
ARTICLE

Received 17 Sep 2015 | Accepted 28 Jan 2016 | Published 2 Mar 2016

Spin generation via bulk spin current in
three-dimensional topological insulators
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To date, spin generation in three-dimensional topological insulators is primarily modelled as a

single-surface phenomenon, attributed to the momentum-spin locking on each individual

surface. In this article, we propose a mechanism of spin generation where the role of the

insulating yet topologically non-trivial bulk becomes explicit: an external electric field creates

a transverse pure spin current through the bulk of a three-dimensional topological insulator,

which transports spins between the top and bottom surfaces. Under sufficiently high surface

disorder, the spin relaxation time can be extended via the Dyakonov–Perel mechanism.

Consequently, both the spin generation efficiency and surface conductivity are largely

enhanced. Numerical simulation confirms that this spin generation mechanism originates

from the unique topological connection of the top and bottom surfaces and is absent in other

two-dimensional systems such as graphene, even though they possess a similar Dirac

cone-type dispersion.
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T
opological insulators (TIs) have attracted world-wide
attention because of their intriguing fundamental physics
and exciting application opportunities in spintronics1.

Three-dimensional (3D) TIs2,3 are of particular technological
importance as the unique spin generation can be realized in single
crystals rather than in complex heterogeneous structures4. TIs are
considered as efficient spin generators5, yet the spin generation is
generally regarded as a pure surface phenomenon. Namely, the
electronic momentum and spin are locked at the TI surface, and a
net charge current leads to a net spin polarization at the surface,
whose magnitude is directly proportional to the charge current6.
In this view, all physics occur independently at the top and
bottom surfaces of a TI and the role of the bulk is passive, which
simply separates the top and bottom surfaces. The surface
conductivity is understood through density of states and
scattering rate, just like in other two-dimensional (2D) systems
such as graphene and 2D electron gas. The conductivity
behaviour governs the spin generation on the surface of a
3D TI, and spin accumulation is merely a side product of
conductivity. Although this interpretation of spin generation in
TIs is most mathematically straightforward, it is far from
satisfactory in the sense that the most amazing feature of a
TI—surface-bulk correspondence does not explicitly enter this
physical picture.

On the other hand, there is an alternative viewpoint of spin
generation. The external electric field induces a transverse pure
spin current through the bulk, which acts as a bridge for
transporting spins between top and bottom surfaces. Opposite
spins are thus accumulated on the two surfaces, which lead to
charge current in the same direction of the electric field because
of the opposite chirality of the momentum-spin textures on the
top and bottom surfaces (Fig. 1a). An empirical formula for the
bulk spin current can be written down as

jsij ¼
X
k

ssijkEk ð1Þ

where js is the spin current density, E is the electric field and ss is
the spin Hall conductivity tensor7. A system that is electrically
insulating but can carry a pure spin current is termed a spin Hall
insulator8. The bulk of a 3D TI has been demonstrated to be a
spin Hall insulator because of its Z2 topological order9.

Analogous to Hall effect, the transverse spin Hall current leads
to surface spin accumulation in a slab geometry. Yet unlike
electric charge, spin is usually a nonconserved quantity in a spin
Hall insulator. The ultimate spin accumulation induced on the
surface closely depends on the spin relaxation mechanism. In the
low disorder limit mt=‘ � 1 with m being the Fermi level,
t being the momentum relaxation time, it has been demonstrated
that the spin relaxation time ts on the surface of a 3D TI is

identical to the momentum relaxation time t because of the
momentum-spin locking, and the traditional Dyakonov–Perel
spin relaxation is absent10. Charge-spin dynamics in the high
disorder limit mt=‘t1, however, has rarely been discussed in the
literature so far.

The exact behaviour of these spin transport coefficients under
high disorder is of crucial importance to the application of 3D
TI-based spintronic devices, because unlike the bulk, surface is
extremely vulnerable to various kinds of defects, especially when
placed in ambient environment. Even for a material that is
generally considered ‘inert’, the top most layer of atoms could still
suffer from high concentration of impurities11,12. A clear physical
model of charge and spin transport in this case is highly desired
for the design of novel 3D TI-based spintronic devices.

