Abstract
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for faulttolerant quantum information processing. Competition in the solidstate comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubitbased quantum computing. Here we begin to explore how selective design principles deduced from spinbased systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with stateoftheart tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwavefree control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable supersemi junctions.
Introduction
Spin qubits^{1} are based on the fundamental and intrinsic properties of semiconductor systems, such as electron spins trapped in the potential of a quantum dot^{2} or a chemical impurity^{3}. Spins can be naturally protected from charge noise due to weak spin–orbit coupling. In fact, the tiny matrix element between spin qubit states can allow spin qubits to operate at temperatures above the Zeeman splitting^{4,5}. While a benefit to qubit coherence, this property of spins also leads to relatively slow singlequbit gates via, for example, a microwave pulse. It turns out that nature provides a solution: a very fast and robust twoqubit gate via the exchange interaction. This has led to “encoded” qubit schemes where the qubit is embedded logically in two to four physical spin qubits^{6,7,8}. The fact that electrons are real particles can be used for fast initialization and readout techniques. Exchangeonly qubits^{7,9} allow all electrical implementation of qubitgate operations, and enable universal quantum computation (QC) while providing some immunity to global field and timing fluctuations via a decoherence free subsystem, at the cost of more physical qubits and extra operations per encoded gate.
This work investigates how superconducting Josephson junction quantum circuits^{10}, whose properties can be engineered, can be improved by mimicking some of best properties of spin qubit systems. We propose a first step: an encoded superconducting qubit approach, which does not require microwave control, and thus divorces qubit frequency from control electronics. In analogy to the exchangeonly qubit in semiconductor spin qubit systems, encoded qubits enable microwavefree control of the qubit states via fast DClike voltage or flux pulses. In contrast to the exchangeonly qubits, logical gate operations of this encoded superconducting (SC) qubit can be done with minimal overhead (zero overhead in physical twoqubit gates) in terms of control operations, a surprising result. We describe how to initialize the encoded qubit and implement single and twoqubit logical gates using only zcontrol pulse sequences (via tunable frequency qubits). In the process we also lay out possible opportunities for future research on the basis of other insights from spinbased QC. To encourage implementation, we give an explicit protocol on the basis of qubits in operation today.
Small systems of superconducting qubits based on variations of the transmon qubit^{11,12} have already demonstrated gates with fidelities approaching 99.99% along with rudimentary quantum algorithms including error correction cycles^{13,14,15,16,17,18,19}. Note that because these architectures rely on singlequbit gates via microwaves, the future design space is constrained by the availability and convenience of microwave generators.
An alternative approach to combining the best properties of semiconductor and superconducting quantum systems is to take advantage of true superconductingsemiconductor systems. The appearance of superconductivity in conventional semiconductors^{20,21} such as silicon^{22,23,24,25} or germanium^{26,27} could potentially allow for a new type of fully epitaxial supersemi devices^{28,29}. And epitaxial supersemi Josephson juction devices based on the proximity effect have already led to new superconducting circuits^{30,31}. Epitaxial supersemi systems may improve noise properties, but perhaps more importantly they enable gatetunable Josephson junctions, which we can also take advantage of in our proposal introduced below.
Results
From encoded spins to tunable qubits
Spins in quantum dots, say in silicon, are typically assumed to have equivalent gfactors, so that in a magnetic field the frequency of each qubit is the same. Thus, to achieve universal QC (an ability to do arbitrary rotations around the Bloch sphere plus a twoqubit entangling gate), one needs at minimum three spins. In this case, an encoded onequbit gate requires around 3 pulses and a CNOT gate requires roughly 20 pulses^{7}, a hefty overhead. Twoqubit encodings are possible, but require the complication of a magnetic field gradient (via for example a micromagnet). Superconducting qubits, on the other hand, can be manmade such that the qubit frequency is tunable. This allows arbitrary onequbit rotations with just twophysical qubits, in theory.
