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Stepwise B-cell-dependent expansion of T helper
clonotypes diversifies the T-cell response
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Antigen receptor diversity underpins adaptive immunity by providing the ground for clonal

selection of lymphocytes with the appropriate antigen reactivity. Current models attribute

T cell clonal selection during the immune response to T-cell receptor (TCR) affinity for either

foreign or self peptides. Here, we report that clonal selection of CD4þ T cells is also

extrinsically regulated by B cells. In response to viral infection, the antigen-specific

TCR repertoire is progressively diversified by staggered clonotypic expansion, according to

functional avidity, which correlates with self-reactivity. Clonal expansion of lower-avidity

T-cell clonotypes depends on availability of MHC II-expressing B cells, in turn influenced by

B-cell activation. B cells clonotypically diversify the CD4þ T-cell response also to vaccination

or tumour challenge, revealing a common effect.
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A
daptive immunity relies on clonal expansion and reten-
tion of antigen-specific lymphocytes bearing somatically
generated and selected antigen receptors. Selection for

lymphocytes with particular T-cell or B-cell receptors (TCRs and
BCRs, respectively) occurs throughout the different stages of
lymphocyte development, effector response and memory forma-
tion, based on thresholds of affinity for self or foreign antigen1–4.
For example, the strength of TCR signalling is responsible for the
selective advantage of high-affinity clonotypes that commonly
dominate the peak CD4þ T-cell response5–9.

The selective forces driving the dominance of high-affinity
CD4þ T cells during priming may continue to operate during
memory formation. However, the relationship between primary
expansion of a clonotype and memory formation is not always
predictable. Indeed, the potential of distinct TCR clonotypes to
form memory following LCMV infection does not correspond to
the degree of their primary expansion9. Furthermore,
comparison of two CD4þ T clones responding to Listeria
monocytogenes infection revealed inverse behaviour during
primary and secondary responses10, which is linked to avidity
for self rather than foreign antigen, setting intrinsic thresholds
for sensitivity and responsiveness11. The strength of self-
reactivity, reflected in the expression levels of CD5, was also
proposed as a clonotype-specific property directly related to the
strength of TCR signalling in the response of several monoclonal
or polyclonal CD4þ T cells to foreign antigen12. Moreover,
individual CD4þ T cells bearing identical TCRs differ
considerably in their ability to expand and differentiate in
response to L. monocytogenes infection13, highlighting the
influence of stochastic events, not linked to TCR affinity. In
addition, the ratio of high- and low-affinity CD4þ T cells
in response to vaccination is heavily influenced by the
co-administered adjuvant14, the use of peptide instead of
protein antigens15, the nature of the vaccine vector16 or
simply by antigen dose17,18. Despite the potential of
T-cell-extrinsic factors to influence the clonotypic composition
of a T-cell response, their mechanism of action or amplitude are
not yet fully understood.

Here, we used a well-characterized model to study the
clonotypic evolution of the CD4þ T-cell response to retroviral
infection. Inoculation of C57BL/6 (B6) mice with Friend virus
(FV), a retroviral complex of Friend murine leukaemia virus
(F-MLV) and spleen focus-forming virus (SFFV), causes
protracted infection with several weeks of viral replication19,20.
We have previously described a TCRb-transgenic strain, which
generates diverse CD4þ T-cell clonotypes with a range of
functional avidities for the dominant H2-Ab-restricted env122–141
epitope within the surface unit of the F-MLV env gene8,21. Our
results revealed that the CD4þ T-cell clonotypic hierarchy, set
early in the response and determined by TCR avidity, can be
reversed later in infection. This pattern of clonotypic progression
is created by asynchronous expansion of distinct CD4þ T-cell
clonotypes, according to antigen reactivity. Importantly, CD4þ

T-cell clonotypic progression relies on B-cell activation and
antigen presentation. Thus, not only is the B-cell response to
infection helped and clonally diversified by CD4þ T cells, it also
reciprocally helps and clonally diversifies the CD4þ T-cell
response.

Results
Diversity of virus-specific CD4þ T cells increases over time.
To study the clonotypic composition of an antiviral CD4þ T-cell
response, we used infection of wild-type (WT) B6 mice with FV.
To unequivocally identify a cohort of virus-specific CD4þ T cells
over the course of infection, we used an adoptive transfer

system22. Mice received allotypically marked EF4.1 T
CRb-transgenic CD4þ T cells (B10,000 virus-specific cells
engrafted per mouse), at the time of infection. The use of
endogenous TCRa chains in EF4.1 T cells generate a
semi-polyclonal TCR repertoire enriched in clonotypes reactive
with the F-MLV env122–141 epitope21. Importantly, pairing of the
transgenic TCRb chain with TCR Va2 chains (encoded by
Trav14 gene segments) or Va3 chains (encoded by Trav9 gene
segments) creates clonotypes with higher or lower functional
avidity, respectively21,23.

Numbers of virus-specific donor CD4þ T cells exhibited
typical expansion and contraction kinetics (Fig. 1a). As previously
observed8, the peak response was homogeneously dominated by
high-avidity clonotypes, with Va2 clonotypes rising to 475% on
day 7 of infection (Fig. 1b). Notably, however, during progression
of the response, the frequency of Va2 clonotypes declined, on
average, but varied wildly (5–95%) between identically treated
individual hosts (Fig. 1b).