In this article, we demonstrate that the unique topological
connection of the surface bands in a 3D TI demands a pure spin
current through the insulating bulk. Spins are thus generated and
accumulated on the two surfaces. Sufficiently high surface
disorder can suppress spin relaxation and result in an increase
of the spin relaxation time ts in a manner similar to the
traditional Dyakonov–Perel mechanism. Consequently, both
electro-spin susceptibility kyx (surface spin density sy divided by
the electric field Ex) and the electrical conductivity sxx should
increase with the increase of disorder, as illustrated in Fig. 1b.

Results
Spectral function and electrical conductivity. To begin with, we
consider a realistic four-band tight-binding model13 built on a
slab of a tetragonal lattice, as shown in Fig. 2a. The slab is infinite
in xy directions and has a total number of N¼ 10 layers in the z
direction (c-axis). With four states on each site, the bulk
Hamiltonian in the 3D k-space is

H0 kð Þ ¼ A
X
i¼x;y

sin kiaai þAzsin kzazaz

 !

þ D� 4 B
X
i¼x;y

sin2
kia
2

þBz sin
2 kzaz

2

 !" #
b

ð2Þ

where ai(i¼ x, y, z), b are the Dirac matrices, a and az are the
lattice constants in the xy and z directions, D is the mass term and
A, Az, B, Bz are nearest-neighbour hopping amplitudes. In the
slab configuration, inverse Fourier transform is performed in
z-direction to comply with the finite thickness.

We use a typical 3D TI Bi2Se3 as our prototype and adopt
parameters as obtained in ref. 2 to best fit the band structure of
Bi2Se3. The resultant band structure of the surface is shown in
Fig. 2b, which clearly has a Dirac cone near the G point. Owing to
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Figure 1 | Proposed spin dynamics in a 3D TI. (a) An electric field induces a transverse pure spin current in the bulk. Consequently, opposite spins

accumulate on the top and bottom surfaces, leading to a charge current according to the chiral momentum-spin texture. The small cylindrical arrows

denote spins. The hollow vertical arrows indicate spin current. The long horizontal blue arrows indicate charge current. (b) The anomalous behaviour of

transport coefficients proposed in this article. At a sufficiently high disorder level, conductivity sxx, electro-spin susceptibility kyx and spin relaxation time ts
should all have positive dependence on the disorder, in contrast with the well-known negative dependence in the low disorder limit.
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the z-inversion symmetry of the slab, all bands are doubly
degenerate.

To account for surface disorder, atoms in the top and bottom
layers of the slab are subject to a typical kind of impurity—
vacancies. Each site at the surface has a probability of c to be
occupied by a vacancy where the on-site energy is brought to
infinity so as to forbid electrons from this site. As c may not be
small, the first Born approximation does not apply. Here we
adopted the coherent potential approximation (CPA) method for
binary alloys14,15 in computing the Green’s function G(k, o) and
self-energy S(o). A typical spectral function � (1/p)ImG(k, o)
obtained by CPA at impurity concentration c¼ 0.001 is plotted in
Fig. 2c. The evolution of the spectral function with increasing
impurity concentration is consistent with results obtained in
ref. 13. Subsequently, transport coefficients were calculated via
the standard linear response theory. More details of the numerical
simulation can be found in the Methods section.

Figure 2c,d shows the electrical conductivity calculated from
the CPA Green’s function via the Kubo–Greenwood formalism.
With an impurity concentration c ranging from 5� 10� 4 to 0.5,
the Fermi level dependence of conductivity gets weaker and the
magnitude of conductivity reaches a minimum at around
c¼ 0.006. Further increasing the impurity concentration leads
to an increase of conductivity at a given Fermi level position. Such
anomalous increase of conductivity with impurity concentration
is difficult to understand based on a single surface model16,17,
which suggests the essential role of the bulk of a 3D TI in
surface conduction. In the following, we reveal that the
anomalous increase of conductivity is a signature of a different

type of spin dynamics and manifests a spin generation
mechanism in 3D TIs.

