Zyxin may function as an
endogenous regulator of Lats2 at posttranslational level. Ectopic
expression of Zyxin could induce the downregulation of both
endogenous and ectopic expressed Lats2 (Fig. 2c,d and
Supplementary Fig. 2b), which is consistent with previous loss of
function data. Re-expression of Zyxin in Zyxin-knockdown cells
attenuated the effect of accumulation of Lats2 and phosphor-Yap
(Fig. 2e), besides, the half-life of Lats2 was also rescued (Fig. 2f,g),
indicating that the accumulation of Lats2 and phosphor-Yap is
not due to an off-target effect.

Yap phosphorylation on Serine 127 is a direct readout of Lats
kinase activity. Concomitant with Zyxin depletion induced
stabilization of Lats2; Yap-S127 phosphorylation levels were
significantly enhanced in both MDA-MB-231 and HeLa cells
(Fig. 2a,b and Supplementary Fig. 1c,d). Conversely, ectopic
expression of Zyxin promoted reduction of Yap-S127 phosphor-
ylation (Fig. 2e) and increased Yap nuclear translocation
(Supplementary Fig. 1e), whereas knockdown of Zyxin resulted
in decreased Yap nuclear localization (Fig. 2h,i). Taken together,
these results indicate that Zyxin may function as a negative
regulator of Hippo signalling through controlling Lats2 stability
and Yap activity.

Zyxin facilitates Siah2-induced Lats2 destabilization. We and
others have reported that Lats2 destabilization is mainly regulated
by ubiquitin proteasome pathway15,17,25. So we first analysed
Lats2 ubiquitination levels in Zyxin knockdown MDA-MB-231
cells. As expected, knockdown of Zyxin attenuated Lats2
ubiquitination (Fig. 3a), indicating that Zyxin may regulate
Lats2 stability through promoting its polyubiquitination.
Consistently, ectopic expression of full length of Zyxin indeed
promoted Lats2 ubiquitination, whereas the Zyxin truncation
mutants Zyxin (1-378) and Zyxin (379-572) had no such effect
(Fig. 3b), indicating that both N-terminal and C-terminal of
Zyxin are both required for its effect on Lats2 ubiquitination.
Intriguingly, Zyxin-induced Lats2 unbiquitination was completely
abolished by a dominant negative mutant of E3 ligase Siah2
(Siah2RM)15 (Fig. 3b), indicating that Zyxin may promote
Lats2 ubiquitination through Siah2. Strikingly, co-expression of
Siah2 and Zyxin efficiently destabilized ectopic expressed Lats2,
whereas Siah2RM could not (Fig. 3c,d). These results thus provide
us an insight that Zyxin may together with Siah2 to facilitate
Lats2 degradation. Indeed, knockdown of Zyxin inhibited
Siah2-induced Lats2 destabilization (Fig. 3e,f), indicating that
Zyxin is at least partially required for Siah2-induced Lats2
turnover. This is consistent with our previous data that depletion
of Zyxin compromises Siah2-induced Lats2 degradation under
hypoxic conditions (Fig. 1h,i), suggesting that a possibility of
Zyxin may be a part of Siah2–Lats2 degradation complex.
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Zyxin forms a ternary complex with Siah2 and Lats2. To vali-
date our scenario, we first examined the interaction between Lats2
and Zyxin. Immunofluorescence showed that ectopic expressed
Zyxin had relatively strong intensity of colocalization with
Lats2 at cell membrane (Fig. 4a). Consistent with the
immunofluorescence result, endogenous Zyxin was co-immuno-
precipitated in Lats2 immunoprecipitated complex and vice versa
(Fig. 4b). Ectopic expressed Zyxin-V5 was also found in
ectopic expressed Myc-Lats2 immunoprecipitants (Fig. 4c).
Further analysis of the binding region(s) showed that C-terminal
(379-572) of Zyxin bound to Lats2 (Fig. 4d). Next, we examined
the interaction between Zyxin and Siah2. Due to the highly
unstable property of Siah2, we used Flag-Siah2RM as bait, and
found that Zyxin associated with Siah2 strongly (Fig.4e).
To confirm the precise binding region(s) between Zyxin and
Siah2, a series of deletion mutants were employed to the binding
experiments. The results revealed that the C-terminal (379-572)
of Zyxin bound to Siah2 (Fig. 4f) and the N-terminal (1-133) of
Siah2 bound to Zyxin (Fig. 4g). Since Zyxin (379-572) interacts