In this work, we consider a qubit encoded in a system of two capacitively coupledSC qubits. We take tunable transmons^{16,32} like xmons^{13} or gatemons^{30} as our prototypical SC qubits (see Fig. 1a) and suggest one possible implementation following the capacitivelycoupled xmon architecture of Martinis et al.^{14} to encourage nearterm realization. Although we explicitly chose the xmon geometry to be more specific about our proposed protocol, the general idea can easily be applied to other types of SC qubits, such as traditional transmons or capacitivelyshunted flux qubits^{33,34}, which we will discuss later. A transmon qubit^{11} is described by the charge qubit Hamiltonian:
where E_{C}=e^{2}/2C_{Σ} is the electron charging energy for total capacitance C_{Σ} and E_{J} is the Josephson energy. and are the number and phase operators, respectively, and n_{g} is the gate charge number that can be tuned by a capacitivelycoupled external voltage. The qubit frequency f_{Q}=ɛ/h, where ɛ is the energy difference between the first excited state and the ground state, and in the transmon regime, . The Josephson energy of a JJ is determined by the material properties and geometry of the JJ, but a double JJ can be considered as a tunable JJ^{35} where an externally applied magnetic flux through the double JJ loop can tune the effective coupling energy E_{J}=E_{J0} cos(πΦ_{ext}/Φ_{0}) (see Fig. 1b). Φ_{ext} is the external magnetic flux and Φ_{0} is the SC flux quantum. Individual transmon qubits are typically controlled by tuning the qubit frequency with tunable E_{J} for zcontrol and by applying microwaves for x control.
Recently, there has been progress in an alternative approach for a tunable JJ using a superconductor proximitized semiconductor weaklink junction^{30,31}. In ref. 30, an InAs nanowire was used to connect two superconductors (Al). The nanowire was epitaxially coated with Al and a small portion of the wire was etched off to form a semiconductor nanowire bridging two SCs (Fig. 1c). A sidegate voltage was used to tune the carrier density under the exposed portion of the wire and thus the Josephson energy of this SNS JJ. The gatemon, a tunable transmon based on this gatetunable JJ, has several advantages. It requires only a single JJ that can be quickly tuned by a electrostatic voltage. It removes the need for external flux and hence reduces dissipation by a resistive control line and allows the device to operate in a magnetic field. The epitaxial growth of the nanowire JJ and its clean material properties^{36,37} demonstrate the potential of a bottomup approach for SC quantum devices^{28,29}.
Our encoded qubit is defined in a twotransmon system. The Hamiltonian for two transmons with the capacitive xx coupling is:
where E_{cc} is the capacitive coupling energy and (i=x, y, z) is the Pauli operator for kth transmon in a reduced subspace of transmon qubit states. ɛ_{k} is the qubit energy of the kth transmon, and ɛ′=E_{cc}α_{a}α_{b} with where 0〉 and 1〉 are the two lowest energy states of individual transmons. In transmon qubit systems the capacitive coupling is usually turned on (off) by tuning the qubit frequencies to on (off) resonance. The capacitive xx coupling conserves the parity of the twotransmon system and the Hamiltonian (equation (2)) is blockdiagonal in the basis of {00〉, 01〉, 10〉, 11〉}. We define our encoded qubit in the subspace of 〈{01〉, 10〉}〉, since the other subspace 〈{00〉, 11〉}〉 has states with a very large energy difference (much larger than the capacitive coupling), effectively turning off the capacitive coupling all the time.
In the encoded qubit basis {0〉_{Q}, 1〉_{Q}} where
the single qubit Hamiltonian is
where Δɛ=(ɛ_{b}−ɛ_{a})/2 and (i=x, y, z) is the Pauli operator for the encoded qubit. The qubit energies ɛ_{a} and ɛ_{b} can be controlled by the tunable JJ of each tunable transmon or gatemon, enabling logical gate operations with only fast DClike voltage or flux pulses. In the following we will describe the logical gate operations, initialization and measurement schemes for this encoded qubit architecture.
Singlequbit operations
The Hamiltonian for an encoded qubit is given by equation (4). For a fixed capacitive coupling between SC qubits, ɛ′ is fixed, and the singlequbit operations can be implemented by pulsing the qubit energy ɛ through the zcontrol of individual transmons, in at most three rotations. Since the tunable range of Δɛ (order of GHz) is much greater than ɛ′ (tens or hundreds of MHz), the rotation axis can be in almost any direction in the right half of the xz plane (see Fig. 2a), and most logical singlequbit gates can be implemented in two rotations^{38}. In general, all singlequbitgate operations can be implemented as a threestep Euler angle rotations around two orthogonal rotation axes (for example, see the two red axes in Fig. 2a).