Spin generation via bulk spin current. To start discussions on
spin dynamics, we notice that spin is not a predefined quantity in
Hamiltonian (equation 2). Although common 3D TIs such as
Bi2Se3 are known to have chiral spin texture on the surface states,
the spin polarization is not 100% (ref. 18). Nevertheless, one can
always talk about a pseudo-spin, which is defined to exactly
match the energy eigenstates and has all essential features of the
real spin19. Here we take the definition

Sx ¼ � iayazb

Sy ¼ � iazaxb

Sz ¼ iaxay

ð3Þ

It can be verified that such definition satisfies all symmetry
requirements of the real spin and shows a chiral spin texture near
the G point, as shown in Fig. 3a. Note that a unique spin
polarization can be specified for all points in the k-space except
for those time-reversal invariant momenta (TRIM), where the
Kramers theorem asserts the degeneracy of the two opposite spin
polarizations.

With the above definition of spins, the bulk spin current
density jszy denoting the transport of y-spins in the z-direction can
be defined as

jszy ¼ Pþ
y vzP

þ
y �P�

y vzP
�
y

� �
=O3 ð4Þ
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Figure 2 | Model configurations and conductivity simulation. (a) The slab of tetragonal lattice is infinite in the xy directions and has a total number of

N¼ 10 layers in the z direction (c-axis of the lattice). Only the top three layers are shown here. There are four states on each site and only nearest-

neighbour hopping is considered. The top and bottom layers are subject to vacancies, which are coloured pink in this figure. Each atom on these layers has

a probability of c to be occupied by a vacancy and (1� c) to be intact. The on-site energy of a vacancy is brought to infinity to forbid electrons from entering

this site. (b) The energy dispersion of the surface branch of a clean system. A Dirac cone exists around the G point. Parameters used for simulation:

A¼ 1 eV, Az¼0.5 eV, B¼ 2 eV, Bz¼0.4 eV, D¼0.3 eV, a¼ 5Å. (c) The spectral function � (1/p)ImG(k, o) obtained via CPA plotted along the G�X line at

impurity concentration c¼0.001. At higher concentrations, the k-dispersion first fades away and then slowly recovers, as discussed in ref. 13. (d) The DC

conductivity of a single surface (sxx(0)) plotted against the Fermi level position (m). The impurity concentration c varies from 0.002 to 0.2. (e) Conductivity

(sxx(0)) plotted against the impurity concentration (c). The Fermi level position was fixed at m¼0.13 eV.
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where Pþ
y and P�

y are spin projection operators in the þ y and
� y directions, vz is the velocity operator in the z direction and
O3 is the volume of the slab serving as a normalization factor.
With the above expression, the spin Hall conductivity sszyx
defined by

jszy ¼ sszyxEx ð5Þ

can be calculated via the standard linear response theory. Owing
to the even symmetry of spin current js under time reversal J ,
the resultant expression for the spin Hall conductivity is different
from that for the electrical conductivity (Kubo–Greenwood
formula), but contains a term which involves all states below
the Fermi level. This term has been thoroughly reviewed in ref. 20
for the calculation of electrical conductivity in a J -symmetry
broken system and also discussed in a recently published article21

for the calculation of spin Hall conductivity. The emergence of
this term in our system indicates the non-dissipative nature of the
spin current, which has already been demonstrated possible for a
wide class of traditional semiconductors22,23. We leave the details
of derivation to the Methods section and plot the calculated spin
Hall conductivity sszyx in Fig. 3b. It is clear that the magnitude of
the spin Hall conductivity is independent of both the Fermi level
position (must be within the bulk bandgap) and the surface
impurity concentration.

Although the existence of a bulk spin current in 3D TI has
been predicted analytically through topological argument9,
a visualization of the spin transfer mechanism is not yet
available so far. Neither has its relevance to the transport
behaviour of the gapless surface states been studied ever. In the

following, we present an intuitive picture of the spin transfer in a
3D TI slab and uncover its close relationship with the surface-
bulk correspondence of a 3D TI.

We notice that despite the chiral spin texture over the entire
Brillouin zone (BZ), only states with small magnitude of
momentum are truly localized on the surface. Figure 3c,d shows
the evolution of electronic wave functions as the wave vector k
approaches the BZ boundary from the G point. It is seen that,
beyond a certain point, electronic wave functions become
extended through the entire bulk and the surface band has
essentially merged into bulk bands. States beyond this merging
point should be classified as bulk states although they lie on the
same branch of energy sub-band as true surface states.

