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Structural insights into the DNA-binding specificity
of E2F family transcription factors
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Nadejda Eremina3, Lennart Nilsson1 & Jussi Taipale1,4

The mammalian cell cycle is controlled by the E2F family of transcription factors. Typical E2Fs

bind to DNA as heterodimers with the related dimerization partner (DP) proteins, whereas

the atypical E2Fs, E2F7 and E2F8 contain two DNA-binding domains (DBDs) and act as

repressors. To understand the mechanism of repression, we have resolved the structure of

E2F8 in complex with DNA at atomic resolution. We find that the first and second DBDs of

E2F8 resemble the DBDs of typical E2F and DP proteins, respectively. Using molecular

dynamics simulations, biochemical affinity measurements and chromatin immunoprecipita-

tion, we further show that both atypical and typical E2Fs bind to similar DNA sequences

in vitro and in vivo. Our results represent the first crystal structure of an E2F protein with two

DBDs, and reveal the mechanism by which atypical E2Fs can repress canonical E2F target

genes and exert their negative influence on cell cycle progression.
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E
2F transcription factor family proteins encompass a wide
range of functions in cell cycle regulation, cell differe-
ntiation, DNA stress response and apoptosis1–4. The family

is divided into two subfamilies: E2Fs 1–3 are activators of
transcription, whereas E2Fs 4–8 act as repressors (Fig. 1a).
Whereas the E2F proteins 1–6 bind to DNA preferentially as
heterodimers with the related DP proteins DP1 and DP2, the
two most recently discovered members of the E2F family,
E2F7 and E2F8, are ‘atypical‘, because they contain two distinct
DNA-binding subdomains. They also lack the pocket
protein-binding domain found in all other E2Fs, and thus are
not regulated by the canonical cyclin-dependent kinase/
retinoblastoma protein pathway5.

Genetic evidence indicates that the atypical E2Fs regulate the
same processes as the typical E2Fs. For example, the placental
defect caused by loss of both E2F7 and E2F8 is rescued by the loss
of the activator E2F3a6,7. However, initial analyses of the binding
specificities of typical and atypical E2Fs has suggested that the
proteins bind to different sites. The typical E2Fs in complex with
DP proteins have been reported to bind to a canonical E2F site
50-TTTC[CG]CGC-30 (refs 8–10) and they have also proposed to
differ in their binding specificity11–15. In contrast, more recent
work by several investigators have suggested that the typical and
atypical E2Fs can bind to the same core sequence 50-GGCGGG-30

(refs 16–18).
So far the only structural information of E2F-DNA complexes

comes from the heterodimeric complex of E2F4 with the DP2
protein bound to the canonical E2F DNA sequence 50-
TTTCGCGCGGTTT-30 (ref. 19; PDB entry 1CF7). The DNA-
binding fragment of E2F8 is different from that of E2F4; it is
comprised of two DBDs (DBD1 and DBD2) that show limited
similarity to each other in amino-acid sequence (33.8% identity).

The DBDs are connected by an 82-amino-acid linker. Because the
similarity in amino-acid sequence between E2F4, DP2 and E2F8
is relatively low, the existing structure cannot be effectively used
to model the differences in DNA binding between typical and
atypical E2Fs.

To address this problem, we expressed an E2F8 protein
fragment containing both predicted DBDs (residues Gln110–
Ile350) in Escherichia coli, crystallized the purified protein and
solved its structure in complex with its preferred DNA sequence
50-TTTTTGGCGGGAAAA-30 (ref. 17).

Results
Crystal structure of E2F8. Analysis of the structure derived from
a cubic and hexagonal crystal forms revealed that both DBDs are
composed of three a-helixes and a small antiparallel b-sheet
(Fig. 1b). Structural alignment showed that in spite of the fact
that both DBDs belong to the winged-helix family, their
structural arrangement is rather different (root mean squared
deviation (r.m.s.d.)¼ 7.8 Å; Fig. 1b). However, the comparison of
E2F8’s first and second DBDs to E2F4 and DP2, respectively,
revealed striking structural similarity between them
(r.m.s.d.¼ 2.7 and 1.9 Å, respectively), despite the sequence
identity being only 39.7 and 27.5% (Fig. 1c,d; Supplementary
Fig. 1). The E2F8 DBDs 1 and 2 are thus referred to as DBDE2F

and DBDDP hereafter (Fig. 1e).
The largest difference between E2F8 and E2F4/DP2-DNA

complexes was observed in the inter-domain interaction area. The
interface area between the E2F8 subdomains is approximately two
times the size of that between E2F4 and DP2 (2,606 versus
1,238Å2). About 40% of the residues from both the DBDE2F

and DBDDP are involved in the formation of the
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Figure 1 | Structure of E2F8. (a) Schematic representation of the structural organization of E2F transcription factors. Key: CycA: cyclin A-binding domain;