We now provide implementations for a few representative singlequbit gates. The Hadamard gate, , is a singlequbit gate that is almost ubiquitous in quantum circuits. Figure 2b shows an implementation of H gate as a single rotation around . It can be achieved by tuning δɛ=ɛ′. Here is a rotation by angle φ around axis. Pauli X gate can be realized as a single rotation by tuning the two xmons on resonance (Δɛ=0), or threestep rotations such as , where and , as was shown in Fig. 2c. Z gate requires threestep rotations: . The above examples are for ideal systems with precise control over the system parameters. In real systems with fluctuating parameters, recently developed dynamical errorcancelling pulse sequences^{39,40} could be useful for gate operations with higher fidelity.
Given that singlequbit gates in transmon systems through zcontrol have already demonstrated fidelities better than 0.999 (ref. 14), we expect the logical singlequbit gates (which require at most three rotation steps through zcontrol of transmons) will be able to reach a fidelity better than using currently available experimental techniques.
Twoqubit operations
For a scalable qubit architecture, we need to plan for the transmon qubit frequencies such that unnecessary resonances are avoided, especially if the twoqubit interaction cannot be completely shut off via, for example, a tunable coupler^{41}. An encoded qubit has two transmons with idle frequency difference much larger than the capacitive coupling, so we can effectively turn the coupling off. In the twoencoded qubit system (four transmon system), we set the idle frequencies of nextnearest neighbour transmons to be different by more than the direct capacitive coupling between them, which is order of MHz^{15}. We also set the encoded qubit frequencies Δɛ of the neighbouring encoded qubits to be different so we can mitigate some unintended resonances. For the calculations in this section, we set the four transmon qubit idle frequencies as 5.6, 4.6, 5.9, 4.8 GHz for k=1a, 1b, 2a, 2b, respectively (see Fig. 1a. In this section and the following, we set and E_{cc}=30 MHz for all transmons. Transmon qubit frequencies are controlled by tuning .
Twoqubit operations can be implemented by adopting the adiabatic twoqubit CPHASE operations^{14,42} between twotransmon qubits. By tuning the qubit frequencies of twotransmon qubits such that (11) and (02) states become resonant and then bringing them back to their idle frequencies, a unitary gate equivalent to the CPHASE gate between two qubits up to singlequbit unitary gates can be achieved^{43}. This scheme has already been used in experiments and achieved reported fidelity better than 0.99 (ref. 14). In a similar manner, we can implement the CPHASE gate between two encoded qubits up to singlequbit unitary gates. Figure 3a shows schematically the pulse sequence of the transmon qubit frequencies, changing the qubit frequencies of transmon 1b and transmon 2a in Fig. 1a. First, we bring the transmons 1b and 2a closer during time such that (0110) and (0020) states are on resonance in step (I). Then, in step (II), they stay there for a time period , and finally we bring them back to initial point at time in step (III). The (0110) state gets mixed with (0020) due to the capacitive coupling during the pulse sequence with strength . During this process the (0110) state obtains some nontrivial phase due to the interaction with (0020) while the other qubit states, (0101), (1001) and (1010), obtain only trivial phases since they do not get close to any other states that can mix. This process results in a unitary operation in the encoded qubit space, up to a global phase,
This is equivalent to the CPHASE gate (1, 1, 1, e^{iδφ})^{T} up to singlequbit operations.
Note that, unlike refs 14, 42, we tune both transmons 1b and 2a instead of tuning only one of them. If we only tuned transmon 2a to bring the (0110) state close to the (0020) state, then transmon 2a and transmon 2b would be close to resonance. Because the transmon–transmon interaction through capacitive coupling can be turned on and off by bringing the transmons on and off resonance, this will result in a complicated, unintended operation as well as leakage. So it is necessary to tune transmons 1b and 2a simultaneously so that transmons 1a and 2b do not come into play during the process. The resonance between nextnearest neighbours can also lead to some small anticrossing, but these resonances only occur during the fast ramping up and down steps and thus can be negligible. This scheme is preferable to directly using the xx coupling between transmons 1b and 2a, since xx coupling drives the system outside of the encoded qubit space and hence leads to leakage, requiring a rather long sequence of pulse gates to implement a twoqubit logical operation^{7,9}. The physical CPHASE gate has been successfully implemented for xmon qubits with gate time of ∼40 ns (ref. 14), which can be directly applied for logical twoqubit gate here, too.
