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Removal of the mechanoprotective influence of
the cytoskeleton reveals PIEZO1 is gated by bilayer
tension
Charles D. Cox1,*, Chilman Bae2,*, Lynn Ziegler2, Silas Hartley2, Vesna Nikolova-Krstevski1, Paul R. Rohde1,

Chai-Ann Ng1,3, Frederick Sachs2,4, Philip A. Gottlieb2,4,** & Boris Martinac1,3,**

Mechanosensitive ion channels are force-transducing enzymes that couple mechanical

stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is

challenging because the stimulus seen by the channel reflects forces shared between

the membrane, cytoskeleton and extracellular matrix. Here we examine whether the

mechanosensitive channel PIEZO1 is activated by force-transmission through the bilayer.

To achieve this, we generate HEK293 cell membrane blebs largely free of cytoskeleton. Using

the bacterial channel MscL, we calibrate the bilayer tension demonstrating that activation of

MscL in blebs is identical to that in reconstituted bilayers. Utilizing a novel PIEZO1–GFP

fusion, we then show PIEZO1 is activated by bilayer tension in bleb membranes, gating at

lower pressures indicative of removal of the cortical cytoskeleton and the mechanoprotection

it provides. Thus, PIEZO1 channels must sense force directly transmitted through the bilayer.
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P
IEZO channels are a recently cloned class of eukaryotic
mechanosensitive channels identified initially in a murine
neuroblastoma cell line (neuro-2a cells)1,2. The two

subtypes, PIEZO1 and PIEZO2, are currently the subject of
intense research and have been shown to be involved in
numerous physiological and pathophysiological processes.
PIEZO2 has been linked to light touch via expression in Merkel
cells in the skin3,4. PIEZO1 has been linked to the maintenance of
cell volume in erythrocytes and its dysfunction has been linked
to specific hereditary anemias (for example, xerocytosis)5–7.
In addition, it plays a role in vascular development, vascular
physiology and cell differentiation8–10.

Identifying force transduction mechanisms in mechanosensi-
tive channels has been difficult owing to the complex environ-
ment of a cell membrane patch and partly owing to the multiple
pathways leading to mechanosensitive channel activation11–15.
For example, mechanosensitive channels might be gated (i)
directly by bilayer tension as seen with the MscS and MscL
bacterial channel families as well as the two-pore domain Kþ

channels TREK-1 and TRAAK16,17 (This is referred to as the
‘Force-from-lipids’ concept18,19), or (ii) by tethering to the
cytoskeleton and/or the extracellular matrix20–22. It is important
to note that even if a channel is gated directly by bilayer tension,
the tension in the bilayer can be modified by cytoskeletal proteins
and linkages to the extracellular matrix. Thus the sensitivity of a
channel to the mean stress in the cortex can be modified by
alterations in an array of scaffold proteins23. One way to
probe the role of the cytoskeleton in the activation of a
mechanosensitive channel is to use cytoskeletal deficient
membrane ‘blebs’.

Blebs are rounded protrusions of the bilayer where connections
between the cytoskeleton and the bilayer are largely broken24–26.
They are found in numerous processes including cytokinesis, cell
motility and programmed cell death25,27,28. The blebbing process
itself is dynamic and tightly regulated by numerous factors. In a
physiological setting, the lifetime of a bleb ranges from tens of
seconds to minutes25,26. Their formation may be induced by
numerous stimuli including changes in external osmolarity. Bleb
formation usually starts with a breakdown of cortical f-actin
(Fig. 1a)25,29. Subsequent bleb growth is modulated by
hydrostatic pressure and actomyosin contractility. During the
expansion phase, the bleb membrane is still amenable to
electrophysiological study30–33. The challenge for electro-
physiology is to maintain the decoupling of the cortical
cytoskeleton long enough to measure channel activity since the
cytoskeleton can be rebuilt26. Using this research paradigm,
we asked whether the PIEZO1 channel is gated by bilayer
tension.

We first generated blebs deficient in f-actin and b-tubulin long
enough for electrophysiological recording. We then characterized
the mechanical environment of the blebbed membranes using as
a probe MscL, a mechanosensitive channel gated directly by
bilayer tension34. The pipette suction required to gate MscL in
blebs was three times less than in cell-attached patches, reflecting
the fact that much of the cortical tension is supported by the
cytoskeleton23. Interestingly, the gating of MscL in blebs was
almost identical to that observed in liposomes. To apply the same
experimental paradigm to PIEZO1 channels, we created a green
fluorescent protein (GFP) fusion construct of PIEZO1 (with the
fluorophore inserted in the centre of the protein at position 1591),
and showed that not only do these channels behave like wild-type
(WT) PIEZO1 channels but they are present in the membrane
blebs and can be activated by applied negative pressure to the
patch pipette. Like MscL, PIEZO1 channels in blebs were more
sensitive to applied tension than in cell-attached patches. Thus
PIEZO1 appears to sense tension in the bilayer and is gated

according to the ‘‘force-from lipids’’ principle, an evolutionarily
conserved gating mechanism.