Although, at the population level, Va2 clonotypes display
higher functional avidity than Va3 clonotypes, there exists the
potential for considerable diversity in the semi-polyclonal
repertoire of EF4.1 T cells21,23. To examine whether the
observed changes in clonotypic composition were indeed
caused by differences in TCR avidity between clonotypes,
we measured the frequency of unique TCR clonotypes, by
deep-sequencing the endogenous Tcra chains in virus-specific
EF4.1 CD4þ T cells. Using Tcraþ /� EF4.1 CD4þ T cells, we
first confirmed that replacement of Va2 clonotypes during FV
infection was not owing to potential expression of a second
TCRa chain (Supplementary Fig. 1). Grouping clones into
clonotypes sharing identical amino acid sequences, revealed
that the peak (day 7) virus-specific Va2 response was
overwhelmingly (B90%) dominated by a single clonotype
(indicated by red color; CDR3 sequence CAAITGNTGKLIF)
in all mice (Fig. 1c). This clonotype was the single largest in the
entire virus-specific and non-specific Va2 preimmune repertoire
(Fig. 1c). The frequency of this dominant clonotype remained
high (460%) within virus-specific Va2 cells throughout
infection, although it was slightly reduced in comparison with
its peak, and additional clonotypes were also visible at later time
points (Fig. 1c). In contrast, Va3 cells were considerably more
polyclonal (Fig. 1c). The peak of the virus-specific Va3 response
in all mice examined was also dominated by a single clonotype
(indicated in red color; CDR3 sequence CVLSGDYSNNRLTL),
which however, comprised only B55% of Va3 cells on day 7
and significantly less (between 7 and 46% in individual mice) at
later time points (Fig. 1c). This particular clonotype was rare
(o0.5%) in the preimmune repertoire (Fig. 1c). Notably, the
virus-specific Va3 response was also characterized by two other
groups of clonotypes that exhibited distinct kinetics. The first
group comprised of only two ‘public’ clonotypes (indicated by
green colours; CDR3 sequences CALDNTNTGKLTF and
CALNVGDNSKLIW), which together made B10% of all
virus-specific Va3 cells, a frequency that remained remarkably
stable throughout the course of infection (Fig. 1c). The second
group comprised of several (412) distinct clonotypes (indicated
by blue-purple colours), all sharing the SNNRIFF motif in their
CDR3 sequences, created by the use of the Traj31 segment
(Fig. 1c). The latter group contained clonotypes that were not
always shared between separate mice, but collectively increased
in frequency to 30–50% of the virus-specific Va3 cells by day 49
of infection (Fig. 1c). Thus, the clonotypic diversity of virus-
specific EF4.1 CD4þ T cells increased over time owing to the
decrease in the proportion of initially dominant Va2 clonotypes
in the overall response, and increase in the representation of
Traj31-using clonotypes within the Va3 response.
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Clonotypic behaviour correlates with self-reactivity. Our
previous studies indicated lower functional avidity for viral
antigen in Va3 than in Va2 clonotypes21,23, but were limited to
the bulk Va2 and Va3 populations. To further investigate
differences between unique clonotypes using more accurate
measures of TCR affinity, we used hybridoma cell lines
representing the two major types of behaviour during the
response, ‘red’ Va2 and Traj31-using ‘blue-purple’ Va3
(Fig. 2a). These clones were comparably abundant in the
preimmune repertoire of EF4.1 mice (Fig. 1c, preimmune) and
exemplified the behaviour of other similar clones (Fig. 1c).

The two clones expressed comparable TCR levels (Fig. 2a) and
their stimulation with env peptide in vitro reproduced the
difference in functional avidity between the bulk Va2 and Va3
populations (Fig. 2b). Surprisingly, however, the functional
avidity of these two clones correlated weakly with binding affinity
of the TCR to env pMHC complexes (Fig. 2c). Moreover, precise
measurement of two-dimensional TCR affinity for Ab-env125–135
using a micropipette adhesion frequency assay24,25, revealed only
minor differences in effective TCR affinities between the two
clones (Fig. 2d).

In addition to TCR affinity for antigen, self-reactivity has
recently been shown to strongly influence the sensitivity of
CD4þ T cells to antigenic stimulation11,12. Therefore, we
examined if differences in functional avidity between the

selected Va2 and Va3 clones reflected differences in self-
reactivity. The genes encoding the TCRa chains of these two
clones were used to generate two TCRab doubly transgenic
mouse strains (referred to as EVa2 and EVa3, respectively) also
expressing the same TCRb as the TCRb-transgenic EF4.1 mice.
T-cell development proceeded normally in both EVa2
and EVa3 mice, but was considerably more efficient in the
former (Fig. 2e,f). Indeed, although total thymocyte numbers
were near-normal in both monoclonal TCR-transgenic strains,
the frequency and absolute number CD4 single-positive
thymocytes was significantly higher in EVa2 mice (Fig. 2e,f),
indicating more efficient positive selection. Consistent with this
notion, levels of CD5, which correlate with the strength of
self-reactivity, were significantly higher in EVa2 than in EVa3
post-selection (CD4þCD8�TCRhigh) thymocytes (Fig. 2g). In
comparison with cells from the parental EF4.1 strain, which
expressed normal CD5 levels (Supplementary Fig. 2a), EVa2
and EVa3 thymocytes expressed 63 and 34%, respectively, of
normal CD5 levels. Peripheral CD4þ T-cell numbers, which
also reflect the degree of self-reactivity26, were comparable to
the WT levels in EVa2 mice, but significantly reduced in EVa3
mice (Supplementary Fig. 2b). Mature CD4þ T cells were
homogenously naive (CD44lowCD25� ) in both monoclonal
TCR-transgenic strains and expressed comparable TCR levels
(Supplementary Fig. 2c). CD5 levels were reduced in both EVa2
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Figure 1 | Clonotypic diversity of virus-specific CD4þ T cells increases over the course of FV infection. (a) Absolute numbers and (b) Va composition

of env-reactive donor EF4.1 CD4þ T cells in the spleens of recipient mice after adoptive T-cell transfer and FV infection (n¼ 9–61 mice per time point;