DBD: DNA-binding domain; DP-BD: DP-binding domain; TAþ PB: transactivation and pocket protein-binding domains. Note that the typical E2Fs have DP-

binding domains, which are replaced by a second DBD in the atypical E2Fs. (b) Superimposition of E2F8 DBD1 (pink) and DBD2 (blue) (r.m.s.d.¼ 7.8Å); the

linker between the two DBDs is in red. (c,d) Superimpositions of E2F8 DBD1 (pink) to E2F4 (magenta) (r.m.s.d.¼ 1.36Å; PDB ID 1CF7) and E2F8 DBD2

(blue) to DP2 (green) (r.m.s.d.¼ 1.9Å; PDB ID 1CF7). The 23 amino acids of the linker close to DBD1 are folded into two a-helices, whereas the remaining 53

amino acids connected to DBD2 are disordered. Note the high similarity between the domains. (e) Structure of the E2F8 protein containing DBD1 (DBDE2F,

pink) and DBD2 (DBDDP, blue) bound to a 15-base pair DNA fragment (green and yellow). Residues responsible for the motif recognition are presented as

ball-and-stick models and coloured by atom (carbon: chain colour; nitrogen: blue; oxygen: red). The sequence of the DNA fragment is also shown.
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inter-domain contact, whereas only 19.5 and 28.4% of E2F4 and
DP2 residues, respectively, participate in the corresponding
interaction (Supplementary Fig. 1b; Supplementary Table 1).
The difference in the interaction area is in large part due to the
contribution of residues from the long linker between the E2F8
DBDs. Of the 82 residues that comprise the linker, 23 are resolved
in the structure, forming two a-helixes that wrap around the
surface of the DBDE2F and DBDDP on the opposite side of the
bound DNA.

Investigation of shared crystal-packing interactions between
the cubic and hexagonal crystals of E2F8 revealed a symmetric
interaction surface between two E2F domains. The interface area
of the contact was relatively large, 1,147Å2 (Supplementary
Fig. 2a), suggesting that the interaction is potentially biologically
relevant. No corresponding interaction was identified in the
E2F4/DP2 structure. The interface contacts are formed by
symmetrically related helices a1 between conserved Ser112,
Glu115, Ala127 and Arg128 residues from one E2F8 molecule and
identical residues of the symmetry-related molecule. The
interaction is additionally supported by hydrophobic interactions
between Leu121, Cys122, His123 and Phe125. Sequence alignment of
E2F8 with E2F7 (Supplementary Fig. 2b) showed that in spite of
the high conservation of the residues maintaining helix a1, both
Glu115 and His123 of E2F8 are replaced with Gln residues in E2F7
,which makes putative heterodimer or a E2F7 homodimer less
stable than a E2F8 homodimer. The crystal structure and
additional ATR-Fourier transform infrared (FTIR) and circular
dichroism (CD) experiments (Supplementary Fig. 2c,d) indicate
that dimerization is compatible with DNA binding. The
orientation of the dimer partners also indicates that DNA
looping or bending is required for binding of a homodimeric
form of E2F8 to DNA.

Analysis of the DNA shape in the E2F8 and E2F4/DP2
complexes, using the programme Curvesþ (ref. 20), revealed
broadly similar effects of the proteins on the DNA structure
(Supplementary Fig. 3a,b). The total bend of E2F8-bound DNA
is 1.4 Å larger (8.9 Å/7.5 Å), whereas the average opening
(2.2 Å/3.5 Å) and the average twist (9.4�/35.8�) are smaller than
those of E2F4/DP2-bound DNA.