Figure 4 shows simulated numerical results of this physical twoqubit interaction between transmons 1b and 2a. We use an error function shape ramping up and down, similar to ref. 44,
and . E_{J0} is the idle value and E_{res} is for resonant (11) and (02) states. To find optimal solutions of this form, we change and choose . is calculated analytically using a perturbative expression such that the whole process will result in the U with desired δφ. Figure 4a shows and the total time needed to implement a CZ gate (δφ=π).
Due to the mixing with higher energy states which are out of the encoded qubit space, leakage error could pose a problem. We can compute the leakage error as follows. The full unitary operation matrix U can be written in a blockform
where A is the encoded qubit subspace and B is the complementary subspace. For any qubit state in the encoded qubit space, the leaked portion is U_{BA} and =. W_{AA}= is positive definite and the leakage error E_{leak} can be defined as where w_{λ} are the eigenvalues of W_{AA}. The leakage error (Fig. 4b) can be a few percent, but if we choose optimal , it can be significantly reduced, well below 1%. Note too that leakage can be dealt with algorithmically^{45,46}; such circuitbased leakage reduction algorithms will likely be required in any quantum computing implementation.
Figure 4c shows the fidelity of this twoqubit unitary gate U from numerical simulation of the procedure. The fidelity of the unitary gate was defined as:
where f_{1} and f_{2} are the two Makhlin invariants^{47} for twoqubit gates. Makhlin invariants are identical for different twoqubit unitary gates if they are equivalent up to singlequbit operations. We find that fidelity better than 99% is achievable for ns, which also leads to very small leakage. Figure 4d shows the pulse shape of and for =10 ns. The total time duration for the whole process is about 30 ns. In real devices, the fidelity can be lower due to other sources of noise, but here we use only a simple form for the pulse shapes which are not fully optimized as in refs 44, 48, so there is some room for improvement. We also considered Gaussian shape pulses and obtained similar results.
We can estimate the realistic fidelity of the encoded CPHASE gate constructed here from the fidelities of the zcontrol pulses and the adiabatic process. Since any singlequbit logical gate involves at most three rotations (that is, three pulse steps), the encoded CPHASE gate requires at most 12 pulse steps. Assuming the zpulse fidelity of 0.999 and a fidelity of the adiabatic gate U in equation (6) betweeen two transmons of about 0.99, the fidelity of the total process can be estimated to be better than . Better optimization or different sequences may improve the fidelity. Of critical comparison, the already demonstrated physical CPHASE gate fidelity of 0.99 (ref. 14) also includes a singleadiabatic operation and singlequbit corrective operations, so the encoded CPHASE gate should be achievable with a similar fidelity. The encoded CNOT gate can be implemented with CPHASE gate and singlequbit gates, and we can expect similar fidelity for CNOT gate.
Figure 5 schematically depicts a sequence of DC pulses for the logical CPHASE gate, using the expression in equation (6). The first three pulses in encoded qubit 1 implement a phase gate and the next resonant pulse realizes a Pauli X gate. The second encoded qubit is pulsed to qubit frequencies such that the encoded qubit 2 rotates by 2nπ to implement the identity operation. Then the twoqubit adiabatic gate between transmons 1b and 2a is applied. After that, an X gate is applied to encoded qubit 1 as a singleresonant pulse step and a phase gate is applied to encoded qubit 2 in three rotations. This particular implementation of CPHASE contains only 9 singlequbit operations, better than the general 12 singlequbit gates we discussed above.
Our choice of encoded qubit is for the sake of simplicity and straightforward incorporation of physical qubit operations into logical gate operations. We also considered an alternative choice, in the same subspace, which more closely resembles choice for encoded spin qubits. With this encoded qubit, the constant capacitive coupling leads to a constant energy gap between encoded qubit states and the zcontrol of each physical qubit allows tunable operation. Singlequbit logical gates can be implemented in a similar way, and the adiabatic twoqubit operation will need additional singlequbit unitary gates to transform to the CPHASE gate due to the basis change of the encoded qubit.