Po0.001 between Va2 frequency on day 7 and any later time point, Mann–Whitney rank sum test). (c) Frequency of various Va2 and Va3 clonotypes in

total EF4.1 CD4þ Tcells from two uninfected donor mice (preimmune; donors 1 and 2) or in env-reactive EF4.1 CD4þ Tcells from the spleens of recipient

mice after adoptive T-cell transfer from the indicated donor and FV infection. Each bar graph represents an individual mouse. Clonotypes with frequencies

o0.5% are not plotted for simplicity. Identical clonotypes within Va2 and Va3 subsets are marked with the same color, with red color indicating the

dominant Va2 and Va3 clonotypes. The scale of the Va2 and Va3 plots are adjusted to the relative ratio of the two subsets at a given time point.
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and EVa3 peripheral T cell in comparison with thymocytes and
with WT T cells (Fig. 2h). This was likely because of the relative
paucity of MHC II-expressing cells in the periphery of these
B-cell-deficient Rag1� /� EVa2 and EVa3 mice. Indeed,
comparison of EVa2 T cells from B-cell-deficient Rag1� /� or
B-cell-sufficient Rag1þ /þ mice revealed a specific role for B
cells in maintaining CD5 levels in peripheral, but not thymic
CD4þ T cells (Supplementary Fig. 2d,e). Nevertheless, CD5
levels remained significantly higher in EVa2 than in EVa3
peripheral T cells (Fig. 2h) and loss of Ly6C expression, which
signifies higher self-reactivity27, marked a higher proportion of

EVa2 than in EVa3 peripheral T cells (Fig. 2i). Phenotypic
differences between monoclonal EVa2 and EVa3 T cells
correlated remarkably well with functional avidity, which was
reflected in their sensitivity to in vitro env peptide stimulation
(Fig. 2j). In contrast, two-dimensional TCR affinity for
Ab-env125–135 differed only by a factor of two between the two
clones (Fig. 2k). Although this difference was statistically
significant, it was too small to account for the disparity in
antigen reactivity. Thus, functional avidity of EVa2 and EVa3
T cells better correlated with self-reactivity than with affinity for
antigen.
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Figure 2 | Development and reactivity with self and foreign antigen of monoclonal EVa2 and EVa3 T cells. (a) CDR3 sequences and TCRb expression
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mice. (f) Absolute number of total thymocytes and frequency and number of CD4 single-positive thymocytes in the same mice as in e. (g) CD5 levels in

post-selection (CD4þCD8�TCRhigh) thymocytes from the same mice as in e. (h) CD5 levels in naive splenic CD4þ Tcells from EVa2 and EVa3 mice.
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experiments. Horizontal dashed lines represent the mean values for control EF4.1 mice. (j) Responsiveness of EVa2 and EVa3 T cells to overnight

env124–138 peptide stimulation. Responses were measured by CD69 upregulation and are plotted as means (±s.e.m., n¼ 3–4). (k) Effective

two-dimensional TCR affinities for Ab-env125–135 of primary T cells measured by the micropipette adhesion frequency assay and normalized by TCR

surface density, and plotted as described in d.
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T-cell clonal composition depends on infection kinetics. In B6
mice, acute FV infection is followed by chronic low-level infec-
tion, which can be ultimately cleared with kinetics that likely
differ most significantly between FV-infected hosts. An effect of
viral load on clonotypic composition was suggested by a strong
correlation between F-MLV DNA copy numbers in the spleens of
FV-infected recipients and frequency of Va2 clonotypes in virus-
specific CD4þ T cells 35 days post infection (Fig. 3a). However,
this positive correlation (Fig. 3a) argued against relative loss of
Va2 clonotypes owing to excessive activation, as suggested by
studies in another TCR-transgenic system10,11. To examine
whether viral load directly determined the clonotypic
composition of the antiviral T-cell response, we infected adult
B6 mice with N-tropic F-MLV (F-MLV-N), which is restricted by

the product of the Fv1b allele and quickly eliminated from these
mice28 (Fig. 3b). In addition, we infected neonatal B6 mice with
B-tropic F-MLV (F-MLV-B), which results in life-long high-level
infection (Fig. 3b) and used them 6–8 weeks later as T-cell hosts.
The magnitude of the EF4.1 CD4þ T-cell response to adult
F-MLV-N or neonatal F-MLV-B infection was proportional to
the degree of viral replication in these two infections (Fig. 3c).
However, the frequency of Va2 clonotypes in virus-specific
donor CD4þ T cells declined quickly and homogeneously
in all recipients transiently infected with F-MLV-N, whereas it
remained very high in all recipients with non-resolving F-MLV-B
infection (Fig. 3c). These results demonstrated that the clonotypic
evolution of the EF4.1 CD4þ T-cell response to retroviral
infection was directly determined by the kinetics of viral
replication and that higher antigen levels promoted, rather than
hindered, clonotypes with higher antigen sensitivity.

B cells mediate clonal replacement in CD4þ T cells. T cells
recognize viral antigens only through APCs. Thus, we reasoned
that the effect of viral antigen availability on the composition
virus-specific CD4þ T cells involved APCs. In addition to acting
as APCs to T cells, B cells mount their own antigen-specific and
non-specific response to viral infection with distinct temporal
kinetics. In response to FV infection, the frequency of germinal
center CD38loGL7hi cells within IgDloCD19þ B cells slowly
increased starting from day 10 post infection and continuing until
the last time point studied (day 35; Fig. 4a,b). Interestingly, the
rise in activated B cells temporally matched the decline in Va2
clonotypes in virus-specific donor CD4þ T cells in FV infection
(Fig. 1b and Fig. 4a). To examine a possible link, we compared
hosts infected with FV with those coinfected with FV and lactate
dehydrogenase-elevating virus (LDV), which has been previously
shown to induce rapid polyclonal B-cell activation and enhance
FV replication29. As expected, FV-LDV coinfection greatly
accelerated the rise in germinal center B cells and induced
higher expression of MHC II on all B cells (Fig. 4a,c).
Importantly, FV-LDV coinfection resulted in significantly faster
decline in the frequency of Va2 clonotypes in virus-specific EF4.1
CD4þ T cells, than FV infection (Fig. 4d), supporting a role for
polyclonally activated B cells.