Imagine applying a weak electric field to this system in the þ x
direction and examine the G�X line in the extended BZ view.
Because of the inversion symmetry in the z direction, all bands
are doubly degenerate. We notice, however, in order for the spin
texture to be continuous, every top surface branch must be
connected to the adjacent bottom surface branch and vice versa,
as shown in Fig. 3e. This alternating structure exists across all
TRIM points in our system, and is distinctively different from a
normal band, which smoothly connects to itself at the BZ
boundary. Consider an electron on the bottom surface with its
spin polarized in þ y direction. Under the driving of the electric
field, this electronic state drifts to � x direction in k space and
merges into the bulk valance band. Upon further drifting, this
electron finally enters the top surface with its spin in þ y
direction unchanged. Simultaneously, an electron with spin
polarized in the � y direction will drift from the top surface to
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Figure 3 | The spin generation mechanism. (a) The chiral spin texture over the entire BZ for the conduction band of the top surface. The spin orientations

on TRIM points (red dots) are degenerate due to the Kramers theorem. (b) The DC spin Hall conductivity sszyx 0ð Þ obtained from numerical simulation

plotted against the Fermi level position m at different impurity concentrations c. It is seen that the bulk spin current is independent of both Fermi level

position and impurity concentration. (c) Energy dispersion for the top surface near the G point along G�X direction. The spin polarization of the coloured

dots is in the þ y direction. (d) The evolution of electronic wave functions along the coloured dots in c. As the magnitude of wave vector becomes larger,

the wave function of an electron gradually evolves from being localized near the surface to extensive in the bulk. (e) A schematic plot for the spin

generation mechanism in the extended BZ view. The drift motion along x direction in k space gives rise to spin transfer in the z direction of the real space,

which results in a pure spin current through the bulk. The red/green arrows pointing into/out of the page indicate spin polarization. The purple arrows

indicate the direction of drift motion of electrons under an electric field in the þ x direction. The dashed horizontal line indicates the Fermi level position.

The schematic drawing under the black dots denote the electronic wave functions. The dashed boxes denote the true surface state regions. It is essential

that the Fermi level lies within the box regions for the spin transfer mechanism to apply.
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bottom surface. The drift motion across the X point is similar to
the Klein tunnelling of Dirac Fermions in the sense that, in order
for a certain spin to be continuous, the electron must tunnel to
another band rather than return to its original band. Overall, each
of these processes corresponds to a unit spin-pair exchange
between the bottom surface and the top surface. Thus, a
longitudinal electric field induces a transverse pure spin current
through the bulk, which plays the role of a spin injector for the
two surfaces, as described in Fig. 1a. During this process, it is
essential that the Fermi level lies within the gap, because there
exists another pair of merging points near the conduction band
edge. If the Fermi level is above these points as well, there would
be an opposite process that leads to the cancelation of net spin
current. This is of course consistent because the system in this
case is not a TI any more.

Spin relaxation on the surface. Unlike charge, spin is not a
conserved quantity in our system. The spins injected onto the
surface suffer from immediate relaxation. The scenario is slightly
different from both the Hall effect and the 2D spin Hall effect. In
3D, the spin relaxation is actually necessary for the system to
reach a steady state, as detailed in Supplementary Note 1. The
ultimate spin density accumulated on the surface is determined
by the spin relaxation time ts. In the following, we provide an
intuitive physical picture of the spin relaxation dynamics under
the eigenbasis defined by H0. More details of this picture can be
found in Supplementary Note 2. This is essentially an interaction
picture that splits the Hamiltonian into a free part H0 and an
interaction part U. Because of the momentum-spin locking, each
electron senses an effective magnetic field Beff according to its
wave vector k. When an electron with its spin aligned with Beff