Results
Blebbing HEK293 cells. We first explored the best way to
make stable blebs30,31,33. We focused on three solutions:
(1) Hypoosmotic sodium gluconate solution (B140mOsm),
(2) Hyperosmotic sodium gluconate (B440mOsm), and (3)
KCl Ca2þ free solution35. The results were summarized by the
number of cells that blebbed at various time points up to 12 h
(Fig. 1b–e). The membrane integrity of cells after blebbing was
monitored using a trypan blue assay. While the KCl Ca2þ free
solution generated blebs, a high percentage of cells (450%)
stained with trypan blue after B4 h. The most effective solution
was hypoosmotic sodium gluconate with 460% cells exhibiting
at least one bleb after 6 h. Furthermore, this blebbing seemed to
be dependent on the activity of myosin II based on the fact that
blebbistatin greatly reduced the number of blebs (Fig. 1e).

Cytoskeletal deficiency in HEK293 membrane blebs. Next we
investigated whether the resulting blebs were deficient in cortical
cytoskeleton. We assayed f-actin using an Alexa Fluor 568
phalloidin conjugate. We also visualized three GFP containing
constructs expressed in HEK293 cells: a pIRES2–EGFP PIEZO1
where GFP is expressed separately from the PIEZO1 channel, and
two fusion proteins, one of PIEZO1 and one of MscL (Fig. 2a and
Supplementary Fig. 1). All the images show large rounded
protrusions that grew up to 15 mm in diameter. It was simple to
identify the GFP fluorescence of the fusion proteins at the
membrane boundary. Figure 2b shows blebs from cells expressing
pIRES2–EGFP PIEZO1 where free GFP was present in the
cytoplasm and the cell was also stained with phalloidin. The
arrows show blebs with GFP fluorescence but f-actin is not visible
(Fig. 2b,c). In many cases, the blebs detached from the membrane
surface and resembled liposomes as previously observed with
Xenopus oocytes33. Using a b-tubulin-GFP, we showed that
b-tubulin is also absent (Supplementary Fig. 2)36.

Blebs present a functionally different membrane environment.
To assess whether the blebs had a different mechanical
environment for the channel than a cell-attached patch, we used
the well-characterized prokaryotic mechanosensitive channel
MscL. This channel has been extensively studied and is known to
gate in response to bilayer tension34. We generated a carboxy
(C)-terminal MscL fusion protein and characterized its
electrophysiological properties and found that in cell-attached
patches it activated with a pressure threshold of 144±5mmHg
(n¼ 12; ±s.e.m.; Fig. 3). The pressure threshold is defined as the
pressure at which the first channel current appears. The threshold
was higher in cell-attached than in inside-out patches where the
cytoskeleton is more disrupted (120±8mmHg; n¼ 17; Fig. 3a,c).
The pressure threshold was also 30±6% (n¼ 12) lower in excised
patches where cell-attached activity as a reference was available
before excision. The average number of channels per patch in
excised patches was 13±3 (n¼ 17). The pressure that gated the
MscL–cGFP fusion protein was higher than reported for MscL
in HEK cells (B90mmHg)37. This is likely due to modulation by
the fusion of GFP to the C-terminal since the same effect was
observed in bacterial spheroplasts38. In blebbed membranes,
MscL activated at 56±5mmHg (n¼ 7), close to the values
reported for gating in liposomes39 (Fig. 3b,c). Thus, the blebbed
membrane is a different mechanical environment than the cell
cortex and is more similar to liposomes rather than cell
membranes. This emphasizes the mechanical influence of the
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cytoskeleton on plasma membrane stress and reaffirms the
functional presence of the cytoskeleton in excised patches13,23,40.

We further probed the environment using the more-sensitive
MscL mutant, MscL–G22S–cGFP (Fig. 4) where a hydrophilic
residue in the hydrophobic pore causes a reduction in the energy
required for gating (Fig. 4a,b)41. This channel showed a similar
reduction in the pressure threshold for activation in the different
membrane environments (Fig. 4b). The G22S mutant enabled
us to activate multichannel currents in the cell-attached
configuration without rupturing the patch (Fig. 4b–i).
Interestingly, the MscL–GFP fusion constructs were not only
confined to the plasma membrane but were also present in the
membranes of organelles (Fig. 4e).

We measured the gating curve in three patch configurations
(Fig. 4c) and found a consistent leftward shift indicative of
increased tension in the bilayer of blebbed membranes for a given
amount of pipette suction. A similar shift was observed with ramp
pressure protocols (Fig. 4d,f,g). Ramp protocols allow more time
for a redistribution of force than a pulse and this produced a

larger shift in the P1/2 for MscL–G22S–cGFP since stress in the
cytoskeleton had more time to relax (Fig. 4h,i). This is depicted
diagrammatically in Fig. 4c.