As coinfection with LDV is likely to affect multiple processes
during the response to FV, we next examined if the accelerated
Va2 clonotype decline required T cell–B cell interaction. To this
end, we used EF4.1 CD4þ T cells deficient in Sh2d1a (encoding
SAP, multiple signalling lymphocyte activation molecule-
associated protein), which is required for prolonged CD4þ

T cell–B cell contacts30. Although SAP deficiency in donor
CD4þ T cells had little effect on their numerical response to FV
infection or FV-LDV coinfection, it completely negated the
accelerated decline of Va2 clonotypes in virus-specific EF4.1
CD4þ T cells by LDV (Fig. 4d).

As T-cell-specific SAP deficiency shortens, but does not abolish
T cell–B cell interaction30, we next used mice deficient in B cells
(Ighm� /� ) as hosts. In the complete absence of B cells, high-
avidity Va2 clonotypes were induced and maintained at high
levels throughout FV infection or FV-LDV coinfection (Fig. 4e).
To dissociate a possible effect of B cells as APCs from other
B-cell-dependent processes in the host (for example, splenic
structure) we reconstituted non-irradiated Ighm� /� hosts with
either MHC II-sufficient or -deficient B cells (Supplementary
Fig. 3). Following FV-LDV coinfection, MHC II-sufficient, but
not -deficient B cells significantly reduced the frequency of high-
avidity Va2 clonotypes, in a dose-dependent manner, without
affecting the total virus-specific donor CD4þ T-cell numbers
(Fig. 4f). Therefore, clonotypic replacement of Va2 virus-specific
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point after T-cell transfer. Each symbol is an individual mouse. The dashed

line denotes the detection limit. (c) Absolute numbers (top) and Va
composition (bottom) of env-reactive donor EF4.1 CD4þ T cells in the

spleens of recipient mice after T-cell adoptive transfer in adult mice either

infected with F-MLV-N at the time of T-cell transfer or with F-MLV-B as

neonates (n¼4–15 mice per time point; Po0.001 between the two types of

host on days 14–35, Mann–Whitney rank sum test). Closed symbols are the

means (±s.e.m.); open symbols are individual mice; the dashed line

represents the frequency of Va2þ cells in preimmune env-reactive EF4.1

CD4þ T cells.
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CD4þ T cells over the course of infection required cognate
T cell–B cell interaction.

CD4þ T-cell clonal replacement affects all Th subsets.
Follicular helper (Tfh) cells rely on B-cell interaction and the
germinal center response for their differentiation and persistence.
Thus, it was theoretically possible that B cells promoted Tfh
differentiation of particular T-cell clonotypes selectively, whose
representation was subsequently proportional to the magnitude of
the germinal center response. To test the requirement for the
physical germinal center structures, we used Tnfrsf1a-deficient
hosts, which show incomplete segregation of T-cell and B-cell
areas in secondary lymphoid organs and are unable to mount a
germinal center response (Fig. 5a,b). In comparison with those in

WT hosts, higher numbers of virus-specific donor CD4þ T cells
were recovered from Tnfrsf1a-deficient hosts throughout the
response (Fig. 5c). Importantly, however, the Va2 and Va3
composition of donor CD4þ T cells was comparable between the
two types of hosts (Fig. 5c), ruling out a requirement for germinal
centres in the clonotypic evolution of virus-specific CD4þ T cells.

To directly examine if replacement of Va2 clonotypes was
owing to preferential differentiation into Tfh cells, we condition-
ally ablated Bcl6 in donor CD4þ T cells, precluding their Tfh
differentiation. EF4.1 CD4þ T cells were isolated from mice
carrying a Cre-conditional Bcl6 (Bcl6c) and a YFP reporter
(Gt(ROSA)26SorYFP) allele and also expressed Cre under the
control of the Tnfrsf4 promoter (Tnfrsf4Cre), thus initiating YFP
expression and Bcl6 deletion only upon T-cell activation31

(Fig. 5d,e). EF4.1 CD4þ T cells with either WT or Bcl6c alleles,
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exhibited typical response kinetics upon transfer into FV-infected
hosts (Fig. 5d). However, the frequency of YFPþ cells in
virus-specific donor CD4þ T cells was significantly lower in
EF4.1 CD4þ T cells with the Bcl6c than the WT allele (Fig. 5e),
indicating that Bcl6 is required for the persistence of at least some
virus-specific CD4þ T cells. Nevertheless, the clonotypic
composition of YFPþ (Bcl6-deleted) virus-specific donor
CD4þ T cells was comparable with that of the YFP� fraction
(Fig. 5f). Thus, preventing Bcl6-dependent Tfh differentiation did
not prevent the switch from Va2 to Va3 clonotypes (P¼ 0.016
Va2 frequency in YFPþ cells between days 7 and 35,
Mann–Whitney rank sum test).

These findings argued against the possibility that clonotypic
replacement of Va2 clonotypes with Traj31-using Va3 clonotypes
over the course of FV infection was owing to selective differentia-
tion into the Tfh subset, whose long-term stability may differ from
that of other Th subsets. This led us to consider an alternative
hypothesis: instead of all virus-specific clonotypes engaging
synchronously and Traj31-using Va3 clonotypes surviving longer
than other clonotypes, it was possible that Traj31-using Va3
clonotypes were simply recruited with delayed kinetics.