suffers from a momentum change :Dk because of the scattering
of an impurity potential, its spin may no longer align with the
new Beff. If scatterings are rare, that is, the time it takes for
momentum to change by a unit amount is long, the adiabatic
perturbation theory predicts that the new spin must evolve to the
new energy eigenstate, that is, rotate to the direction of the new
Beff. If scatterings are frequent, however, the spin does not have
time to follow Beff and will precess about the instantaneous Beff,
as shown in Fig. 4a. Frequent scatterings constantly change the
precession axis and the spin ends up doing a random walk on a
unit sphere, as shown in Fig. 4b,c. The more frequent momentum
scattering is, the less effective the random walk is, and the spin
will preserve its original direction for a longer time. Therefore, the
spin relaxation time ts inversely depends on the momentum
relaxation time t, just like in the traditional Dyakonov–Perel
mechanism24. One point to note is that as disorder is only present
on the surface, states outside the dashed box of Fig. 3e are un-
affected by scattering and the previously discussed spin transfer
mechanism remains valid even under strong surface disorder.

If the above physical picture is correct, the ultimate spin
density accumulated on the surface should increase with the
increase of disorder. We calculated the spin relaxation time ts and
electro-spin susceptibility kyx via standard linear response theory.
The results are shown in Fig. 4d,e, which perfectly agree with the
expectation. Combined with the fact that velocity operator is
proportional to spin on the surface, it is not difficult to
understand the anomalous increase of conductivity as well.

Discussion
It is worth noting that, in contrast to a common belief, the
behaviour of conductivity of a Dirac system under high disorder
is not simply governed by the dispersion relationship. The
anomalous increase of conductivity is closely related to the spin
generation and relaxation mechanism. To illustrate this point, we
calculated the conductivity of a single layer of atoms within the

same model (Fig. 5a). By setting the mass term D¼ 0, the band
structure of this 2D system has almost identical shape as the
previous surface state, as shown in Fig. 5b, but the spin generation
mechanism discussed above is obviously absent. With the
increase of the impurity concentration, the conductivity of such
system monotonically decreases towards zero, even in the high
disorder range. Similar behaviour has also been shown in
graphene25,26, where no anomalous increase of conductivity was
found.

The spin dynamics in a 3D TI under strong surface disorder
makes delicate connection with the scenario of a 2D TI. In fact, it
is straightforward to apply the previously discussed spin transfer
mechanism to a 2D TI, and obtain the universal quantized spin
Hall conductivity ss2D¼e= p‘ð Þ. Different from the 3D case, in the
edge channel of a 2D TI, the spin (understood as pseudo-spin
when necessary) is a conserved quantity, which does not relax.
Consequently, the electro-spin susceptibility is infinite, which
means no external field is needed to support the edge spin
accumulation and charge current. The quantized and finite
channel conductivity e2/h is actually a contact effect, while the
channel itself is dissipationless27. On the surface of a 3D TI,
however, spin is not conserved due to an additional angular
degree of freedom of the wave vector k. The electro-spin
susceptibility is thus finite and transport is dissipative. Strong
surface disorder greatly suppresses spin relaxation and brings the
system closer to the situation of a 2D TI, leading to a more
efficient spin generation. In this view, strong surface disorder can
be beneficial for spintronic devices, in contrast with the common
belief. Technically, it is obviously of more convenience to induce
high disorder on a surface than to make it pure and pristine.

Experimentally, the anomalous increase of conductivity in 3D
TIs has already been hinted by results from several groups, yet
researchers do not generally regard it as an intrinsic property of
the TI surface. Field effect measurements in TIs have often shown
a high minimum conductivity even when the Fermi level is tuned
to the charge neutral point28–32, which is much larger than
expected by normal transport theory assuming low disorder16,17.
Although they are often attributed to bulk conduction29 or
surface electron puddle formation30,33, a closer look at these
models reveals several problems, which are discussed in details in
Supplementary Note 3. Theory presented in this paper, however,
provides a simple and natural way to understand these
observations. Recently, it has been directly observed in
exfoliated BiSbTeSe2 nanoflakes that after argon ion milling
treatment to create more surface defects, the sample becomes
more conductive34, although this effect was not understood.

Our simulation results also suggest that under strong surface
disorder, with the magnitude of transport coefficients increased,
their Fermi level sensitivity has dropped, which is also beneficial
for the design of 3D TI-based spintronic devices. This is because
in ambient environment, the Fermi level on the surface is subject
to unintentional change because of contamination and degrada-
tion35,36. Sensitive Fermi level dependence renders the device less
stable and robust in air.