We further probed how mechanoprotection by the cyto-
skeleton affected the activity of MscL–G22S–cGFP by applying
cytochalasin D (10 mM) and colchicine (10 mM) to HEK293 cells.
In cells pre-treated with these cytoskeletal-disrupting agents, the
pressure threshold was reduced in cell-attached and excised
patches (Supplementary Fig. 3). As expected, the leftward shift
(lower stress) in the gating curve elicited by excision was lost.
Thus membranes treated with these compounds behave more like
membrane blebs.

PIEZO1–1591–GFP fusion protein behaves as WT. After
characterizing MscL in blebbed membranes, we repeated the
experiments using a fluorescently labelled PIEZO1 fusion con-
struct. The necessity for a fluorescent construct in this situation
stems from the fact that some proteins can be excluded from
blebbing membranes42. With GFP at either the amino (N)- or
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Figure 1 | Overview of membrane bleb formation and the efficiency of blebbing solutions on HEK293 cells including the effect on cell viability.

(a) Formation of membrane blebs consists of three phases: initiation, expansion and retraction. Initiation of blebs can be instigated by a variety of stimuli,

and certain cell lines continually bleb (for example, M12 cell line68). The initiation phase usually involves a focal weakening or rupture of the cortical

cytoskeleton and bleb expansion continues largely devoid of cortical f-actin driven by hydrostatic pressure69 and actomyosin contractility. Once

polymerization of f-actin begins at the bleb membrane, expansion is halted. In the physiological setting, Rho-ROCK signalling then drives bleb retraction

again via actomyosin contractility. Illustration of the number of cells blebbing and the corresponding % cells stained with trypan blue in response to

treatment with (b) a hypoosmotic NaGluconate solution (B140mOsm), (c) a hyperosmotic NaGluconate solution (B440mOsm) and (d) a Ca2þ free

KCl-based solution (first described for use in myocytes35,70). (e) Illustration of the dependence of blebbing on the activity of myosin II with almost

complete abolition of bleb formation in the presence of 2.5mM blebbistatin (data points represent mean±s.e.m.; n¼4 with each replicate including

4250 cells).
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C-terminal of PIEZO1, we found that in the cell-attached
configuration, the channel kinetics showed delayed inactivation
relative to controls. In addition, the channel number per patch for
the N–GFP fusion was much lower than WT, despite the presence
of comparable amounts of protein. This may be a result of
abrogated trafficking (Fig. 5a–c).

We then introduced mCherry or GFP into an internal site in an
effort to maintain activity. We tested five internal sites that are
putative loop structures (Fig. 5a,b). Surprisingly when we
introduced mCherry to position 1591 (called PIEZO1–1591–
mCherry), the kinetics were similar to the WT channel (Fig. 5b)
with an inactivation time constant of B40ms in cell-attached

mode. The other mutants displayed abnormal activity, for
example mCherry inserted at position 1851 provided a response
similar to that observed for N- or C-terminal modification as it
did not inactivate and had small currents (n¼ 4, Fig. 5b). Three
mutants (at positions 160, 724 and 855) produced no current
(n¼ 4). We confirmed that three of these constructs (N-terminal,
C-terminal and 1591 insertion) expressed full-length protein
by probing with a GFP antibody (Fig. 5c). The response of
PIEZO1–1591–mCherry using whole-cell recording is shown in
Fig. 6, and the response was similar to the WT channel with a
reversal potential near 0mV and robust mechanically induced
currents.

The PIEZO1–1591–GFP construct also behaved similarly to
wild-type channels including a reduction in unitary conductance
with increasing external Ca2þ and voltage-dependent inactiva-
tion (Fig. 7a–d)5,43,44. The kinetics of inactivation gave time
constants similar to those previously reported for whole-cell
mode (DVpatch¼ � 55mV: t¼ 55±11ms; n¼ 6). The pressure
sensitivity in cell-attached patches gave a P1/2 of 44±2mmHg
(n¼ 6), almost identical to the WT PIEZO1 channel P1/2 of
45±3mmHg (n¼ 5). The slope sensitivity (the slope of the Popen
curve versus pressure at the midpoint, 1/a) was also similar to
the WT (0.10±0.02mmHg� 1 and PIEZO1–1591–GFP fusion;
0.15±0.04mmHg� 1). The channel could also be gated by
positive pressure in the cell-attached configuration as seen
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for other mechanosensitive channels gated by membrane
tension17,45,46 (Supplementary Fig. 4). In the following
experiments, we used channels with the non-perturbing
insertions of mCherry or GFP.