Asynchronous expansion of high- and low-avidity clonotypes.
The extensive variability in the frequency of Va3 clonotypes
between separate hosts during FV infection (Fig. 1b), and the
‘private’ nature of distinct Traj31-using Va3 clonotypes
expanding in different hosts (Fig. 1c) hindered kinetic analyses of
the deep-sequencing data. To establish conclusively the kinetics of

recruitment and expansion of a Traj31-using Va3 clonotype in
response to FV infection, we transferred cohorts of allotypically
marked monoclonal EVa3 T cells into WT hosts that were
infected with FV or coinfected with FV and LDV, either 10 days
previously or on the day of T-cell transfer (Fig. 6a,b). EVa3
T cells transferred at the time of FV infection or FV/LDV
coinfection expanded minimally 7 days later and became unde-
tectable by day 21 post transfer (Fig. 6a,b). Also, EVa3 T cells
transferred on day 10 of FV infection expanded modestly 7 days
after transfer and contracted to low numbers thereafter
(Fig. 6a,b). This pattern contrasted with strong expansion
(4100-fold) of EVa3 T cells 7 days after transfer into hosts
coinfected with FV and LDV 10 days previously (Fig. 6a,b), when
B-cell activation had peaked (Fig. 4a). For comparison, EF4.1T
cells were also transferred into hosts that were coinfected with FV
and LDV, either 10 days previously or on the day of T-cell
transfer, and maximal expansion of both Va2 and Va3
clonotypes was already observed the first 7 days of infection
(Fig. 6c). These results demonstrated that EVa3 T cells were
recruited later than higher-avidity virus-specific clonotypes and
only in conditions where B cells were activated.

Later recruitment, as opposed to longer survival, of EVa3 T
cells further argued that B-cell presentation did not necessarily
instill qualitative differences in CD4þ T-cell clonotypes, but
rather expanded the number of available APCs to the point where
clonotypic competition was alleviated and lower-avidity
T-cell clonotypes could be expanded. Indeed, recruitment and
expansion of lower-avidity T-cell clonotypes depended on the
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infection (n¼ 3–9 mice per time point). (d) Absolute numbers of WT or Bcl6-conditional (Bcl6c) env-reactive donor EF4.1 CD4þ T cells, additionally
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availability of activated B cells only in the presence of higher-
avidity T-cell competitors. In contrast to their lack of expansion
in FV-infected WT host (Fig. 6a,b), EVa3 T cells expanded
markedly when transferred into FV-infected Rag1� /� hosts
(Fig. 6d). These results were consistent with a quantitative, rather
than qualitative effect of B-cell presentation on the expansion of
lower-avidity CD4þ T-cell clonotypes, whereby the B-cell
response gradually increases APC availability, which progres-
sively recruits lower-avidity T-cell clonotypes, thus diversifying
the CD4þ T-cell response.

B cells promote TCR diversity in various T-cell responses.
Our model would also predict that following infections or
immunizations where B cells are dominant APCs, lower-avidity
clonotypes would be induced, in addition to higher-avidity
clonotypes. To test this prediction, we compared the dependence
on B cells of EF4.1 CD4þ T-cell priming by the replication-
attenuated F-MLV-N vaccine virus and fully competent FV,
which induce lower- and higher-avidity responses, respectively
(Fig. 1b and Fig. 3c). Indeed, CD4þ T-cell priming by F-MLV-N,
but not FV, was significantly compromised in the absence of B
cells (Fig. 7a). Similarly, priming with a replication-defective
human Adenovirus 5 (Ad5)-based vector, expressing F-MLV
gp70 (Ad5.pIX-gp70), which has previously found to induce
primarily lower-avidity responses16, was also compromised in the

absence of B cells (Fig. 7a). Therefore, vaccines that rely on B-cell
presentation induce lower-avidity CD4þ T-cell responses.

The applicability of this model was also tested in two additional
immunization regimens. WT or Ighm� /� hosts were challenged
with FBL-3 cells, a FV-induced tumour cell line that expresses
F-MLV gp70, but does not produce infectious viral particles32.
Adoptively transferred EF4.1 CD4þ T cells responded with a
high frequency of high-avidity Va2 virus-specific CD4þ T-cell
clonotypes in both types of host at peak (Fig. 7b). Importantly,
this frequency remained significantly higher in Ighm� /� than in
WT hosts as the response progressed (Fig. 7b). Moreover, the
clonotypic replacement of Va2 virus-specific CD4þ T cells was
observed following env124–138 peptide immunization of WT, but
not Ighm� /� hosts, highlighting the requirement for B cells in
the process. Thus, following either tumour challenge or peptide
immunization, B cells were required for the full clonotypic
diversity of the CD4þ T-cell response.

B cells balance TCR diversity during T-cell reconstitution. Our
model implied that B-cell presentation should promote TCR
diversity not only in response to infection or immunization, but
also in any setting where CD4þ T-cell clonotypic competition is
likely to operate based on TCR avidity. To examine if this were
the case, we monitored TCR repertoire skewing during CD4þ

T-cell reconstitution of lymphopenic hosts, which selects distinct
clonotypes according to TCR avidity. Hosts lacking only T cells
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(Tcra� /� ) or both T and B cells (Rag1� /� ) were reconstituted
by adoptive transfer of fully polyclonal purified CD4þ T cells and
usage of different families of Vb chains was compared between
the input and expanded population in the respective host 21 days
later (Fig. 8a). T-cell reconstitution of Tcra� /� hosts preserved

the pattern of Vb usage in the input population, as the two were
indistinguishable by unsupervised clustering (Fig. 8a). In contrast,
T-cell reconstitution of Rag1� /� hosts resulted in considerable
skewing in Vb usage in 5 out of 6 such hosts, which clustered
separately from all other hosts (Fig. 8a). TCR Vb usage skewing
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was not related to differences in overall T-cell reconstitution
between Tcra� /� and Rag1� /� hosts, as it also characterized
hosts with comparable numbers of expanded CD4þ T cells
(Supplementary Fig. 4). TCR repertoire skewing in Rag1� /�

hosts was owing to ‘private’ expansion of distinct Vb families in
individual mice (Fig. 8a), suggestive of TCR driven responses.
Moreover, levels of CD5 expression were significantly reduced in
CD4þ T cells expanded in Rag1� /� hosts in comparison with
those expanded in Tcra� /� hosts (Fig. 8b,c), indicating insuffi-
cient MHC II-derived signals in Rag1� /� hosts33,34. Indeed, use
of the Nur77-GFP reporter for TCR signalling35 revealed that
CD4þ T cells received stronger overall TCR signals in Tcra� /�

than Rag1� /� hosts (Fig. 8d), suggesting that B cells were
necessary to provide CD4þ T cells with optimal TCR signal,
which would be critical for the expansion of lower-avidity
clonotypes. Thus, balanced representation of TCR clonotypes,
at least at the level of distinct Vb families during T-cell
reconstitution, required B cells.