Protein/DNA interactions. The contacts created with DNA by
the E2F4/DP2 complex and the two DBDs of E2F8 are very
similar (Fig. 2a). In both complexes, the DNA recognition helices
of the E2F and DP domains are tightly packed into the same
major groove. The E2F domains of E2F4 and E2F8 bind to DNA
in an almost identical manner, forming contacts with C5 C6 G8 of
one strand and G7

0 of the complementary strand, and in addition,
form several backbone contacts with both strands. Some differ-
ences in backbone contacts are observed; the E2F domain of E2F8
has two backbone contacts formed by Arg154 and Arg172
(Supplementary Fig. 4a,b), which are not present in E2F4, and it
also lacks a contact analogous to that formed by Lys44 in E2F4
because this residue is replaced with Leu143 (Fig. 2a). In the DP2
and the E2F8 DP domains, a minor difference is observed in the
geometry of the backbone contact formed by Tyr316. The orien-
tation of the aromatic ring of Tyr316 in E2F8 is well supported by
Ile312 and Phe308, which in DP2 are replaced by Arg and Gln,
respectively (Supplementary Figs 1 and 4d).

The inclusion of 3–5 A/T base pairs on the flanks contributes
strongly to the narrowing of the minor grooves in both
structures21. The narrowing of the minor grooves on the
DBDE2F side of the DNA motif is recognized by an arginine in
both the E2F4/DP2 and E2F8 structures. In the case of E2F8,
Arg113 inserts into the minor groove, making contact to the
oxygen of C5 and sugar of C5 and C6. The adjacent Lys114, in turn,
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Figure 2 | E2F8/DNA interactions. (a) Schematic representation of

interactions formed between E2F8 and DNA (left panel) and E2F4/DP2-DNA

(right panel). Equivalent contacts are highlighted by colouring, and amino

acids that make different contacts are indicated by boxes. Residues belonging

to the E2F and DP domains of E2F8 are in pink and blue, and residues of E2F4

and DP2 are magenta and green, respectively. Dashed lines represent

interactions with phosphates in the DNA backbone and solid lines represent

interactions to deoxyribose or to the bases. The light-green box indicates the

core specificity region. (b) Contacts between E2F8 and DNA that are involved

in recognition of a narrow minor groove. Residues and bases are presented as

ball-and-stick models and coloured by atom (carbon: yellow; nitrogen: blue;

oxygen: red). Hydrogen bond contacts are indicated by dashed lines, and

their distance is indicated in italic. (c) DNA-binding preference of E2F8

identified using HT-SELEX. A first-order Markov (dinucleotide) model of the

specificity of E2F8 is shown in a ‘riverlake’ logo. Ovals indicate frequency of

bases at each position, and width of the lines between them the frequency

of the corresponding dinucleotide. Dark-blue lines indicate the extent to

which a dinucleotide is more frequent than what is predicted from the

mononucleotide frequencies. Note that AA and TT dinucleotides are

preferred before the 50-TGGCGGGA-30 core sequence (brackets).
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contacts the backbone on the opposite side of the minor groove
(Fig. 2b; Supplementary Fig. 4c). Furthermore, the positions of
the phosphates of the DNA backbone on both sides of the minor
groove are recognized by the main-chain oxygen of Ser112 and by
the side chain of Ser117. Together, these contacts lock the Arg113
in place, leading to a preference of a narrow minor groove 50 to
the core 50-TGGCGGGA-30 motif. The resulting specificity
towards three to four consecutive A or T bases is clearly visible
in the E2F8 site obtained from SELEX experiments (Fig. 2c; see
also ref. 17). The minor groove flanking the other side of the
50-TGGCGGGA-30 motif is also occupied by Lys175 from the
E2F domain (Supplementary Fig. 4e). No similar contacts
were observed in the E2F4/DP2 complex, despite the lysine
being conserved.

The major difference between the structures is that in contrast
to E2F4/DP2, E2F8 binding to DNA is not symmetrical, due
to differences between DNA recognition by DP2 and the E2F8
DP domain. The contacts made by the recognition motif

R313R314L315Y316D317 of the E2F8 DP domain are different from
those formed by the corresponding motif of DP2. The first Arg
residue 313 of this motif in E2F8 DBDDP forms specific contacts
with the oxygen atom of guanine G10

0 (Fig. 3a; Supplementary
Fig. 4f). However, the corresponding arginine (182) in DP2 is
directed to G6 on the other strand of DNA and forms two
hydrogen bonds with oxygen and nitrogen atoms of the base
(Fig. 3b). As the G10

0 is replaced by C10
0 in the E2F4/DP2-DNA

complex, the observed difference could either be caused by the
different DNA sequences in the co-crystals or by different amino-
acid sequences of the proteins.