Recently the cryo-EM structure of murine PIEZO1 was solved
and shown to be a trimer and along with biochemical data it

provides structural clues to the functional effects that we saw
upon fluorophore insertion (Fig. 5)47,48. For example, positions
724 and 855 where insertions give rise to non-functional channels
appear to be in an extracellular region termed the ‘blades’, which
have been suggested to be important in the sensing of mechanical
stimuli. Both biochemical data and cryo-EM data suggest that a
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cytoskeletal involvement from cell-attached to bleb-attached configuration with a corresponding reduction in the ability of the cytoskeleton to redistribute

the applied force. (d) Activity of G22S–MscL–cGFP in the three configurations in response to either a ramp (350ms to peak) or a square wave pressure

pulse. A leftward shift in the Boltzmann distribution is obvious, not only between configurations but also between ramps and pulses, both applied via a

high-speed pressure servo. (e) Confocal image of MscL–G22S–cGFP expressed in HEK293 cells. The channel is not confined to the plasma membrane and

seems to be also incorporated in many organelle membranes (scale bar, 10mm). (f) Representative trace showing G22S–MscL–cGFP activity in response to
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fluorophore inserted at position 1591, is likely to be intracellular
and arranged close to the periphery of each ‘wing’. This gives a
plausible reason as to why such large insertions can result in
channel activity almost indistinguishable from WT.

Visualizing the fluorescent PIEZO1 constructs in HEK293 cells.
With PIEZO1–1591–mCherry (250 ng) and TREK-1–GFP
(50 ng) co-transfected into HEK-293 cells, images made with
Structured Illumination Microscopy (SIM-API) (Supplementary
Fig. 5) show that the two mechanical channels are in separate
domains of differing sizes. In some regions of the cell, TREK-1
appears in bead-like chains suggesting that they are organized

along cytoskeletal fibres. The association of TREK-1 to the
underlying actin cytoskeleton has been noted previously46.

PIEZO1 in bleb membranes. We activated PIEZO1–1591–GFP
in bleb-attached patches (Fig. 8a) and quantitative analysis
showed that the basal activity was higher than that in cell-
attached patches indicative of pretension resulting from gigaseal
formation15. While ‘gating at rest’ is often encountered in cell-
attached patches, it is not as pronounced as in bleb-attached
patches (Fig. 8a–c). The adhesion energy of membranes to the
glass pipette creates baseline tension and this tension background
is common to all patches13. As seen with MscL, channel
activation in blebs showed a leftward shift in the gating curve
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(P1/2¼ 33±3mmHg, n¼ 4) relative to cell-attached patches. The
slope sensitivity (0.15±0.04mmHg� 1) was the same as the WT
suggesting the closed–open conformational change was the same
(0.18±0.05mmHg1; Fig. 8d).

To further compound the lack of cortical cytoskeleton in the
blebbed membranes, we pre-treated cells with cytochalasin D
(10 mM, n¼ 4) and colchicine (10 mM, n¼ 5) to see whether the
activity of PIEZO1–1591–GFP was modified (Fig. 8e). Treatment
with neither agent modified the gating curve implying that bleb
formation disrupts most of the structural cytoskeleton (Fig. 8f).
Consistent again with MscL, and as further evidence of
mechanoprotection in the cell-attached patches co-treatment of
cell-attached patches with both cytochalasin D (10 mM)
and colchicine (10 mM) reduced the activation pressures for
PIEZO1–1591–GFP (Fig. 8f).

Estimating the tension sensitivity of gating PIEZO1. Thus far,
we have shown that PIEZO1 can be gated in bleb-attached
patches in the absence of the cytoskeleton from which we can
strongly suggest that the channel is gated by bilayer tension.
The next question is what is the absolute tension sensitivity of

PIEZO1? We co-transfected MscL–G22S–cGFP and PIEZO1 and
measured the P1/2 for gating (P1/2 is the pressure at which
Popen¼ 1/2 of saturation). The ratio of P1/2 was B0.4, that is, the
P1/2 of WT PIEZO1 was 40% of the P1/2 for MscL–G22S–cGFP in
cell-attached patches (Supplementary Fig. 6). We examined the
tension required to gate MscL–G22S–cGFP in excised inside-out
patches that are easily imaged using confocal microscopy. We
activated MscL–G22S–cGFP with 2 s pulses of negative pressure
of increasing magnitude and monitored the corresponding patch
deformation (Fig. 9a,b) allowing us to use Laplace’s law to
determine mean tension in the patch dome13,23. Under these
conditions, the channels began to gate at B8.5–10mNm� 1 with
a T1/2 (tension where Po¼ 0.5) of 11.3±0.6mNm� 1 (n¼ 3,
Fig. 9c). This corresponds to a free energy of gating,
DE¼ 40±4 kT (n¼ 3, the energy required to open the channels
with no applied tension) which corresponds to an in-plane area
change (DA) of 15±2 nm2. This large expansion is characteristic
of mechanosensitive channels. From the co-expression data, we
estimate that the tension at P1/2 is B4.5mNm� 1 for PIEZO1.