Methods
CPA and self-energy. The numerical calculation results were obtained via CPA
and the standard linear response theory. In the following, we use convention :¼ 1.
The Hamiltonian of a clean lattice in the main text can be written in a block
diagonal form

H0 kx ; ky
� �

¼

E kx ; ky
� �

� i Az
2 az �Bzb 0 . . .

i Az
2 az �Bzb E kx ; ky

� �
� i Az

2 az �Bzb 0
0 i Az

2 az �Bzb E kx ; ky
� �

..

.
0 . .

.

0
BBB@

1
CCCA ð6Þ

where each element in this matrix is a 4� 4 matrix. The N rows and columns

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10878 ARTICLE

NATURE COMMUNICATIONS | 7:10878 | DOI: 10.1038/ncomms10878 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


denote the N layers of the slab. The on-site energy E kx ; ky
� �

takes the form

E kx ; ky
� �

¼ A sin kxaax þ sin kyaay
� �

þ D� 2Bz � 4B sin2
kxa
2

þ sin2
kya
2

� �� 	
b

ð7Þ

Overall, the Hamiltonian is 4N� 4N. Diagonalizing this matrix gives the band
structure of a clean lattice without impurities.

We consider impurities of an on-site scalar potential U on the top and bottom
layers, which takes the form of

U ¼ diag u; u; u; u; 0; 0; . . . ; 0; 0; u; u; u; u½ � ð8Þ

Each site has a probability of c subject to potential U and probability (1� c) subject
to potential 0, which makes the entire system essentially a binary alloy. Such
configuration assumes non-physical correlation between the appearance of an
impurity on the top and bottom layers. Yet from practical consideration, for a
sufficiently thick slab, the crosstalk between the top and bottom layers should
vanish, which justifies the binary alloy model of the above.
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Instead, the electronic spin precesses about the instantaneous energy eigenstate, which serves as an effective magnetic field Beff. (b) Frequent scatterings

constantly change the precession axis of spin. During the interval of two consecutive scatterings the spin can only precess for a small angle. (c) The spin

ends up doing a random walk on a unit sphere. The more frequent the scatterings are, the less efficient this random walk is, and consequently spin can

preserve its original direction for a longer time. (d) The numerical simulation result for spin relaxation time ts and momentum relaxation time t at Fermi

level m¼0.13 eV. As expected, when disorder is high, ts and t have an inverse dependence as in the traditional Dyakonov–Perel spin relaxation mechanism.

(e) The simulated DC electro-spin susceptibility kyx(0) plotted against the Fermi level m at different impurity concentrations. The inset is kyx(0) at a fixed

Fermi level m¼0.13 eV versus impurity concentration c. It is clear that under high disorder, the accumulated spin density increases with impurity

concentration.
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Figure 5 | Simulation for a single layer with the same model to illustrate the importance of spin dynamics in our previous system. (a) The geometry of

the system. Each atom on this layer has a probability of c to be occupied by a vacancy and (1� c) to be intact. The on-site energy of a vacancy is brought to

infinity. Only nearest-neighbour hopping is allowed. (b) The energy dispersion of this single layer system. Simulation parameters are identical to before

except for the mass term D is set to zero in order to have a Dirac cone near the G point. The band structure looks almost identical to the surface bands of

the 3D TI slab discussed before. (c) The DC conductivity sxx(0) of this single layer versus Fermi level at different impurity concentrations. Despite the

similarity in band structures, this single layer does not have anomalous increase of conductivity at high disorder, in contrast with our previous system.
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In CPA, the configurationally averaged impurity potential is denoted by a
k-independent self-energy S(o). In the binary alloy case, S(o) is determined by
the iterative equation

� oð Þ ¼ cU 1�G oð Þ U � � oð Þð Þ½ �� 1 ð9Þ

where G(o) is the on-site Green’s function

G oð Þ ¼
X
k

o�H0 kð Þ� � oð Þ½ �� 1 ð10Þ

Because of the symmetry of this problem, S(o) is actually a scalar on the top and
bottom layers only. The real and imaginary parts of the self-energy are plotted in
Supplementary Fig. 1.

Conductivity. The velocity operator v takes the form

v ¼ @H
@k

ð11Þ

¼

@E
@k

@E
@k

@E
@k

. .
.