with both Siah2 and Lats2 (Fig. 4h), we may expect that Zyxin
may form a complex with both Lats2 and Siah2. To further
validate this hypothesis, we overexpressed Myc-Lats2,
Flag-Siah2RM and Zyxin-V5 in HEK293T cells, we first
immunoprecipitated with anti-Flag antibody, then eluted the
immunoprecipitated complex with Flag peptide, followed by a
second immunoprecipitation from the elution with anti-Myc
antibody (Fig. 5a). The result showed that Zyxin simultaneously
interacted with both Lats2 and Siah2 (Fig. 5b), indicating that
Zyxin-Lats2–Siah2 form a ternary complex in vivo. Then we
asked whether Zyxin-Siah2–Lats2 ternary complex had a
physiological function. We performed binding experiments and
showed that Siah2-Lats2 binding intensity was dramatically
increased along with increased Zyxin expression levels (Fig. 5c,d).
Consistently, ectopic expressed Lats2 were found to be
downregulated by Zyxin in a dosage-dependent manner, but this
effect was abrogated by Siah2RM (Supplementary Fig. 2a).
However, knockdown of endogenous Zyxin potentiated
dissociation of Siah2–Lats2 complex (Fig. 5e), indicating that
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Figure 1 | Hypoxia-induced TGF-b secretion contributes to deactivation of Hippo signalling through Zyxin. (a) MDA-MB-231 cells were cultured in

serum-free DMEM under normoxic or hypoxic conditions for 12 h. Culture mediums were collected and active TGF-b1 was measured by Elisa. Student’s

t-test was applied. (b) MDA-MB-231 cells were cultured under normoxia or hypoxia for 12 h. TGF-b1 mRNA level was analysed by real-time PCR (RT-qPCR).

Student’s t-test was applied. (c,d) MDA-MB-231 cells were treated with 5 ngml� 1 TGF-b or 5 mmml� 1 SB431542 for 12 h, and then collected for western

blotting using the indicated antibodies (c) and quantification of Lats2 (normalized to actin) and p-Yap (normalized to Yap) protein levels (d). Ratio t-test

was applied. (e,f) Scramble and Zyxin-knockdown MDA-MB-231 cells were treated with 5 ngml� 1 TGF-b for 12 h, and then collected for western blotting

using the indicated antibodies (e) and quantification of Lats2 (normalized to actin) and p-Yap (normalized to Yap) protein levels (f). Ratio t-test was

applied. (g) Zyxin-knockdown and Yap-knockdown MDA-MB-231 cells were treated with 5 ngml� 1 TGF-b for 12 h. Total RNA was extracted and subjected

to RT-qPCR analysis for the indicated genes. Student’s t-test was applied. (h,i) Scramble and Zyxin-knockdown MDA-MB-231 cells were cultured under

normoxia or hypoxia for 6 h, and then collected for western blotting using the indicated antibodies (h) and quantification of Lats2 (normalized to actin) and

p-Yap (normalized to Yap) protein levels (i). Ratio t-test was applied. All data are mean of n¼ 3 independent experiments. All error bars indicate s.d.

*Po0.05; **Po0.01; ***Po0.001.
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Siah2 interacts with Lats2 not only in a Zyxin but also its dose-
dependent manner. We further examined this effect at endo-
genous level by treating the cells with TGF-b. The result showed
that the interaction between Lats2 and Siah2 was significantly
enhanced in response to TGF-b treatment (Fig. 5f,g), suggesting
that Zyxin may responsible for Lats2 degradation complex for-
mation in vivo, which consistent with our previous data
(Fig. 1e,f). Taken together, we conclude that Zyxin forms a
functional ternary complex with Siah2 and Lats2, thus enhances
their binding and promotes Siah2-induced Lats2 degradation.