Discussion
Our findings highlight the prominent role for the TCR in setting
the clonotypic hierarchy during the CD4þ T-cell response,
suggested by studies in many systems36. They lend support to the
recent recognition of the importance of self-reactivity, rather than
affinity for antigen, in determining the fate of CD4þ and CD8þ

T cells during the response to foreign antigens11,12,37. However,
they further uncover the role of B-cell presentation as a powerful
T-cell-extrinsic factor that can reverse TCR sensitivity-based
hierarchies. Indeed, although T-cell clonal selection driven by
TCR affinity for self or foreign antigens progressively narrows the
responding TCR repertoire, B cells are critical in preserving
diversity of the antigen-selected TCR repertoire.

The progression of the CD4þ T-cell response is generally
expected to enrich for high-avidity clonotypes, accentuated by
diminishing antigen levels, a notion that is supported by
experimental data10,38–40. The central importance of TCR signal
strength in memory formation would gradually reduce the
diversity to a few or theoretically the one clonotype with the
highest avidity. However, enrichment for high-avidity clonotypes
is not consistent with either continuous clonal replacement
during chronic T-cell responses41 or following secondary
responses10,42,43. Moreover, memory CD4þ T-cell populations
with lower overall avidity than the primary response have also
been found in response to Salmonella typhimurium infection44,
and a mouse adenocarcinoma-associated antigen45.

The contribution of low-avidity CD4þ T cells to the antigen-
specific response may be underestimated owing to technical
difficulties in detecting such clonotypes by pMHC II
tetramers23,24. Nevertheless, an equally plausible explanation for
variable participation of lower-avidity CD4þ T-cell clonotypes is
likely related to the nature of antigen and the range of TCR
affinities it elicits. T-cell-extrinsic effects on TCR clonotypic
composition will be particularly pronounced when TCR affinity
for antigen might not be strong enough to overcome these effects.
For example, self-tolerance is likely to reduce the overall avidity of
T-cell responses to tumour-associated or self-antigens or to
pathogen antigens with significant similarity with self, such as
retroviruses1,2.

Another important variable in studies of TCR repertoire
changes over the course of the CD4þ T-cell response is the
definition of the exact property of antigen-selected TCRs.
Although there is general consensus that CD4þ T cells are
selected on the basis of TCR signal strength in response to
antigen, the underlying factors responsible for differences in TCR
sensitivity are still a matter of debate. TCR binding kinetics to

antigenic pMHC II complexes have traditionally been considered
as the dominant factor9,46. However, the importance of TCR
self-reactivity in setting TCR responsiveness to antigen is
increasingly appreciated11,12,37. Strong self-reactivity has been
suggested to select for TCRs with improved binding kinetics to
antigenic pMHC12 or to maintain a more efficient state of TCR
signalling capacity, irrespective of affinity to antigenic pMHC11.
Our results with the EVa2 and EVa3 TCRs are consistent with
the latter notion, whereby differences in functional avidity and
biological response correlate with self-reactivity rather than
affinity to antigen11. However, as a direct mechanistic link
between self-reactivity and antigen sensitivity was not examined
in the current study, our results do not prove that differences in
antigen sensitivity are indeed caused by differences in self-
reactivity.

Although naive CD4þ T-cell priming is thought to be initiated
by DCs in the T-cell zone of secondary lymphoid organs, the
contribution to maximal T-cell expansion of additional APCs and
B cells in particular, is well-recognized47. Our findings uncover an
additional dimension to the antigen-presenting contribution of B
cells, namely the dependence on the B-cell response itself. Indeed,
B-cell-mediated expansion of lower-avidity CD4þ T-cell
clonotypes was proportional to the degree of B-cell activation.
Polyclonal B-cell activation is a feature of many viral infections or
autoimmune diseases48,49. Notably, progression of human
immunodeficiency virus-1 infection is characterized by stepwise
B-cell hyperactivation50, asynchronous expansion of CD8þ T
cells specific to distinct epitopes51 and increase in virus-specific
CD4þ T cells with low functional avidity52. The observation that
germinal center formation was redundant in this process and that
expansion of lower-avidity CD4þ T-cell clonotypes correlated
simply with the overall number of activated B cells in bone
marrow chimeras, argue against a requirement for a specific
B-cell subset. Moreover, efficient priming of lower-avidity CD4þ

T-cell clonotypes in the absence of B cells, when higher-avidity
T-cell competitors were also absent, further argues against a
unique type of antigen presentation by B cells. Instead, these
findings suggest that B cells, which outnumber DCs at steady-
state by two orders of magnitude53 and which further expand in
response to polyclonal and antigen-specific stimuli during
infection, provide the necessary abundance of antigenic
stimulation to allow priming and expansion of all clonotypes
irrespective of TCR avidity.

Our findings also indicate an essential role for B cells in
maintenance of a diverse and balanced TCR repertoire during
CD4þ T-cell reconstitution of lymphopenic hosts, typically
driven by relatively low-avidity interactions with self- and
environmental-antigens and selecting for clonotypes that receive
the strongest TCR signal4. These results, thus, further support the
idea that B cells facilitate the expansion of lower-avidity
clonotypes in general. Similarly, B cells may be critically
required to initiate CD4þ T-cell responses to an autoantigen,
which would be typically low-avidity. Interestingly, non-obese
diabetic mice do not develop autoimmunity if they are rendered
deficient in B cells54, and B-cell reconstitution is required for the
formation of a diverse TCR repertoire of CD4þ T-cell infiltrating
the pancreas55. Although the overall avidity for pancreatic
autoantigens of the different TCR repertoires was not
examined55, these studies offer further support to the
notion that B cells increase the diversity of responding CD4þ

T cells.
B cells have long been suspected as drivers of the diversification

of the CD4þ T-cell response56 and this study provides clear
evidence of their involvement. In contrast to the intrinsic TCR
affinity of distinct clonotypes and the clonotypic diversity in an
individual, manipulating the degree of B-cell activation or antigen
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presentation to CD4þ T cells, might provide a more amenable
way of controlling the antigen-specific TCR repertoire during
infection, vaccination or autoimmunity.