0
BBB@

1
CCCA ð12Þ

According to the Kubo formula, the direct current (DC) conductivity at T¼ 0 is

sxx 0ð Þ ¼ e2

4p3

Z
Tr vx kð ÞImG k; mð Þvx kð ÞImG k; mð Þ½ �d2k ð13Þ

The conductivity of the top surface is half of this value

stopxx 0ð Þ ¼ 1
2
sxx 0ð Þ ð14Þ

Definition of spin operators and the chiral spin texture. Spin is not a predefined
quantity in the original Hamiltonian. Unless we are interested in a direct coupling
to an external magnetic field, the four state basis vectors can be thought to have
arbitrary spin polarizations, which is essentially a ‘pseudo-spin’. Even in real TIs
such as Bi2Se3, the pseudo-spin does not exactly match the real spin. Nevertheless,
the definition of a ‘pseudo-spin’ S must satisfy a couple of restrictions: (i) S is an
Hermitian operator, Swi ¼Si . (ii) The components of S satisfy the anti-commutation
rules, SiSj¼dij þ iEijkSk . (iii) S is a pseudo-vector. It transforms like a vector under
in-plane (xy) rotation but does not flip sign under space inversion, bSib¼ Si.
(4) To comply with the chiral surface spin texture, we require S be polarized along
y-direction when ky¼ 0. Thus, [Sy, H(kx, 0)]¼ 0.

Note that we do not include :/2 in our definition, so this pseudo-spin has
dimension 1 instead of angular momentum. It can be easily verified that the
following expressions are a good representation of ‘spin’ in our system.

Sx ¼ � iayazb ð15Þ

Sy ¼ � iazaxb ð16Þ

Sz ¼ iaxay ð17Þ

The spin in an arbitrary direction y within the xy plane is thus

S yð Þ ¼ Sx cos yþ Sy sin y ð18Þ

If there exists an angle y for an arbitrary point in k-space (kx, ky) such that

S yð Þ; H0 kx ; ky
� �
 �

¼ 0 ð19Þ

then S(y) and H0(kx, ky) have common eigenstates and the energy eigenstates can
be assigned a unique spin polarization. It is not difficult to obtain

tan y ¼ � sin kxa
sin kya

ð20Þ

When the magnitude of k is small, we recover to the well-known chiral spin texture

tan y � � kx
ky

ð21Þ

whereas when k gets large, the spin texture deforms to adapt to the tetragonal
symmetry of the BZ, as shown in the main text.

Surface spin density and electro-spin susceptibility. The spin density
accumulated on the top surface is

stopy ¼ 1
O

Sy
Sy

. .
.

0
0

. .
.

0
BBBBBBBB@

1
CCCCCCCCA

ð22Þ

At T¼ 0 the electro-spin susceptibility is calculated similar to the electrical
conductivity

kyx 0ð Þ ¼ e
p
Tr stopy ImG mð ÞvaImG mð Þ
h i

ð23Þ

¼ eO
4p3

Z
d2kTr stopy ImGðk; mÞvaðkÞImGðk; mÞ

h i
ð24Þ

Note that the definition of stopy contains a factor of 1/O and thus the above
expression is actually independent of the box size O.

Bulk spin current and spin Hall conductivity. The z-position operator is

z ¼ az � diag � 1; � 1; � 1; � 1; � 2; � 2; � 2; � 2; � 3; � 3; � 3; � 3; . . .½ �
ð25Þ

Thus, the z-velocity operator

vz ¼ � i z; H½ � ð26Þ

¼ az

0 � Az
2 az þ iBzb

� Az
2 az � iBzb 0 � Az

2 az þ iBzb

� Az
2 az � iBzb 0 . .

.

. .
. . .

.