The capacitive coupling between transmons is typically constant and determined solely by the geometry of the SC islands. This coupling is effectively turned on and off by the qubit frequency differences. With more complicated control circuits as in the gmon architecture^{41,49}, the capacitive coupling can also be tunable and completely turned off, giving a very large on/off ratio. The tunable capacitive coupling removes the need to detune each transmon to avoid unwanted resonances, hence significantly simplifying the qubit frequency controls during the CPHASE operation. This also allows rotating the encoded qubit around any axis in the full xz plane, reducing the necessary rotation steps to two for any singlequbit logical gates^{38}.
Initialization
In spin systems the encoded qubit can be initialized fast and with high fidelity by loading pairs of electrons in the singlet state directly from the Fermi sea provided by the leads supplying the quantum dots, then adiabatically separating the singlet into two dots^{6}. Electrons’ fermionic and particle nature enables this—a quantum property that may be emulated with engineered manybody photonic systems (for example, (refs 50, 51)), but which is in no way practical in the nearterm. One could also engineer a twoqubit system where the ground state is a singlet, for example, by making the coupling between the two qubits much greater than the qubit splittings (and, for example, waiting for relaxation to the ground state). Here, although, one would want to quickly move out of this regime to do gates at an implementable speed in addition to turning off as much as possible qubit–qubit couplings, which would be very challenging. Here, we provide an alternative initialization scheme that only requires fast DC pulses.
The ground state of the twotransmon system is 00〉, which is not in the encoded qubit subspace defined by equation (3). To initialize the system into 0〉_{Q}=01〉 without microwave control, we propose using a process analogous to the Landau–Zener (LZ) tunnelling^{52,53}. For this procedure, we need tunability of the gate charge of the second transmon, which can be provided by connecting a capacitor with a voltage control to the transmon (see Fig. 1b) or by using the sidegate for gatemons. The initialization procedure is as follows. First, we tune the transmon qubit into the charge qubit regime where is much smaller than by tuning Φ_{ext} (or V_{g} for a variable supersemi JJ) with . Then, via thermalization (by waiting the relaxation time or by coupling to a dissipative reservoir) the qubit reaches the ground state (black dot in Fig. 6a). (The thermalization could instead be done before tuning to the charge qubit regime.) In this charge qubit regime, the two lowest energy states anticross at the sweet spot =0.5. By changing the gate charge from 0 to a value larger than 0.5, we can induce the LZ tunnelling to prepare the charge qubit in the first excited state (blue triangle). Then, we can tune back to the operating transmon regime (green square in Fig. 6b). If we tune exactly to be zero, then there is a crossing instead of anticrossing, and the fidelity will be much better. But some finite value will be allowable as long as we can change fast enough.
Figure 6c shows the calculated fidelity of the LZ tunnelling in the charge qubit regime of Fig. 6a as a function of the total time taken to change . Here fidelity is defined as . We have used system parameters easily available in real systems, ==375 MHz, =12 GHz, =50 MHz, E_{cc}=30 MHz. was changed from 0 to 0.8. As is the case for typical LZ tunnelings, the fidelity is better with faster change of the parameter. We expect to see fidelity better than 99% for a LZ process of a few nanoseconds. Tuning back to the transmon regime is essentially an adiabatic process, and the fidelity increases with slower change (Fig. 6d). We changed from 50 MHz to 8.33 GHz, and the fidelity is better than 99% for a process of a few tens of nanoseconds. So this initialization process will take ∼20 ns to prepare the logical qubit state with fidelity of ∼99%. The effect of charge and quasiparticle noise during this process is a concern that should be investigated experimentally, but charge qubits have been shown to have T_{1} times up to 0.2 ms (ref. 54). Variants of the flux qubit are especially stable to quasiparticle and charge noise fluctuations even at small qubit splittings^{34}.
Measurement of the qubit states
Since an encoded qubit is in a state
the encoded qubit can be measured by measuring either of the physical qubits using a standard method, such as dispersive measurement^{55,56,57,58} (which can be multiplexed). The choice of our encoded qubit in equation (3) allows us to translate the singlequbit state into the encoded qubit states. With a choice of a singlettripletlike encoded qubit states, , the encoded qubit state can also be measured after some singlequbit gates are applied to turn them into the encoded qubit states as above, or they could be measured directly by dispersive measurement since these states correspond to different resonator frequencies^{59,60}.