Methods
Mice. Inbred B6 and CD45.1þ congenic B6 (B6.SJL-Ptprca Pep3b/BoyJ) mice
were originally obtained from The Jackson Laboratory (Bar Harbor, ME, USA).
TCRb-transgenic EF4.1 mice21, Rag1-deficient (Rag1� /� ) mice57, B-cell-deficient
(Ighm� /� ) mice58, SAP-deficient (Sh2d1a� /� ) mice59, TCR a-deficient
(Tcra� /� ) mice60, MHC II-deficient (H2-Ab1� /� ) mice61, TNF receptor
I-deficient (Tnfrsf1a� /� ) mice62, mice with an activatable YFP gene targeted into
Gt(ROSA)26Sor (R26) locus63, mice with a targeted insertion of Cre recombinase
into the Tnfrsf4 locus64 (Tnfrsf4Cre), mice with a conditional Bcl6 allele65 (Bcl6c),
endogenous ecotropic MLV-deficient (Emv2� /� ) mice23 and Nur77-GFP
transgenic mice35 were all on the B6 genetic background. TCRab-transgenic EVa2
and EVa3 mice were created by conventional transgenesis (Supplementary Fig. 5).
Briefly, cDNAs encoding the TCRa and TCRb chains of the H5 and H18 env-
specific CD4þ T-cell clones, respectively, from the polyclonal repertoire of EF4.1
mice23, were cloned and inserted into the hCD2-VA expression cassette21. Each of
these constructs was mixed with a construct encoding the TCRb chain of EF4.1
mice and integrated into the DNA of fertilized B6 oocytes following pronuclear
microinjection. Transgenic founders were identified by flow cytometry and
genotyping for the presence of the TCRa and TCRb transgenes. These new
transgenic mice were crossed to Rag1� /� mice, to preclude rearrangement and
subsequent expression of productive endogenous TCR genes. They were
additionally rendered deficient in Emv2, a single germ-line integration of a MLV
found in B6 mice, and free from any Emv2-derived infectious MLVs that
spontaneously arise in immunodeficient mice and have the potential to affect
MLV-specific T-cell development and subsequent response66. Male or female mice
were used in separate experiments and were gender-matched within experiments.
Mice were used at 8–12 weeks of age, with the exception of neonatal infection,
which was carried out on 1–2 day-old mice. All animal experiments were approved
by the ethical committee of the Francis Crick institute, and conducted according to
local guidelines and UK Home Office regulations under the Animals Scientific
Procedures Act 1986 (ASPA).

Retroviral infection and immunization. The FV used in this study was a
retroviral complex of a replication-competent B-tropic F-MLV and a replication-
defective SFFV. Stocks were propagated in vivo and prepared from the spleen of
infected mice. A pool of 20 LDV-free BALB/c mice was infected with FV, spleens
were isolated 12 days later and homogenized (10% w/v) in phosphate-buffered
saline. Aliquots were frozen and were subsequently used for infection. Mice
received an inoculum of B1,000 spleen focus-forming units of FV by intravenous
injection. Stocks of F-MLV-B and F-MLV-N helper viruses were grown in Mus
dunni fibroblast cells. Mice received an inoculum of B104 infectious units of
F-MLV by intravenous injection. Neonatal F-MLV infection was performed by
administering an inoculum of B4,000 infectious units of F-MLV-B to 1-day-old
mice by intraperitoneal injection. All stocks were free of Sendai virus, Murine
hepatitis virus, Parvoviruses 1 and 2, Reovirus 3, Theiler’s murine encephalo-
myelitis virus, Murine rotavirus, Ectromelia virus, Murine cytomegalovirus,
K virus, Polyomavirus, Hantaan virus, Murine norovirus, Lymphocytic
choriomeningitis virus, Murine adenoviruses FL and K87, Mycoplasma sp. and
LDV. For coinfection of FV and LDV, a similarly prepared stock of FV additionally
containing LDV was also used8. For peptide immunization, mice received an
intraperitoneal injection of a total of 12.5 nmol of synthetic env124–138 peptide
mixed in Sigma Adjuvant System. FBL-3 tumour challenge was carried out
by intravenous injection of 3� 106 FBL-3 cells. Ad5.pIX-gp70 stocks were prepared
at a titre of 9� 109 viral genomes per ml by infection of 293A cells16.
Approximately 5� 108 Ad5.pIX-gp70 viral genomes per mouse were administered
intravenously.

F-MLV copy number analysis. DNA copy numbers of F-MLV were determined
by real-time quantitative PCR (qPCR) on DNA samples isolated from the spleen
cell suspensions from infected mice, using primers specific to F-MLV env DNA
(125 bp product): forward 50-AAGTCTCCCCCCGCCTCTA-30 and reverse
50-AGTGCCTGGTAAGCTCCCTGT-30 . Signals were normalized for the amount
of DNA used in the reactions based on amplification of the single-copy Ifnar1 gene
(150 bp product) with primers: forward 50-AAGATGTGCTGTTCCCTTCC
TCTGCTCTGA-30 and reverse 50-ATTATTAAAAGAAAAGACGAGGCGA
AGTGG-30 . Copy numbers were calculated with a DDCT method and are expressed
as copies per million cells.