To validate this estimate, we expressed PIEZO1 channels in
HEK293 cells with a bicistronic plasmid also expressing GFP to
sharpen the cell boundaries (Fig. 9c–e). In the cell-attached
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configuration, T1/2 of PIEZO1 was 5.1±0.2mNm� 1 (n¼ 3,
Fig. 9c–e), and DE¼ 9.7±1.5 kT (n¼ 3) with DA¼ 8±1 nm2.

Discussion
Our experimental strategy of generating membrane blebs has
followed the study of mechanosensitive channels by Zhang
et al.33, using Xenopus oocytes30,31. The blebs are clearly deficient
in cytoskeletal components including f-actin and b-tubulin25,26.
As an internal calibrator of tension, we used MscL that has been
calibrated in liposomes. The pressure sensitivity in bleb

membranes was threefold less than cell-attached patches and is
close to that seen in liposomes39. This demonstrates the
protective effect of the cytoskeleton on membrane-embedded
proteins, that is, ‘mechanoprotection’ and emphasizes that any
intervention that alters cytoskeletal structure is likely to affect
channel gating12,13,49,50. MscL channels in excised inside-out
patches from cells required more pressure (2.5 times the pressure)
to gate than in blebs. Excision interferes with, but does not
completely disrupt tension sharing by the cytoskeleton51–53. This
is supported by pretreatment with colchicine and cytochalasin D,
which also reduced the force required to gate MscL in both
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cell-attached and excised configurations. The imaging of
fluorescent PIEZO1 and TREK-1 showed that the two channel
types are segregated to separate domains. A critical consequence
is that the tension within each domain may be different since the
line tension of the domains requires that the internal tension is
different from external tension54. An interesting feature
of the TREK-1 distribution was an apparent alignment of
some channels to underlying linear cytoskeletal elements. This
interaction is supported by the observation that a non-conducting
point mutation in TREK-1 has a dramatic effect on the
cytoskeletal reorganization46. Although these data do not
unequivocally support the idea that PIEZO1 resides in a
‘cytoskeleton free’ domain, they do illustrate that PIEZO1
resides in a different cellular domain to TREK-1. This is
interesting and fits with the proposed functional crosstalk
between these two types of channels17. However, ultimately
TREK-1 as well as the related protein TRAAK, sense force
transmitted directly through the lipid bilayer despite their
previously affirmed association with the cytoskeleton16,17.
If PIEZO1 channels were gated by bilayer tension, like TREK-1,
TRAAK16,17, MscL and MscS-like channels55, we would expect to
see a similar trend in its activity when compared with MscL in
bleb-attached patches, and this is what is found. PIEZO1 can be
activated in bleb membranes with less applied pressure than in
cells. Furthermore, this is unaffected by interfering with either
actin polymerization (CytoD) or microtubule polymerization
(colchicine) providing further support for an absence of
cytoskeletal linkages in blebbed membranes. However, if
PIEZO1 is gated by bilayer tension, an obvious question that
arises is: ‘does purified PIEZO1 protein exhibit mechanosensitive
gating when reconstituted?’2. The answer thus far seems to be no
and there are a number of possible explanations for this. The data
from planar bilayers do not exhibit inactivation kinetics2. This
could arise because the data actually came from occasional
channels returning from the inactivated (tension insensitive)
state since the resting tension in bilayers is on the order of
4–6mNm� 1. Alternatively, as others have reported, we saw
rapid rundown of PIEZO1 channel currents in the excised inside-
out configuration, and recent work has shown that this rundown
is correlated with a loss of phosphoinositides, in particular PIP2
(ref. 56). The lack of PIP2 in reconstituted bilayers may explain
the lack of response to applied membrane tension documented in
this environment2. The fact that PIEZO1 channels can be
activated in blebs virtually eliminates the possibility that
activation requires binding to the cytoskeleton and biochemical
data have shown no specific association of PIEZO1 with other
proteins2. Future work should aim to address the question as to
why does purified PIEZO protein not exhibit mechanosensitive
gating when reconstituted; answering such a central question will
no doubt uncover important functional information.

It is important to note that our work does not preclude
modulation by structural proteins of the cytoskeleton or
extracellular matrix. For example, PIEZO1 is sensitized by the
expression of STOML3, a cytoskeleton-associated protein57, and
this may well alter the force distribution to the bilayer49. In fact
we have already shown that PIEZO1 currents elicited by cell
indentation are markedly reduced by pre-treatment with
cytochalasin D. This, however, is a result of force transmission
in this configuration and not a direct link to the channel as when
we pre-stressed the bilayer with hypo-osmotic shock in the
presence of cytochalasin D, the currents were boosted43.