0
BBBB@

1
CCCCA ð27Þ

As we are interested in the flux across a certain intermediate layer, we restrict the
velocity operator to be only between two adjacent layers in the middle

vmz ¼ az
0 � Az

2 az þ iBzb

� Az
2 az � iBzb 0

0
BBBBBBBB@

1
CCCCCCCCA

ð28Þ

To discuss the spin current, we need to define a spin projection operator

Pþ
y ¼ I � Sy ¼ þ 1

�� 
Sy ¼ þ 1
� �� ð29Þ

¼ I � 1
2

1 i
� i 1

1 � i
i 1

0
BB@

1
CCA ð30Þ

¼ I � 1
2

1þ Sy
� �

ð31Þ

P�
y ¼ I � Sy ¼ � 1

�� 
Sy ¼ � 1
� �� ð32Þ

¼ I � 1
2

1 � i
i 1

1 i
� i 1

0
BB@

1
CCA ð33Þ

¼ I � 1
2

1� Sy
� �

ð34Þ

The spin current operator is then

jszy ¼ Pþ
y vmz P

þ
y � P�

y vmz P
�
y

� �
= azOð Þ ð35Þ

¼ 1
O

0 � i Az
2 axb�Bzazax

� i Az
2 axbþBzazax 0

0
BBBBBBBB@

1
CCCCCCCCA

ð36Þ

-------------

- - - - - - - - - - - - - - - -
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Under time reversal

J jszy

� �
¼ jszy ð37Þ

which is different from charge current or spin density. Thus, the spin Hall
conductivity is not only determined by the Green’s function at the Fermi level
but also contains an additional term contributed by all states occupied20,21.

sszyx 0ð Þ ¼ e
4p

Tr jszyG mð ÞvxGy mð Þ� jszyG
y mð ÞvxG mð Þ

h i
ð38Þ

þ e
4p

Z m

�1
dlTr � jszy

dG lð Þ
dl

vxG lð Þþ jszyG lð Þvx
dG lð Þ
dl

þ h:c:

� 	
ð39Þ

¼ eO
16p3

Z
d2kTr jszyG k; mð Þvx kð ÞGy k; mð Þ� jszyG

y k; mð Þvx kð ÞG k; mð Þ
h i

ð40Þ

þ eO
16p3

Z m

�1
dlZ

d2kTr � jszy
dG k; lð Þ

dl
vx kð ÞG k; lð Þþ jszyG k; lð Þvx kð Þ dG k; lð Þ

dl
þ h:c:

� 	 ð41Þ

Again because of the 1/O factor in the definition of jszy , the above expression is
independent of the box size O.

Spin relaxation time. Imagine applying a pulse electric field to our system

E tð Þ ¼ E0t0d tð Þ ð42Þ
Empirically, the induced spin has the asymptotic form

s tð Þ ¼ s0e
� t

tsy tð Þ ð43Þ
where the function y(t)¼ 0 when to0 and y(t)-1 as t-þN. Consider the
Fourier transform

ŝ oð Þ ¼
Z þ1

�1
s tð Þeiotdt ð44Þ

¼ s0

Z þ1

�1
y tð Þe io� 1

tsð Þtdt ð45Þ

For sufficiently small o, the details of the rising part of s(t) characterized by
y(t) becomes unimportant, thus we replace y(t) with the step function Y(t)
and obtain

ŝ oð Þ ¼ s0

Z þ1

0
e io� 1

tsð Þtdt ð46Þ

¼ � s0
io� 1

ts

ð47Þ

The Fourier transform of the electric field is just a constant

Ê oð Þ ¼ E0t0 ð48Þ
Thus, the electro-spin susceptibility

k oð Þ / 1
io� 1

ts

ð49Þ

and the spin relaxation time can be extracted as

ts ¼ � i
1
k
dk oð Þ
do

����
o¼0

ð50Þ

¼ � 1
2
w00 0ð Þ
k 0ð Þ ð51Þ

It is necessary to point out that the spin relaxation process can be thought as an
eigen mode with a complex frequency o* on the lower half plane. o* is a pole of
the response function w(o*)¼N. The spin relaxation time is determined by the
imaginary part of the pole closest to the real axis

ts ¼ � 1
Im o	ð Þ ð52Þ

The equation 51 is based on the low-frequency expansion of w(o), which may not
give the exact pole position, and ref. 10 has shown that for a perfect Dirac-cone
dispersion, the spin relaxation time found by the exact pole is twice as the value
found by low frequency expansion. Nevertheless, apart from an order 1 factor,
low-frequency expansion should give a reasonable estimate of the true spin
relaxation time.
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