Since Lats1 and Lats2 are homologous to Drosophila
Warts26,27, we expected that Zyxin may similarly regulate Lats1.
Indeed, Zyxin interacted with Lats1 (ref. 28) and induced its
downregulation (Supplementary Fig. 2b), suggesting that Zyxin
may involve in the regulation of both of Lats1 and Lats2 through
identical mechanisms. Since Zyxin was previously reported
having function of stabilizing actin filaments29–31, we wonder
whether Zyxin-induced Lats2 destabilization is relevant to actin
polymerization. The results showed that disruption of actin
filaments by Cytochalasin D neither affected Siah2–Lats2 binding
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intensity (Supplementary Fig. 3a,b) nor Zyxin or TGF-b-induced
Lats2 destabilization (Supplementary Fig. 3c–f), indicating
that the effect of Zyxin on Lats2 is not relevant to the
function of Zyxin in regulation of actin filaments. However,
although Cytochalasin D could not block TGF-b-induced Lats2
destabilization, it could completely attenuate TGF-b-induced Yap
dephosphorylation and nuclear translocation (Supplementary
Fig. 3e–g), indicating that Yap activity could be influenced by
mechanical perturbations in an actin-dependent fashion
independent of Lats activity, which is consistent with previous
report16,32–35.

Zyxin is required for cell migration and tumour growth. EMT
plays an important role in the regulation of embryonic
development, as well as in various pathological conditions

including fibrosis and cancer36–39. TGF-b has been clearly shown
as a major inducer of this process39. TGF-b treated MDA-MB-
231 cells showed reduction of E-cadherin expression whereas
knockdown of Zyxin, as well as Yap, abrogated such effect
(Fig. 6a,b), indicating that TGF-b-induced EMT was blocked by
Zyxin knockdown. Indeed, Zyxin-knockdown MDA-MB-231
cells showed impaired cell motility (Fig. 6c,d), indicating that
Zyxin is required for MDA-MB-231 cells’ migration. This result is
consistent with previous studies that Zyxin controls migration in
MDCK cells40 and another LIM domain containing protein, LPP,
a Zyxin homologue, controls TGF-b induced migration in breast
cancer cells41. Intriguingly, all phenotypes including the Hippo
target gene expression and EMT of Zyxin-knockdown cells were
similar with the phenotype of Yap-knockdown cells (Fig. 1g and
Fig. 6a,b), supporting the notion that Zyxin may play a role in
these processes associating with Yap.
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To investigate the biological relevance of Zyxin, we compared
and assessed the properties of Zyxin-knockdown with
Yap-knockdown in regulation of cell proliferation. Both Zyxin-
knockdown cells and Yap-knockdown cells showed decreased cell
proliferation rate (Fig. 6e) and reduced Ki67-positive cells
(Fig. 6f). By using a xenograft mouse model, we show that Zyxin

plays an important role in promoting tumourigenesis, as Zyxin
knockdown led to a decrease in tumourigenicity of MDA-MB-
231 cells (Fig. 6g,h). Mice bearing Zyxin-silenced cells showed
average 3.9-fold and 3.2-fold decrease in tumour weight (Fig. 6g)
and volume (Fig. 6h) compared with scramble group,
respectively. Immunoblotting analysis of the implanted tumour
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tissues revealed increased Lats2 and p-Yap levels in
Zyxin-knockdown tumours (Fig. 6i). This therefore suggests that
Zyxin may play an important role in tumourgenesis through the
Hippo signalling pathway. This is consistent with previous studies
of Zyx102 in Drosophila as its loss reduces Yorkie activity and
organ growth29,42.