Molecular dynamics. To address whether the difference in DNA
recognition by Arg313 is inherent in the protein sequences,
we first performed molecular dynamics simulation experiments
using E2F4/DP2-DNA and E2F8-DNA structures. Simulating
E2F8 in complex with DNA where its co-crystallized DNA
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Figure 3 | Atypical and typical E2Fs prefer similar motifs. (a) Close-up view of the contacts between the E2F8 DBDDP arginines 313 and 314 and the DNA

base pair G100-C6 (C opposite to the capitalized G in tggcgGga). (b) The corresponding contact between DP2 and DNA in the E2F4/DP2-DNA complex.

Note that the bound DNA sequence is different, and the arginine 182 of DP2 makes contact to a guanine on the opposite strand of DNA compared to that

recognized by the corresponding Arg313 of E2F8. (c,d) Molecular dynamics simulations of the E2F8 DBDDP bound to 50-TTTTTCGCGCG-30 (c) and the DP2

protein bound to 50-TTTTGGCGGG-30 (d). Five snapshots taken every 20 ns are shown. The original position of the Arg residue and the original base pair

are coloured in orange. All following positions are coloured in progressively darkening color. The mutated base pairs are coloured in blue. Note that upon

change of the underlying DNA sequence, the arginine moves (arrow) to the position observed in the other crystal, suggesting that atypical and typical

E2Fs can recognize the same set of sequences. (e) HT-SELEX analyses for E2F2/DP1 complex and E2F8 performed in this study reveal that a typical E2F/DP

and an atypical E2F prefer sequences that are very similar to each other (note that the obtained E2F8 motif is very similar to that reported in ref. 17).

(f) Typical and atypical E2Fs prefer similar sequences in vivo. The most enriched motifs from genomic sequences bound by E2F2 and DP1 in ChIP-exo

experiments performed in this work are virtually identical to a motif that is enriched by E2F7 in ChIP-seq (data from ref. 44). MEME E-values of the motifs

are also shown.
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sequence 50-GGCGGG-30 was replaced by the 50-GCGCGCC-30

sequence of the E2F4/DP2 crystal revealed that Arg313 of E2F8
moved to a position similar to that observed in the E2F4/DP2
crystal. Conversely, simulating the E2F4/DP2 heterodimer with
the E2F8-DNA sequence 50-GGCGGG-30 revealed that the
corresponding Arg in E2F4 moved to form a contact that was
similar to that observed in E2F8. These results suggest that E2F8
and E2F4/DP2 proteins can recognize the same DNA sequences
(Fig. 3c,d). To confirm that E2F8 prefers the sequence we used for
crystallization, we compared the affinities of E2F8 with the
two different core sequences using isothermal titration calori-
metry (ITC). These experiments revealed a kDa of B260 nM
for E2F8 site containing the 50-GGCGGG-30 core sequence
(Supplementary Fig. 5). Affinity for the 50-GCGCGC
C-30 core was below the detection limit for this method.

DNA-binding motifs in vitro and in vivo. To directly address
the DNA-binding specificities of the E2F family members, we
performed SELEX experiments with E2F2 in the absence or
presence of the DP1 protein. These results revealed that in
the presence of DP1 protein, the motif-containing sequence of
(T)50-TTGGCGGGAA-30(A) was preferred over the 50-GG
CGCC-30 site bound by E2F homodimers, or the canonical 50-G
CGCGC-30 E2F/DP site reported previously (Fig. 3e).

Finally, to assess the specificity of E2F proteins in vivo,
we performed chromatin immunoprecipitation (ChIP)-exo
experiments for E2F2 and DP1. We then performed
motif-mining of peaks from these experiments and from an
E2F7 ChIP-seq experiment from ref. 44. This analysis revealed
that all proteins preferred essentially identical sequences (Fig. 3f),
corresponding to the highest-affinity core sequence identified by
SELEX. These results, together with our structural and molecular
dynamics results indicate that the atypical E2Fs are capable of
binding to sites recognized by the typical E2F/DP heterodimers.

Discussion
In this work, we have determined the three-dimensional structure
of a non-canonical E2F, E2F8, bound to its preferred DNA
sequence. We found that the two DBDs of E2F8, DBDE2F and
DBDDP, are structurally highly similar to E2F4 and DP2 DBDs,
respectively. The protein–DNA contacts are very similar between
the E2F8 DBDs and those of E2F4 and DP2. However, the
protein–protein contacts are divergent. Whereas the interaction
between typical E2Fs and DP proteins is mediated by separate
interaction domains, in E2F8, the linker between the DBDs
strongly contributes to the inter-DBD interaction.