Here we have provided the first direct assessment of the
tension sensitivity of PIEZO1. The first method utilized the
gating of MscL–G22S–cGFP channels in inside-out patches
(T1/2¼ 11.3±0.6mNm� 1; n¼ 3). We then used this value to
estimate the tension required to gate PIEZO1 channels from the

pressures required to gate PIEZO1 when co-expressed with
MscL–G22S–cGFP. This gives a T1/2 of B4.5mNm� 1. We
confirmed this by imaging the patch geometry and estimated
T1/2¼ 5.1±0.2mNm� 1 (n¼ 3). Applying Laplace’s law to
heterogeneous three-dimensional structures is a simplification
of the complex material properties of a cell13,58, but it does
provide a useful upper limit of the magnitude of the forces
required to gate the channel. Furthermore, an inherent
characteristic of mechanosensitive channels is that they undergo
large in-plane area expansion (DA) during gating allowing the
tension field to do work on the channel. From the tension and the
free energy difference between the closed and open states, we
estimated DAB15 nm2 for MscL–G22S–cGFP fitting well with
previous estimates59,60. PIEZO1 also appears to undergo a large
in-plane expansion of B8 nm2 (ref. 5). These calculations assume
that the free energy of gating is driven purely by a change of in-
plane area and that may not be completely accurate61.

The quantification of PIEZO1 gating may be used as an
internal calibrator of how efficiently a stimulus can reach the
channel. Our data also emphasize that drug screens of PIEZO
channels are predicted to be sensitive to cytoskeletal modulation
and lipid modulation that can change the distribution of stresses
between the bilayer, the cytoskeleton and the extracellular matrix.
Collectively, these results illustrate the utility of prokaryotic
mechanosensitive channels as models and tools for studying
mechanosensory transduction, and the wide applicability of basic
biophysical principles in the gating of mechanosensitive channels
irrespective of their evolutionary provenance.

Methods
PIEZO1 and MscL GFP fusion constructs. Construction of C- and N-terminally
labelled PIEZO1. Two vectors, pNGFP-EU and pCGFP-EU (gift of Eric Gouaux),
were used to introduce an EGFP-fusion label at either the N- or C-terminal of
PIEZO1, respectively. For pNGFP-EU, PIEZO1 was inserted between the HindIII
and BamHI sites. To achieve this, we amplified the gene with a forward primer
having a HindIII restriction site and a reverse primer having a BamHI site with
Prime star GXL DNA polymerase (Clontech/Takara). The DNA was purified by
ZymoResearch Clean Kit according to manufacturer’s specifications. The vector
pNGFP-EU was treated with BamHI and HindIII restriction endonuclease
and purified by ZymoResearch Clean Kit. PIEZO1 DNA (100 ng) and treated
vector (30 ng) were assembled by InFusion (Clontech/Takara). Stellar cells were
transformed after 15min. Colonies were analysed by restriction analysis and
then by sequencing.

A similar protocol was used to covalently attach EGFP to the C-terminal of
PIEZO1. We amplified PIEZO1 with primers carrying HindIII and EcoRI
restriction sites as described above. pCGFP-EU was prepared by treatment with
HindII and EcoRI restriction endonucleases. The vector and PIEZO1 was
assembled by InFusion as described above.

Construction of internally labelled PIEZO1. We inserted the fluorescent protein,
mCherry, into five internal sites at amino acid positions 160, 724, 855, 1591 and
1851. This was achieved by first introducing Age1 and Spe1 sites into DNA
encoding PIEZO1 at the indicated positions using QuikChange II XL Mutagenesis
kit (Agilent).

All clones were analysed by first isolating plasmid DNA using the
ZymoResearch mini prep kit according to the manufacturer’s specification and
restriction endonuclease digestion. To insert DNA coding for mCherry fluorescent
protein into each Age1/Spe1 site, we amplified the DNA for the mCherry protein
with primers that added Age1 (forward) and Spe1 (Reverse) restriction sites at the
ends.

Plasmid and mCherry PCR products were cut with Age1 and Spe1 and
then purified. Ligation of the mCherry DNA and each plasmid (3:1 or 10:1
concentration) was achieved using Quick Ligase, (New England Biolabs). Each
reaction was transformed into Stellar cells with indicated antibiotic for selection.
The plasmid DNA was purified and sequenced.

The expression of EGFP from the pIRES vector was silenced by a frameshift
mutation using Agilent’s QuikChange II XL kit with 100 ng of template DNA and
with an extension time of 21min.