Zyxin expression correlates with tumour malignancy. Our
results shown in Fig. 6g–i demonstrate Zyxin’s ability to promote
xenograft tumour growth and lend support to the hypothesis that
Zyxin may function as an oncogene in vivo. We first examined
the expression of Zyxin in a panel of breast cell lines. Those cell
lines such as MDA-MB-231 has higher malignancy, which has a
high-expression level of Zyxin and low-expression level of Lats2.
This negative correlation between Zyxin and Lats2 also showed in
other breast cell lines (Fig. 7a) and in majority of the breast
tissues that we examined (Fig. 7b). Besides, Yap expression
level also negatively correlated with Lats2 (Fig. 7a), this is possibly
due to the phosphorylation on Yap by Lats2 could promote its
degradation43. To further study the role of Zyxin in
human cancer, we examined the expression level of Zyxin
in human breast cancer tissue microarrays. Notably, moderate
and high expression of Zyxin was observed in 70.7% (118 out
of 167) of breast tumours compared with 5.9% (6 out of 101)

of normal breast tissues, indicating a dramatic significant positive
correlation between breast tumourigenesis and Zyxin expression
(Fig. 7c). Baseline characteristics were compared among
Zyxin low-expression, moderate-expression and high-expression
patients. Analysis of the relationship between Zyxin immuno-
staining and clinicopathological parameters showed that higher
immunostaining intensity was significantly correlated with
histological stage and lymph node metastasis, but not
significantly correlated with age or tumour size (Table 1). The
results demonstrate that Zyxin may be a potential prognostic
marker in breast cancer patients.

Discussion
Intrinsic and extrinsic factors coordinately regulate proper cell
fate and tissue size. How upstream signals that regulate the Hippo
pathway have been widely studied, cross-talks between the Hippo
pathway and other signalling pathways have emerged15,44–46.
TGF-b signalling pathways has been reported to be dependent on
the Hippo pathway activity and the Hippo pathway kinase Lats
regulates SMAD localization via Taz/Yap (refs 19,20), but how
Taz/Yap response to TGF-b stimuli remains elusive. Previous
studies have already shown that TGF-b may contribute to
advanced malignancies through its pro-oncogenic effects, such as
pro-proliferation, pro-metastasis, promotion of angiogenesis and
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anti-immune response47–50. Similarly, deactivation of the Hippo
pathway contributes to tumourigenesis and metastasis5,6,12 and
downregulation of the components of the Hippo pathway has
been indeed observed in various types of cancer13–16.
These phenomena indicate that the cross-talk between the
Hippo pathway and TGF-b signalling pathway may together
play a pro-oncogenic role in malignant tumours.

Hypoxia is an important microenvironment factor that
contributes to tumour progression and that is also a common
feature in solid tumours21. Hypoxic cells can benefit from Yap
activation mainly due to hypoxia-induced activation of Siah2 and
subsequent degradation of Lats2 (ref. 15), whereas tumour cells
within the hypoxic microenvironment may also benefit from
increased secretion of TGF-b in an autocrine (Fig. 1a,b) and
paracrine way51. It is possible that, the development of a hypoxic
microenvironment during tumour growth leads to both of Siah2
and Zyxin activation through hypoxia and hypoxia-induced
upregulation of TGF-b, respectively, which results in increased
binding intensity of Lats2–Siah2 complex, thus allowing the
efficient degradation of Lats2 and the activation of Yap (Fig. 8).
The xenograft experiments further validate our notion that Zyxin
ablation could indeed deactivate Hippo signalling in planting
tumours (Fig. 6h). Importantly, overexpression of Zyxin was
observed within human breast cancer tissues and its expression
level was associated with tumour progression and metastasis
(Fig. 7c and Table 1). Consistent with our finding, recent research
also found that Zyxin may have a pro-oncogenic role in
regulation of tissue growth29,42. Thus, Zyxin activation may
play a critical role in regulating Yap activation during
tumourigenesis. Further investigations of how Hypoxia, TGF-b
and the Hippo pathway are mutually regulated may shed light on
therapeutic strategies against cancer.