T-cell purification and adoptive transfer. Single-cell suspensions were prepared
from the spleens and lymph nodes of donor CD45.1þ or CD45.2þ mice and
CD4þ T cells were enriched using immunomagnetic positive selection (StemCell
Technologies), at 496% purity. A total of 1� 106 CD4þ T cells were injected into
CD45.1þCD45.2þ recipients via the tail vein. Where indicated, enriched EF4.1

CD4þ T cells were further purified (498% purity) by cell sorting, performed on
MoFlo cell sorters (Dako-Cytomation, Fort Collins, CO, USA).

Bone marrow chimeras. Bone marrow cell suspensions were prepared by flushing
the bone cavities of femurs and tibiae from donor mice with air-buffered Iscove’s
Modified Dulbecco’s Media. MHC II-sufficient or -deficient bone marrow cells
were injected separately into non-irradiated Ighm� /� recipients. In this setting,
only the missing lymphocyte population (B cells) is reconstituted31, creating
B-cell-specific loss of MHC II. Each recipient received between 1� 107 and 3� 107

bone marrow cells. Mice were bled for assessment of reconstitution and were used
for infection 8–10 weeks post bone marrow transfer.

Flow cytometry. Single-cell suspensions were stained with directly conjugated
antibodies to surface markers (Supplementary Table 1), obtained from eBiosciences
(San Diego, CA, USA), CALTAG/Invitrogen, BD Biosciences (San Jose, CA, USA)
or BioLegend (San Diego, CA, USA). Peptide-MHC II tetramers were prepared and
used as previously described16. Multi-color cytometry were performed on Canto II,
LSRFortessa X-20 (both from BD Biosciences) and CyAn (Dako) flow cytometers,
and analysed with FlowJo v10 (Tree Star, Ashland, OR, USA) or Summit v4.3
(Dako) analysis software.

Micropipette adhesion frequency assay. Two-dimensional TCR affinities were
measured by a micropipette adhesion frequency assay as has been described in
detail elsewhere24,25, using the T-cell hybridomas H5 and H18 and Ab-env125–135
tetramer. Cells were brought into contact 50 times with the same contact time
and area (Ac), and an adhesion frequency (Pa) was calculated. Surface pMHC
and TCRb densities were determined by flow cytometry and BD QuantiBRITE PE
Beads for standardization (BD Biosciences). These parameters were then
used to calculate two-dimensional affinity using the following equation:
Ac�Ka¼ � ln[1—Pa(N)]mr

� 1ml
� 1 where mr and ml represent TCR and

pMHC surface densities, respectively.

In vitro T-cell activation. Spleen or lymph node single-cell suspensions
were prepared from EF4.1 or EVa3 mice and 5� 105 cells per well were
stimulated in 96-well plates with the indicated amount of the index env122–141
epitope (DEPLTSLTPRCNTAWNRLKL), the shorter env124–138L epitope
(PLTSLTPRCNTAWNR) or the altered peptides epitopes env124–138Y
(PLTSYTPRCNTAWNR) and env124–138I (PLTSITPRCNTAWNR). Hybridoma
cell lines were generated and stimulated as previously described23. T-cell activation
was assessed 18 h later by flow cytometric detection of CD69 or CD44
(eBiosciences).

Next-generation sequencing of the TCR repertoire. For TCR sequencing, naive
or primed env-specific EF4.1 CD4þ T-cell subsets were purified by cell sorting
(498%) and RNA was isolated using the QIAcube (QIAGEN, Crawley, UK).
Synthesis of cDNA was carried out with the High Capacity Reverse Transcription
kit (Applied Biosystems, Carlsbad, CA, USA) with an added RNase-inhibitor
(Promega Biosciences, Madison, WI, USA). A final clean-up was performed with
the QIAquick PCR purification kit (Qiagen). Purified cDNA was then used as
template for the amplification of Trav14 (encoding Va2)- or Trav9 (encoding
Va3)-containing rearrangements, using the following primers: Trav14 forward:
50-CAAGCTTCAGTCTAGGAGGAATGGAC-30; Trav9 forward:
50-CCAAGGCTCAGCCATGCTCCTGGC-30; Trac common reverse:
50-TAACTGGTACACAGCAGGTTCTGGG-30 . The forward Trav-specific
primers were located in a promoter region common to all members of the
respective Trav family and the common reverse was in the common constant
region, thus amplifying the entire variable and joining coding region (B500 bp
product). Between 4,500 and 43,000 sequences per sample (450 bp median size)
were obtained on a GS FLX System by GATC Biotech (Constance, Germany).
Identification of productive rearrangements, Trav and Traj gene segment
annotation and protein translation and CDR3 segment prediction were
performed by the ImMunoGeneTics (IMGT) online tool HighV-QUEST
(http://www.imgt.org)67.

Immunohistochemistry. Frozen OCT (Dako)-embedded spleen sections were
fixed in cold acetone, stained with directly conjugated monoclonal antibodies
(Supplementary Table 1) against B220 (AlexaFluor 647, BD Biosciences) and IgD
(PE, eBiosciences). Sections were also stained for the T- and B-cell activation
antigen Ly77 (clone GL7, FITC, BD Biosciences) and FITC fluorescence was
amplified with the AlexaFluor 488 signal amplification kit (Molecular Probes),
according to manufacturer’s instructions. Stained sections were mounted in
fluorescent mounting medium (Dako) and viewed with a Leica TCS SP2 AOBS
confocal microscope. The images were acquired with Leica confocal software using
the 20� or 40� objective lenses.

Statistical analyses. Statistical comparisons were made using SigmaPlot 12.0
(Systat Software, Germany). Parametric comparisons of normally distributed
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values that satisfied the variance criteria were made by unpaired Student’s t-tests.
Data that did not pass the variance test were compared with non-parametric
two-tailed Mann–Whitney rank sum test. Comparison of Vb family expression,
hierarchical clustering and heat-map production was with Qlucore Omics Explorer
(Qlucore, Lund, Sweden).
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