To replace the mCherry protein with the GFP fluorescent protein at position
1591, we used the above primers and amplified the DNA from the pIRES-EGFP
vectors. The Plasmid PIEZO1–1591–mCherry was cut with Spe1 and Age1 to
remove the DNA that expresses the mCherry protein and purified by gel
electrophoresis. The amplified DNA for GFP was treated with Spe1 and Age1 and
purified. The final products were ligated and transformed (3–4 ml) into Stellar cells
and the plasmid DNA isolated and sequenced.
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MscL with C-terminal-fused EGFP constructs were cloned by PCR, using
PfuUltra (Agilent), for insertion into pTRE-Tight (Clontech) EcoRI and HindIII
restriction sites. The MscL forward primer contained the following Kozak sequence
50-gccAccATGGcg-30 after the EcoRI site, which consequently inserted an alanine
following the MscL methionine 1 ATG start site. An EGFP with an N-terminal
thrombin cleavage site construct contained within the laboratory was used as the
PCR template for EGFP. The reverse MscL primer, and the forward thrombin-site
EGFP primer both contained an in-frame NheI restriction site that was utilized to
ligate MscL to EGFP while both inserts were ligated together into pTRE-Tight.
MscL mutants were cloned by the same method using a previously made mutant
(MscL-G22S) contained within the laboratory as MscL PCR template. The final
pTRE-Tight MscL–T–eGFP construct insertions were sequence verified. Plasmid
maxipreps were prepared using a PureLink kit (Life Technologies), with a
NucleoBond Finalizer (Macherey–Nagel) using 1ml TE for elution.

Transient transfection. HEK293 cells were transiently transfected with
250–650 ng of cDNA using Lipofectamine 3000 in OptiMEM. Electrophysiological
analysis was undertaken 24–72 h post transfection.

Bleb formation. Blebs of HEK293 cells were formed using a modified Ca2þ free
KCl solution (in mM: 140 KCl, 10 EGTA, 1 MgCl2, 15 HEPES pH 7.2 adjusted
with KOH)35, hyperosmotic sodium gluconate solution (B440mOsm) or a
hypo-osmotic sodium gluconate solution (B140mOsm). Sodium gluconate
solutions were diluted with ddH2O from stock containing in mM: 350 sodium
gluconate, 2 CaCl2, 3 KCl, 15 glucose and 20 HEPES pH 7.2, adjusted with NaOH.
Blebs took between 45min and 2 h to appear depending on the solution used. For
electrophysiological recordings, cells were plated out onto 35mm circular dishes
(FluoroDish, World Precision Instruments, Inc) coated with poly-L-lysine and were
treated for 3 h using a hypo-osmotic solution to induce blebbing. After this, blebs
were directly patched using the recording solutions mentioned for up to 45min.
No bleb retraction was seen during this period of time.

Liposome reconstitution. MscL proteoliposomes were prepared using the
dehydration/rehydration method. This methodology is a modified procedure
from39,45,62. WT MscL for reconstitution was purified using immobilized metal
affinity chromatography63. MscL-G22S protein for reconstitution was expressed by
cell-free expression using an automated system (Exiprogen, Bioneer, Daejeon,
Korea) that also performed the protein purification steps after expression. Ten
micrograms of expression plasmid was added to the
kit used (EC-1, Bioneer), with a previously used detergent combination of 6mM
Brij-58 detergent (Sigma) added to the expression well, and 1% n-Octyl-b-D-
glucopyranoside (OG) (Anatrace) added to the binding/wash buffer wells,
as well as the elution buffer well64. Protein concentration was estimated by
SDS–polyacrylamide gel electrophoresis (SDS–PAGE) with staining using
SimplyBlue SafeStain (Life Technologies).

Patch-clamp recording. Transiently transfected HEK293 cells were plated on
coverslips for patch-clamp analysis at a density of B3,000 cells per coverslip.
Coverslips were placed in a recording chamber containing 145mM NaCl,
3mM KCl, 1mM MgCl2 and 10mM HEPES (pH 7.2) adjusted using NaOH. In
cell-attached and bleb-attached recordings, the pipette solution contained either
145mM CsCl or 145mM NaCl with 10mM HEPES (pH 7.2) adjusted using
the respective hydroxide. EGTA was added to control levels of free pipette
(extracellular) Ca2þ using an available online EGTA calculator—Ca-EGTA
Calculator TS v1.3—Maxchelator. Negative pressure was applied to patch pipettes
using a High Speed Pressure Clamp-1 (ALA Scientific Instruments) or recorded in
millimeters of mercury (mmHg) using a piezoelectric pressure transducer (WPI,
Sarasota, FL, USA). Borosilicate glass pipettes (Sigma, St Louis, MO, USA) were
pulled using a vertical pipette puller (PP-83, Narashige, Japan) to produce
electrodes with a resistance of 3.5–5.0MO and coated with Sylgard to within
B100mm of the tip. Single-channel PIEZO1 currents were amplified using an
AxoPatch 200B amplifier (Axon Instruments), and data were acquired at a
sampling rate of 10 kHz with 1–2 kHz filtration and analysed using pCLAMP10
software (Axon Instruments). Boltzmann distribution functions shown in Figs 4, 6
and 9 describe dependence of single MscL and PIEZO1 channel currents and
open probability, respectively, on the negative pressure applied to patch pipettes.
The Boltzmann plots were obtained by fitting open probability PoBI/Imax versus
negative pressure using the expression Po/(1–Po)¼ exp [a(P–P1/2)], where P is the
negative pressure (suction) [mmHg], P1/2 is the suction at which Po¼ 0.5, and
a [mmHg� 1] is the slope of the plot ln [Po/(1–Po)¼ [a(P–P1/2)] reflecting the
channel mechanosensitivity65.