Materials and methods
Cell culture, reagents and expression constructs. Human epithelial HeLa,
HEK293T and MDA-MB-231 cell lines were purchased from the American Type
Culture Collection (ATCC) and were cultured in DMEM (GIBCO) supplemented
with 10% foetal bovine serum (FBS, Hyclone) and 1% penicillin/streptomycin at
37 �C under 5% CO2. The cell lines have been tested free for Mycoplasma
contamination. Hypoxic conditions were created by culturing cells in the hypoxia
chamber (Billups-Rothenberg) flushed with 1% O2, 5% CO2 and 94% N2 mixture

gas. Human recombinant TGF-b1 was purchased from Peprotech. Plasmids were
transfected with Lipo2000 according to the manufacturer’s instruction. SB431542
(S1067) was purchased from Selleck Chemicals. Cytochalasin D was purchased
from Sigma. Expression plasmids of Siah2 and Zyxin were generated by PCR and
cloned in pFlag-CMV-4, pGEX-4T-1 or pEF1/V5-His expression vectors.
Myc-Lats2 plasmid was constructed by insertion of Lats2 cDNA in frame into the
pcDNA3.0 vector. All Siah2 and Zyxin mutant constructs were created using the
Easy Mutagenesis System (TransGen Biotech). All the plasmids were confirmed by
DNA sequencing.

Immunoblotting. Cells were lysed in lysis buffer (150mM NaCl 20mM Tris, pH
7.4, 1mM EDTA, 1mM EGTA, 1mM Na3VO4, 2.5mM Sodium pyrophosphate,
10% glycerol, 1% NP-40 and protease inhibitors). Equivalent cell lysates were
subjected to SDS–polyacrylamide gel electrophoresis, and transferred to
nitrocellulose membranes, then were blocked with 5% non-fat milk or 5% BSA
(Dingguo changsheng Biotechnology) for 1 h at room temperature. The
membranes were then probed with the indicated primary antibodies, followed by
the appropriate HRP-conjugated secondary antibodies (KPL). Signals were
visualized with chemiluminescence kits (Engreen Biosystem). The following
antibodies were used: antibodies against Lats2 (1:1000, Abcam, ab70565), Siah2
(1:500, Novus, NB110-88113, clone 24E6H3), Zyxin (1:10000, Epitomics, 3586-1,
EPR4302), Actin (1:10000, Sigma, A5441, clone AC-15), CTGF (1:500, Santa Cruz,
sc-14939), CYR61 (1:500, Santa Cruz, sc-13100), p-S127-Yap (1:1000, Cell
Signalling, 4911), Yap (1:1000, Epitomics, 2060-1, clone EP1674Y), Flag
(1:1000, Sigma, F1804, clone M2), Myc (1:10000, Proteintech, 60003-2-Ig), V5
(1:1000, sungenebiotech, KM8006, clone 4D6), HA (1:1000, Abmart, M20003,
clone 26D11), HIF1a (1:1000, Epitomics, 2015-1, clone EP1215Y) and Ubiquitin
(1:1000, Enzo Life Sciences, PW8805, clone FK1). The ImageJ software
(http://rsbweb.nih.gov/ij/download.html) was used for image analyses and the
quantification results were normalized to the loading control. The uncropped
images of all immunoblots were shown in Supplementary Fig 5.

Immunoprecipitation. Cells were harvested and lysed in 0.5ml lysis buffer plus
protease inhibitors (Roche) for 1 h on rotor at 4 �C. After 12,000g centrifugation for
15min, the lysates were incubated with 2 mg specific antibody overnight at 4 �C,
30 ml protein A/G-agarose beads (Santa Cruz, SC-2003) were washed with lysis
buffer and then added for additional 3 h. Thereafter, the beads were washed five
times with lysis buffer and boiled with loading buffer for 5min and subjected to
SDS–polyacrylamide gel electrophoresis for analysis. Flag-peptides were used for
elution were purchased from ChinaPeptides. The following antibodies were used
for immunoprecipitation: antibodies against Zyxin (Epitomics, 3586-1, EPR4302),
Flag (Sigma, F1804, clone M2), Myc (Santa Cruz, sc-40, clone 9E10) and Lats2
(Abcam, ab70565).

Glutathione S-transferase (GST) pull-down and Ni-resin pull-down assays.
Recombinant GST-Siah2 proteins were produced in Escherichia coli BL21 (DE3) cells
and purified with Glutathione Sepharose 4B (GE healthcare). Zyxin-V5-His and its
mutants were ectopically expressed in HEK293T cells and purified by Ni-NTA resin
(GE Healthcare) according to standard protocols. GST (10mg) or GST fusion pro-
teins were incubated with Glutathione Sepharose 4B for 2 h at 4 �C, followed by
incubation with cell extracts at 4 �C overnight. After 2,800g centrifugation, super-
natants were collected as input and the argrose beads were then extensively washed
five times each with 1ml lysis buffer and boiled with SDS loading buffer for 5min
then analysed by western blotting.