Unlike the spin system where measurement of a singlet can be done electrostatically using a projective measurement^{6}, the dispersive measurement of SC qubits using a transmission line resonator still requires a microwave carrier, which is fine as a proof of concept. We would prefer a measurement approach that takes full advantage of our encoded qubit architecture, with qubit energy completely separated from microwave source. One possibility is to convert the encoded qubit to another quantum system (or measurement qubit) that is longlived classically, but can be read out digitally or with fast baseband pulses (in other words a latched readout), for example,^{61}. A compromise option is to do dispersive measurement but still utilize lower bandwidth lines: we can either tune E_{J} directly or swap the qubit with another one with a different frequency such that it can be readily measured.
Discussion
We proposed a scheme for a “dual rail” superconducting quantum computer where each qubit consists of two tunablephysical qubits. Encoded twoqubit operations are found to require only a single physical twoqubit gate and singlequbit pulses. Since physical twoqubit gates are typically much more costly in time and fidelity, this means that the overhead of encoded operations as proposed here is not significant, especially compared to spin qubits.
In this encoded qubit architecture all qubit manipulations are achieved solely by the zcontrol pulse sequences of individual qubits. This removes the requirement of microwave xycontrol lines necessary in conventional transmon or similar qubit devices, simplifying classical control circuitry significantly. In addition, the encoded approach may allow lower requirements for available bandwidth per line, the potential for less crosstalk, and a reduction in needed timing accuracy as the encoded qubit states are nearly degenerate. Removing the need for microwave control frees the choice of qubit frequency from the cost and availability of microwave electronics. One is then able to design physical qubits with higher (or much lower) frequency that might enable higher temperature qubit operation (which may benefit from work already underway to enable high magnetic field compatible circuits for Majorana experiments^{62} in higherT_{c} materials) or qubits made from degenerate quantum circuits as in symmetry protected approaches^{63,64,65}, of which there is a natural connection to how spin qubits are inherently protected.
Encoding a qubit in a twodimensional subspace in a larger Hilbert space introduces leakage error. For our encoded qubits, the relaxation process of individual transmons will lead to leakage out of the encoded qubit space. For a singlegate operation such as CNOT of duration , the leakage error due to the T_{1} process would be for =40 ns and T_{1}=100 μs, which would slightly reduce the error threshold for quantum error correction^{66}. While a singlegate operation of a few tens of ns does not lead to significant leakage errors, a long sequence of gate operations in a large system can be a problem. Particularly, a singlelogical qubit for faulttolerant quantum computing such as the surface code will consist of many encoded qubits and a logical operation will be a sequence of operations on those encoded qubits. Therefore, leakage reduction units^{67} will likely be essential. For example, a fullleakage reduction unit on the basis of onebit teleportation^{66} would require an ancilla qubit for each encoded qubit and additional CNOT operations, and measurements after each logical CNOT operation. Qubits especially designed for large relaxation times, such as variants of fluxonium^{68}, may be particularly promising for our approach (for example, a T_{1} time of 1 ms would lead to a leakage error per CNOT of 4 × 10^{−5}) and would reduce the overhead for leakage mitigation dramatically.
The recently demonstrated capacitivelyshunted flux qubits^{33,34} (or “fluxmon”) may also provide a promising alternative. They have comparable coherence times and a larger anharmonicity than transmons. Qubit–qubit coupling through mutual inductance would also provide transversal xx coupling like the capacitive coupling between transmon qubits, so the formalism used in this work should be applicable as well. They also offer benefits for initialization as they can be tuned to the flux qubit regime down to very small qubit splitting while being protected to T_{1} processes that flux qubits offer, and readout can also be done by using a DC SQUID^{69,70} without a transmission line.
In the next phase of this design philosophy one can consider how to mimic other beneficial properties of spin qubits: very weak coupling between qubit states to charge noise and phonons, a fast and selective twoqubit gate via a Pauli exclusion like mechanism or an interaction that mimics it, very large ON/OFF ratios and fast initialization via some as yet unknown method.
Additional information
How to cite this article: Shim, Y.P. & Tahan, C. Semiconductorinspired design principles for superconducting quantum computing. Nat. Commun. 7:11059 doi: 10.1038/ncomms11059 (2016).
References
Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atomlike spins in semiconductors. Science 339, 1174–1179 (2013).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).
Kane, B. E. A siliconbased nuclear spin quantum computer. Nature 393, 133–137 (1998).
Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in highpurity silicon. Nat. Mater. 11, 143–147 (2012).