We also observed an interaction between symmetry-related
molecules that involved helix a1 that potentially facilitates the
dimerization of two E2F8 proteins. Such homo- and heterodimer
formation between the atypical E2Fs E2F7 and E2F8 has been
reported earlier5,18,22, but additional specific studies are needed to
confirm the importance of the observed contacts in formation of
atypical E2F dimers.

The two DBDs of E2F8 recognize a 50-GGCGGG-30 core
sequence by inserting their helices a3 into the same major groove
of DNA. In addition, the minor grooves from both sides of the
sequence are narrowed by the inclusion of four consecutive A/T
base pairs. The preference to the 50 and 30 flanking sequences is
due to contacts formed by Arg113, Lys114 and Ser117, and Lys175 in
the minor grooves, respectively (see also refs 19,21).

The comparison of contacts found in DBDE2F-DNA and E2F4-
DNA showed that they are mostly similar, with a few differences
due to the difference in the DNAs used for crystallization and the
amino-acid sequences of the proteins. To analyse the differences,
we performed molecular dynamic simulations that showed that

difference in contacts of a key arginine residue is due to
differences in the DNA sequences used for crystallization. This
result indicate that E2F8 and E2F4/DP2 can recognize the same
DNA sequence consisting of a 50-GGCGGG-30 core sequence,
with the E2F and DP -like domains binding to the GGC and GGG
half-sites, respectively. The similarity in binding specificity
between typical E2F/DP complexes and atypical E2Fs was
validated using both in vitro selection (SELEX) and motif mining
from ChIP-exo-enriched peaks.

In summary, through extensive structural and functional
analyses of the E2F proteins, we have defined the DNA-binding
specificities of E2F and E2F/DP complexes. These analyses have
revealed that the two domains of the atypical repressor E2Fs
correspond to the E2F and DP domains, which bind to DNA sites
that are indistinguishable from those bound by typical E2F/DP
heterodimers. Our results define the binding specificity of the E2F
family of transcription factors, and reveal the mechanism by which
E2F8 is capable of regulating the cell cycle by directly repressing
target genes activated by the typical E2F/DP heterodimers.

Methods
Protein purification, crystallization and data collection. The human E2F8
(residues Gln110–Ile350) polypeptide was purified by affinity chromatography and
gel-filtration chromatography based on the principles described in ref. 23. A
complementary DNA encoding E2F8 DBD, containing N-terminal thioredoxin and
a 6� His-tag, optimized for expression in E. coli was purchased from GenScript
and subcloned into the pETG-20A vector. The construct was verified by
sequencing and expressed in Rosetta(DE3)pLysS E. coli strain (Millipore). The
expression of recombinant protein was induced by addition of isopropyl-b-d-
thiogalactopyranoside to 0.5mM final concentration. Culture was grown
overnight at 17 �C, harvested and lysed using immobilized metal-ion-affinity
chromatography lysis buffer (50mM Tris-Cl, 300mM NaCl, 10mM imidazole,
10% glycerol, pH 7.5). The protein purification was conducted on an ÄKTA Xpress
system with His-Trap HP column (GE Healthcare) and a HiLoad 16/600 Superdex
200 gel-filtration column (GE Healthcare). The His-Trap HP column was
equilibrated in 100mM HEPES, 500mM NaCl, 10% glycerol, 10mM imidazole,
0.5mM Tris(2-carboxyethyl)phosphine hydrochloride (TCEP), pH 7.5, and the
thioredoxin-fused-His-tagged protein was eluted with 20mM HEPES buffer
containing 500mM NaCl, 500mM imidazole, 10% glycerol and 0.5mM TCEP. The
N-terminal thioredoxin 6� His-tag was removed by incubation of pooled protein
fractions with TEV protease overnight. The resulted E2F8 DBD protein solution
was concentrated and applied onto the gel filtration column equilibrated in 20mM
HEPES buffer, pH 7.5, containing 150mM NaCl, 5% glycerol and 0.5mM TCEP.
The flow-through containing the cleaved E2F8 DBD was collected and
concentrated up to B10mgml� 1. Purity of the protein was examined on SDS–
polyacrylamide electrophoresis gel stained with Coomassie brilliant blue. The
correct mass of the protein preparations was confirmed using matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry analysis (Mass spectro-
metry, Core facilities, University of Oulu, Finland).