In vivo ubiquitination assay. HEK293T cells were transfected with plasmids
expressing, Myc-Lats2, HA-ubiquitin, Zyxin-V5 alone or together with Flag-
Siah2RM. Twenty-four hours after transfection, cells were firstly treated with 10mM
MG132 (Selleckchem S2619) for 6 h then harvested. Using cold PBS to wash the cells
then lysed in 200ml of denaturing buffer (150mM Tris-HCl pH 7.4, 1% SDS) by
sonication and boiling for 10min. Additional lysis buffer was added to the Lysates to
1ml and incubated with 2mg anti-c-Myc antibody followed by immunoprecipitation
with protein A/G-agarose beads. The precipitants were subjected to western blotting
with anti-HA or anti-Myc antibody. For endogenous Lats2 ubiquitination assay,
Scramble or Zyxin-knockdown cells were treated with 10mM MG132 for 6 h before
harvest. Lysates were incubated using 2mg anti-Lats2 antibody and analysed by
western blotting using anti-Lats2 or anti-Ubiquitin antibodies.

Immunofluorescence microscopy. Cells were grown to 40–60% confluence on
coverslips. The cells were fixed with 4% paraformaldehyde (Dingguo changsheng
Biotechnology) for 10min at room temperature followed by washing three times
with PBS. The cells were permeabilized with 0.1% Triton X-100 with 4,6-diamidino-
2-phenylindole for 5min at 4 �C. The coverslips were blocked by goat serum for
30min at room temperature and then incubated with FITC- or CY3-conjugated
secondary antibodies (Invitrogen, 1:1,000) for 1 h at room temperature. The cover-
slips were then washed three times with PBS and mounted. The following antibodies
were used for immunofluorescence: antibodies against Zyxin (1:200, Epitomics,
3586-1, EPR4302), Yap (1:100, Epitomics, 2060-1, clone EP1674Y) and E-cadherin

Table 1 | Patient characteristics based on Zyxin expression.

Variables n¼ 167 Zyxin expression P-value

Negative/
low

Moderate High

Age 0.859
450 years 68 22 24 22
r 50 years 99 27 41 31

Tumour size 0.189
T1 12 3 5 4
T2 116 38 43 35
T3 19 3 12 4
T4 20 5 5 10

Stage 0.036
I 9 3 4 2
lla 65 26 22 17
llb 58 11 30 17
lll 35 9 9 17

Lymph node
metastasis

0.025

N0 94 34 35 25
N1/2 73 13 31 29
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(1:100, BD Biosciences, 610182, clone 36/E-Cadherin). FITC-conjugated Phalloidin
was purchased from ThermoFisher. Cell images were captured with confocal
microscope (Leica). Colocalization correlation coefficient was calculated by using
ImageJ software.

Lentiviral production and infection. Lentiviral packaging plasmids psPAX2 and
pMD2.G were co-transfected with the PLKO.1 backbone plasmid into HEK293T
cells for virus production. Cells were selected in 2.5 mgml� 1 puromycin (Sangon
Biotech PJ593) in culture medium. The oligonucleotide pairs used as follows:
Yap 1# and Yap 2# were described previously15. Zyxin 1#: (50-CCGGGAAGGTGA
GCAGTATTGATTTCTCGAGAAATCAATACTGCTCACCTTCTTTTTG-30 and
50-AATTCAAAAAGAAGGTGAGCAGTATTGATTTCTCGAGAAATCA
ATACTGCTCACCTTC-30); Zyxin 2#: (50-CCGGCTTCCACATGAAGTGTTA
CAACTCGAGTTGTAACACTTCATGTGGAAGTTTTTG-30 and 50-AATTCAA
AAACTTCCACATGAAGTGTTACAACTCGAGTTGTAACACTTCATGTGG
AAG-30).