The membrane tension T was estimated using Laplace’s law (T¼ Pr/2) by
measuring the radius of membrane patches r at applied pressures P (For a more
detailed explanation, see supplement of ref. 66).

Whole-cell recording. In whole-cell recording mode, cells were mechanically
stimulated by pressing on the cell with a fire-polished glass pipette (diameter of
2–4 mm) positioned at an angle of 30� with respect to the cover glass5. The probe

was coarsely positioned B20mm above the cell with a MP-285 manipulator (Sutter
Instruments Co.), and from that position, the probe was moved up and down with
a trapezoidal waveform by a piezoelectric stage (P-280.20 XYZ NanoPositioner,
Physik Instrumente). Control of the depth was controlled by LabVIEW software
with 40 nm resolution. The probe velocity was constant at 0.15 mmms� 1 during
transitions, and the stimulus was held constant for 300ms. All currents were
recorded at room temperature. The experiments were performed using an
Axopatch 200B amplifier (Axon Instruments) sampled at 10 kHz and filtered at
1 kHz. Data acquisition and stimulation were all controlled by QUBIO software.

Confocal microscopy. Cells were grown on 35-mm-diameter cell culture dishes
(FluoroDish, World Precision Instruments, Inc) coated with poly-L-lysine
(Sigma, 5 mg cm� 2) and subjected to blebbing solutions identical to those used
for electrophysiological study. Cells were then fixed for 15min using 4%
paraformaldehyde at room temperature. Subsequently, control cells or those
expressing PIEZO1 or MscL GFP fusion proteins, were permeabilized using 0.5%
Triton X-100 (Sigma) for 2 min and stained for 20min at room temperature with
Alexa Fluor 568 conjugated phalloidin (Sigma). Confocal images were made using
an inverted confocal microscope (LSM 700; Carl Zeiss) equipped with a water
immersion long working distance objective (� 63; NA 1.15; Carl Zeiss). Both
488 and 555 nm lasers were used to excite the respective fluorophores (GFP,
Alexa Fluor 568).

SIM microscopy. Plasmids for PIEZO1–1591–mCherry and TREK-1–EGFP were
transfected into HEK293 cells, and allowed to incubate for 24 h. Cells were then
washed twice with phosphate-buffered saline (PBS) and fixed with a 4% solution of
paraformaldehyde in PBS for 30min. After removal of the fixing solution, cells
were washed and mounting media, Prolong Gold (Life Technologies), was applied
to the cells. These were subsequently inverted and sealed on a glass coverslip. Data
were collected by SIM (API, Seattle) with a � 60 objective NA 1.4 oil. Data were
collected (24 z-stack) and reconstructed into a three-dimensional model using
Vaad3D software67.

Western blotting. HEK293 cells were transiently transfected in 24-well plates
using Liposome-based transfection reagent Lipofectamine 3000 (Life Technologies,
Carlsbad, CA, USA) to deliver PIEZO1 cDNA into the cells. Cells were lysed in a
lysis buffer containing 1% NP-40 (Sigma-Aldrich, Castle Hill, NSW, Australia) and
protease inhibitors (Roche, Cromer, NSW, Australia) after 48 h and equal volume
of lysate loaded for SDS–PAGE and western blot analysis. The nitrocellulose
membranes were probed simultaneously with a rabbit polyclonal anti-GFP
antibody at a 1:5,000 dilution (Abcam, Cambridge, UK; Cat no—ab290) and a
mouse monoclonal anti a-actinin antibody at 1:1,000 dilution (Santa Cruz
Biotechnology, Dallas, TX, USA Cat no—sc17829) overnight. Both anti-mouse
IRDye800 and anti-rabbit IRDye680 (Li-Cor Biotechnology, Lincoln, NE, USA) at
a 1:20,000 dilution were incubated with the membrane and the PIEZO1 proteins
were detected using the Li-Cor Odyssey system (Li-Cor Biotechnology). Western
blot images were produced using ImageStudioLite (Li-Cor Biotechnology).
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