Saeedi, K. et al. Roomtemperature quantum bit storage exceeding 39 minutes using ionized donors in silicon28. Science 342, 830–833 (2013).
Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).
DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G. & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000).
Bacon, D., Kempe, J., Lidar, D. A. & Whaley, K. B. Universal faulttolerant quantum computation on decoherencefree subspaces. Phys. Rev. Lett. 85, 1758–1761 (2000).
Fong, B. H. & Wandzura, S. M. Universal quantum computation and leakage reduction in the 3qubit decoherence free subsystem. Quant. Inf. Comput. 11, 1003–1018 (2011).
Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).
Koch, J. et al. Chargeinsensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).
Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502 (R) (2008).
Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).
Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).
Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).
Reed, M. D. et al. Realization of threequbit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).
Sun, L. et al. Tracking photon jumps with repeated quantum nondemolition parity measurements. Nature 511, 444–448 (2014).
Chow, J. M. et al. Implementing a strand of a scalable faulttolerant quantum computing fabric. Nat. Commun. 4, 4015 (2014).
Córcoles, A. D. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015).
Blase, X., Bustarret, E., Chapelier, C., Klein, T. & Marcenat, C. superconducting groupIV semiconductors. Nat. Mater. 8, 375–382 (2009).
Bustarret, E. Superconductivity in doped semiconductors. Physica C 514, 36–45 (2015).
Bustarret, E. et al. Superconductivity in doped cubic silicon. Nature 444, 465–468 (2006).
Marcenat, C. et al. Lowtemperature transition to a superconducting phase in borondoped silicon films grown on (001)oriented silicon wafers. Phys. Rev. B 81, 020501 (R) (2010).
Dahlem, F. et al. Subkelvin tunneling spectroscopy showing Bardeen–Cooper–Schrieffer superconductivity in heavily borondoped silicon epilayers. Phys. Rev. B 82, 140505 (R) (2010).
Grockowiak, A. et al. Superconducting properties of laser annealed implanted Si:B epilayers. Supercond. Sci. Technol. 26, 045009 (2013).
Herrmannsdörfer, T. et al. Superconducting state in a galliumdoped germanium layer at low temperatures. Phys. Rev. Lett. 102, 217003 (2009).
Skrotzki, R. et al. The impact of heavy Ga doping on superconductivity in germanium. Low Temp. Phys. 37, 877–883 (2011).
Shim, Y.P. & Tahan, C. Bottomup superconducting and Josephson junction device inside a groupIV semiconductor. Nat. Commun. 5, 4225 (2014).
Shim, Y.P. & Tahan, C. Superconductingsemiconductor quantum devices: from qubits to particle detectors. IEEE J. Sel. Top. Quant. Electron. 21, 9100209 (2015).
Larsen, T. W. et al. Semiconductornanowirebased superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).
de Lange, G., et al. Realization of microwave quantum circuits using hybrid superconductingsemiconducting nanowire Josephson elements. Phys. Rev. Lett. 115, 127002 (2015).
Ristè, D. et al. Detecting bitflip errors in a logical qubit using stabilizer measurements. Nat. Commun. 6, 6983 (2015).
You, J. Q., Hu, X., Ashhab, S. & Nori, F. Lowdecoherence flux qubit. Phys. Rev. B 75, 140515 (2007).
Yan, F. et al. The flux qubit revisited. Preprint at http://arxiv.org/abs/1508.06299 (2015).
Makhlin, Y., Schön, G. & Shnirman, A. Josephsonjunction qubits with controlled couplings. Nature 398, 305–307 (1999).
Chang, W. et al. Hard gap in epitaxial semiconductorsuperconductor nanowires. Nat. Nanotechonol. 10, 232–236 (2015).
Krogstrup, P. et al. Epitaxy of semiconductorsuperconductor nanowires. Nat. Mater. 14, 400–406 (2015).
Shim, Y.P., Fei, J., Oh, S., Hu, X. & Friesen, M. Singlequbit gates in two steps with rotation axes in a single plane. Preprint at http://arxiv.org/abs/1303.0297 (2013).
Wang, X. et al. Composite pulses for robust universal control of singlettriplet qubits. Nat. Commun. 3, 997 (2012).
Wang, X., Bishop, L. S., Barnes, E., Kestner, J. P. & Sarma, S. D. Robust quantum gates for singlettriplet spin qubits using composite pulses. Phys. Rev. A 89, 022310 (2014).
Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).
DiCarlo, L. et al. Demonstration of twoqubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).
Strauch, F. W. et al. Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91, 167005 (2003).
Ghosh, J. et al. Highfidelity controlledσ^{z} gate for resonatorbased superconducting quantum computers. Phys. Rev. A 87, 022309 (2013).
Wu, L.A., Byrd, M. S. & Lidar, D. A. Efficient universal leakage elimination for physical and encoded qubits. Phys. Rev. Lett. 89, 127901 (2002).
Fowler, A. G. Coping with qubit leakage in topological codes. Phys. Rev. A 88, 042308 (2013).
Makhlin, Y. Nonlocal properties of twoqubit gates and mixed states, and the optimization of quantum computations. Quant. Inf. Proc 1, 243–252 (2002).
Martinis, J. M. & Geller, M. R. Fast adiabatic qubit gates using only σ z control. Phys. Rev. A 90, 022307 (2014).
Geller, M. R. et al. Tunable coupler for superconducting Xmon qubits: perturbative nonlinear model. Phys. Rev. A 92, 012320 (2015).
Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006).
Hartmann, M., Brandão, F. & Plenio, M. Quantum manybody phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527–556 (2008).
Landau, L. Zur Theorie der Energieubertragung. II. Phys. Z. Sowjetunion 2, 46–51 (1932).
Zener, C. NonAdiabatic Crossing of Energy Levels. Proc. R. Soc. Lond. A 137, 696–702 (1932).
Kim, Z. et al. Decoupling a Cooperpair box to enhance the lifetime to 0.2 ms. Phys. Rev. Lett. 106, 120501 (2011).
Blais, A., Huang, R.S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2003).
Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).
Schuster, D. I. et al. ac stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).
Wallraff, A. et al. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).
Gambetta, J. M., Houck, A. A. & Blais, A. Superconducting qubit with purcell protection and tunable coupling. Phys. Rev. Lett. 106, 030502 (2011).
Srinivasan, S. J., Hoffman, A. J., Gambetta, J. M. & Houck, A. A. Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a Vshaped energy level diagram. Phys. Rev. Lett. 106, 083601 (2011).
Berkley, A. J. et al. A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23, 105014 (2010).
van Woerkom, D. J., Geresdi, A. & Kouwenhoven, L. P. One minute parity lifetime of a NbTiN Cooperpair transistor. Nat. Phys. 11, 547550 (2015).
Douçot, B. & Ioffe, L. B. Physical implementation of protected qubits. Rep. Prog. Phys. 75, 072001 (2012).
Kitaev, A. Y. Faulttolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Brooks, P., Kitaev, A. & Preskill, J. Protected gates for superconducting qubits. Phys. Rev. A 87, 052306 (2013).
Suchara, M., Cross, A. W. & Gambetta, J. M. Leakage suppression in the toric code. Quant. Inf. Comp. 15, 997–1016 (2015).
Aliferis, P. & Terhal, B. M. Faulttolerant quantum computation for local leakage faults. Quant. Inf. Comp. 7, 139–156 (2007).
Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooperpair circuit free of charge offsets. Science 326, 113–116 (2009).
Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).
Jin, X. Y. et al. Zgate operation on a superconducting flux qubit via its readout SQUID. Phys. Rev. Applied 3, 034004 (2015).
Acknowledgements
We thank C.M. Marcus, A. Mizel, W.D. Oliver, B. Palmer and K.D. Petersson for useful discussions.
Author information
Authors and Affiliations
Contributions
All the authors contributed to the planning of the project, interpretation of the results, discussions and writing of the manuscript. Y.P.S performed the theoretical and numerical calculations.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About this article
Cite this article
Shim, YP., Tahan, C. Semiconductorinspired design principles for superconducting quantum computing. Nat Commun 7, 11059 (2016). https://doi.org/10.1038/ncomms11059
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/ncomms11059
Further reading

Graphene qubit motivates materials science
Nature Nanotechnology (2019)

2D materials for quantum information science
Nature Reviews Materials (2019)

Possible Superconductivity in the Brain
Journal of Superconductivity and Novel Magnetism (2019)

Optimal control methods for quantum gate preparation: a comparative study
Quantum Information Processing (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.