RNA isolation and real-time PCR. Trizol reagent (Roche) was used for extraction
of total RNA from cultured cells. cDNA was reverse transcripted using oligo (dT)
and subjected to real-time PCR in the presence of SYBR Green PCR-Mix (Roche).
mRNA relative abundance was calculated by normalization to ACTB mRNA. The
following primers were used for RT-qPCR: CYR61 (50-GGTCAAAGTTACCG
GGCAGT-30 and 50-GGAGGCATCGAATCCCAGC-30); CTGF (50-ACCGACT
GGAAGACACGTTTG-30 and 50-CCAGGTCAGCTTCGCAAGG-30); Lats2 (50-A
CCCCAAAGTTCGGACCTTAT-30 and 50-CATTTGCCGGTTCACTTCTGC-30);
TGF-b (50-CCAACTATTGCTTCAGCTCCA-30 and 50-TTATGCTGGTTGTAC
AGGG-30); ACTB (50-CATGTACGTTGCTATCCAGGC-30 and 50-CTCCTTAAT
GTCACGCACGAT-30). Data were analysed from three independent experiments
and shown as the average mean±s.d.

Quantitative analysis of activated human TGF-b1. Cells were seeded on 60mm
dish in 3ml DMEM supplemented with 10% FBS (HyClone). 24 h later, cells were
washed by FBS-free DMEM for four times and incubated under normoxic or
hypoxic conditions for another 12 h. Culture medium was collected and the
activated human TGF-b1 was determined by ELISA kit (Multisciences Biotech).

Wound healing assay. Cells were plated in 6-well dishes in triplicates. Once cells
were grown to confluence, the cell monolayer was scratched by a P100 pipet tip,
then were washed twice with serum-free DMEM and incubated with 2ml of
serum-free DMEM for another 36 h. The percentage of wound closure was
calculated by using ImageJ software.

Cell proliferation assay. Zyxin-knockdown MDA-MB-231 cells (2� 105) were
seeded on 6-well plate in triplicates. Cell growth was measured through counting
cell numbers at indicated time points.

In vivo tumourigenesis study. All animal experiments were approved by the
Institutional Animal Care and Use Committee at College of Life Sciences at Nankai
University. MDA-MB-231 breast cancer cells (2� 106 in 100 ml PBS) were injected
subcutaneously into armpit of 6- to 8-week-old female nude mice (BALB/c-nu).
The tumour size was measured every 4 days after a week post of the implantation
and the tumour volume was calculated by using the formula V¼ 0.5� L�W2

(V, volume; L, length; W, width). The xenograft tumours were surgically removed
after 36 days, then weighted and photographed. No statistical method was used to
predetermine sample size for each group. The experiments were not randomized.

Tissue microarray and immunohistochemistry. One hundred and sixty-seven
analysable cases of breast carcinoma and 101 analysable cases of normal breast
tissue on the tissue microarray slide (US Biomax) were analysed. The slides were
treated as described previously15. The anti-Zyxin (1:150, Epitomics, 3586-1,
EPR4302) antibody was used for immunohistochemistry. Signal was visualized
with a DAB Substrate Kit (MaiXin Bio). Protein expression levels of all the samples
were scored as four grades (negative, þ , þ þ , þ þ þ ) according to the
percentage of immunopositive cells and immunostaining intensity. Grades
represent: negative andþwere defined as low expression, þ þ was defined as
moderate expression, þ þ þ was defined as high expression. Test of anti-Zyxin
antibody for immunohistochemistry was shown in Supplementary Fig. 4.

Statistics and repeatability of experiments. Statistical comparisons were made
using the two-tailed paired ratio t-test using Prism or unpaired Student’s two-tailed
t-test for two data sets using Excel (Microsoft). All error bars indicate s.d. For
statistical tests, Po0.05 was set as the criterion for statistical significance. The
correlation coefficient R was calculated by comparison between Zyxin expression
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level rþ and levelZþ þ in normal and tumour tissues. The w2 test was used for
analysis of the significance of Zyxin expression in normal and tumour tissues
and the clinicopathological parameters. These experiments were repeated at least
three times. The investigators were not blinded to allocation during experiments
and outcome assessment.
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