The DNA fragments used in crystallization were obtained from Integrated DNA
Technologies (BVBA, Belgium) as single-strand oligos and annealed in 10mM Tris
(pH 7.5) containing 150mM NaCl and 1mM EDTA. The purified E2F8 was first
mixed with solutions of the DNA duplex at a molar ratio of 1:1.2 and after
15–20min on ice subjected to the crystallization trials. An in-house developed
crystal screening kit of different polyethylene glycols (PEGs) in addition to
JBScreen Nuc-Pro HTS from Jena Bioscience were applied to complexes with
DNAs of different length. Only complexes with DNAa and DNAb (50-TTTTGG
CGGGAAAAA-30 and 50-ATTTTTGGCGGGTTTG-30, respectively) showed
micro-crystals under several conditions containing PEG (6000), KCl and MgCl2.
Further optimization of conditions allowed to obtain two types of crystals of cubic
and hexagonal shapes. Cubic crystals were grown in sitting drops by the vapour
diffusion technique at room temperature from 100mM Hepes (pH 7.09) solution
containing 8% (w/v) PEG (6000), 150mM KCl, 2mM MgCl2 and 5% PEG (200).
Crystals were grown to full size (0.25mm) overnight. Hexagonal crystals were
obtained from 100mM Hepes (pH 7.09) containing 4.8% PEG (4000), 120mM
ammonium sulfate and 5% of PEG (400). Those crystals reached full size (0.3mm)
in 1–2 weeks. The data were collected from both types of crystals at European
Synchrotron Radiation Facility (Grenoble, France) from a single crystal on beam-
line ID23-1 at 100 K and wavelength 0.9763Å using the reservoir solution as a
cryoprotectant. The data collection strategy was optimized with the programme
BEST24. Data were integrated with the programme XDS25 and scaled with
XSCALE. The cubic crystals diffract to 3.9 Å resolution only. They belong to the
I23 space group with cell dimensions a¼ 172.8 Å containing one molecule of
complex in an asymmetric unit with 78.8% of solvent. Crystals of hexagonal shape
diffracted slightly better, up to 3.07Å resolution, and belonged to the hexagonal
space group P3221 with cell dimensions a¼ 98.8 Å, c¼ 121.7 Å, also containing one
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molecule of complex per asymmetric unit and 75% solvent. Crystals of both
symmetries showed merohedral twining with relatively small twinning fractions of
0.032 and 0.122 for I23 and P3221 crystals, respectively. Statistics of data collection
are presented in Table 1.

Structure determination and refinement. The initial phases of the E2F8 E2F
domain model in both crystal forms were determined by molecular replacement
using the programme Phaser26 in Phenix27 with the structure of E2F4 from the
E2F4/DP2 complex (PDB entry 1CF7 (ref. 19)) as a search model. The sequence
alignment of each DBD of E2F8 with E2F4 and DP2 (Supplementary Fig. 1)
showed 34 and 30% identity, respectively. Thus, the first search was performed for
the DBDE2F, then, the first solution was fixed and the DBDDP was found. The rigid
body and jelly-body refinement with REFMAC28 dropped original R-factors from
55% (57%) to 33% (36%). At this point the manual rebuilding of the model was
done using COOT29. The resulting models were used to search for the solutions in
two other data sets. The multi-crystal averaging between all three data sets was
applied to improve the quality of the electron density. The standard TLS
refinement with Phenix.refine was combined with two more cycles of multi-crystal
averaging and Phenix_den.refine. Due to low resolution, only one data set was used
to complete the refinement and build the final model. In all, 86.81% and 11.54% of
residues were found in favoured and allowed regions of Ramachandran map. The
refinement statistics are presented in Table 1.

Molecular dynamics. Molecular dynamics simulations were performed for the
following protein–DNA complexes: the E2F8 DBDDP complexed with
50-TTTTTCGCGCGAAAA-30 and DP2 complexed with 50-AAAAGGCGGG
AAAA-30 (PDB entry 1CF7). Models of the ‘mutants’ were built manually by
switching the cytosine and guanine bases in a CG base pair, without changing the
protein structure. The CHARMM 36 forcefield30–34 and CHARMM program35,
with the CHARMM interface to OpenMM36 to allow the use of NVIDIA graphical
processing units, were used for all simulations. The starting structure was placed in
a cubic solvent box with 8-nm side length containing water37 and sodium ions to
neutralize the system. After energy minimization to relax initial strain, the systems
were heated from 100 to 300 K over 8 ps followed by 12 ps simulation at constant
pressure (1 bar) and constant temperature (300 K), with soft harmonic positional
restraints on the protein and DNA atoms. In the subsequent 200 ns production
runs using the graphical processing unit, the pressure and temperature were also
maintained at 1 bar and 300K, respectively, and the positional restraints were
removed. Particle mesh Ewald summation was used to treat the long-range
electrostatic interactions, using a 5th-order B-spline interpolation for the charge
distribution on the 0.1-nm-spaced grid points, kappa¼ 0.34. The same 0.9-nm
cutoff was used for both the direct space part of the PME and for the van der Waals
interactions, which were switched to zero from 0.8 to 0.9 nm, and the non-bond list
was generated with a 1.1-nm cutoff. SHAKE38 was used to keep the lengths of all

covalent X-H bonds fixed, allowing a time step of 2 fs. The structural analysis used
the last 100 ns of the trajectories.

Isothermal titration calorimetry. To determine affinities of the DNA motifs
described above, ITC experiments were carried out using an ITC200 micro-
calorimeter (MicroCal Inc., Northampton, Massachusetts, USA) in PSF (Protein
Science Facility at Karolinska Institute, Sweden), and GE Healthcare (Sweden).
Binding isotherms of DNAs were measured by direct titration of protein to the cell
containing DNA. The measurements were taken at 20 �C. Both protein and DNA
were prepared in a buffer containing 20mM HEPES pH 7.5, 150mM NaCl, 5%
glycerol and 0.5M TCEP. To measure binding affinity, a solution of 0.1mM
protein was titrated to 0.012–0.016mM solution of DNA. A total of 20 injections
were made with 240 s between injections. All data were evaluated using the Ori-
ginPro 7.0 software package (Microcal) supplied with the calorimeter. The
apparent dissociation constant Kd, binding enthalpy DH and stoichiometry n,
together with their corresponding s.d., were determined by a nonlinear least-
squares fit of the data to standard equations for the binding using a model for one
set of independent and identical binding sites as implemented in the package.
The entropy and free energy of binding were obtained from the relation
DG¼ �RTlnKd¼DH�TDS.

HT-SELEX. The DBD sequences of E2F2, E2F8 and DP1 were cloned into
N-terminal thioredoxin 6� His bacterial expression vector (pETG-20A; Vincen-
telli et al., 2011) with either no additional affinity tag (DP1), a C-terminal strep-
tavidin-binding peptide (E2F8), or 3� FLAG (E2F2) tag by Gateway LR reaction
(Invitrogen). The recombinant proteins were expressed in Rosetta 2(DE3)pLysS E.
coli strain (Millipore). The expression was induced upon consumption of the
preferred glucose during culture at 17 �C for 36 h. The harvested cells were lysed by
a freeze–thaw cycle in buffer-A (300mM NaCl in 50mM Tris-Cl, pH 7.5) con-
taining 10mM imidazole, 0.5mgml� 1 lysozyme (Sigma) and 1mM PMSF
(Sigma). The DNaseI and MgSO4 were added and the solutions were transferred to
Ni-Sepharose 6 Fast Flow gravity columns (GE Healthcare). The proteins were
eluted with 3ml buffer-A with 500mM imidazole.

For HT-SELEX17,39, each E2F protein (200 ng in 3 ml each) was mixed together
with DP1 protein in a 1:1 molecular ratio and mixed with DNA ligands
(200–500 ng in 5 ml) containing a 6- and 3-bp barcode before and after the 40-bp
randomized region in 9 ml of binding buffer (10mM Tris-Cl, 50mM NaCl, 1mM
MgCl2, 0.5mM dithiothreitol, 0.5mM EDTA, 4% glycerol, 5 mgml� 1 poly-dI-dC,
pH 7.5), followed by incubation at room temperature for 20min. Subsequently,
7.5 ml Ni-Sepharose 6 Fast Flow resin (GE Healthcare) in 142.5 ml of binding buffer
was added to the protein–DNA mixture and the incubation continued for an
additional 20min. Nonspecific binding oligos were washed away with 20 volumes
of binding buffer without poly-dI-dC and the complexes then suspended in 100 ml
milliQ water. Finally, bound ligands were amplified by PCR (Phusion DNA
polymerase) and the enriched ligands were used as input ligands for the next round

Table 1 | Data collection and refinement statistics.

E2F8/P3221—cr1 E2F8/ P3221—cr2 E2F8/I23

Data collection
Space group P 32 2 1 P 32 2 1 I23

Cell dimensions
a, b, c (Å) 98.83, 98.83, 121.69 99.46, 99.46, 123.38 172.82,172.82, 172.82
a, b, g(�) 90, 90, 120 90, 90, 120 90, 90, 90
Resolution (Å) 14.92-3.07 (3.3-3.07) 46.13-3.76 (4.12-3.76) 54.65-3.902 (4.041-3.902)
R-merge 16.9 (62.4) 16.4 (74.1) 10.5 (87.7)
I/s (I) 8.67 (1.94) 7.0 (3.17) 13.94 (1.5)
Completeness (%) 97.0 (89.2) 100 (99.7) 88.02 (74.91)
Redundancy 6.5 (6.75) 7.3 (7.3) 10.05 (3.5)

Refinement
Resolution (Å) 14.92–3.07
No. reflections 11,981
Rwork/Rfree 0.27/0.29
No. of atoms 2,130
ProteinþDNA 2130
Average B-factor 153.70

R.m.sd.
Bond length (Å) 0.004
Bond angles (�) 1.15

Statistics for the highest-resolution shell are shown in parentheses.
Notice that only one of three data sets was used to finish structural refinement.
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of selection, which was repeated up to four times. The initial DNA library and
selected ligands from each cycle were subjected to sequencing (Illumina HiSeq
2000). Position weight matrix (PWM) and adjacent dinucleotide models were
generated using AUTOSEED40. Seeds for the PWMs shown in Fig. 3e are
NTTTGGCGGGAAAN and WWWTGGCGGGAAA for E2F8 and E2F2-DP1,
respectively; multinomial setting¼ 1.

The ’riverlake’ logo showing dinucleotide preferences was generated as a
scalable vector graphics (svg) file using a script that draws circles for each base
position in such a way that their radius is proportional to the mononucleotide
frequency at that position. It then connects the circles with lines whose width is
proportional to the respective dinucleotide frequency. Any observed dinucleotide
frequency that is in excess of the prediction from the mononucleotide frequencies
is coloured in dark blue. Any excess predicted dinucleotide frequency is indicated
by yellow dotted lines. Mononucleotide frequency was calculated from the
frequency of the first base of the respective dinucleotides, except for the last base,
whose frequency was calculated from the frequencies of the second bases of the last
dinucleotides. The E2F8 adjacent dinucleotide model is presented in
Supplementary Table 2. The script is available upon request.

ChIP-exo. LoVo (ATCC, catalogue no. CCL229TM) cells were cultured in DMEM
supplemented with 10% fetal bovine serum and antibiotics. ChIP-exo was per-
formed essentially as described in ref. 41 with modifications from Katainen et al.42

using antibodies against DP1 and E2F2, and control goat IgGs (Santa Cruz
Biotechnology catalogue no.: s, sc-16286 X, sc-22821 X, sc-2028, respectively). Cells
were crosslinked with 1% formaldehyde, and incubated in hypotonic buffer for
15min, and DNA then sonicated to 200–500-bp fragments in lysis buffer (50mM
HEPES, 2mM EDTA, pH 8.0, 150mM NaCl, 1% Triton X-100, 0.1% sodium
deoxycholate, 0.2% SDS, pH 8.0). After preclearing, lysate was subjected to
immunoprecipitation overnight with the antibodies indicated (B2.5� 106 cells in
1ml of lysate per immunoprecipitation). The immune-complexes were precipitated
using 40 ml protein G-Sepharose beads for 3 h at 4 �C, and washed successively with
0.5ml of immunoprecipitation buffer (100mM NaCl, 5mM EDTA, 0.33% SDS and
1.5% Triton X-100 in 50mM Tris-Cl, pH 8.0), 1ml of mixed micelle buffer
(150mM NaCl, 5mM EDTA, 5.2% sucrose, 1.0% Triton X-100 and 0.2% SDS in
20mM Tris-Cl, pH 8.0), 1ml of buffer 500 (250mM NaCl, 25mM HEPES, 0.5%
Triton X-100, 0.05% sodium deoxycholate and 0.5mM EDTA in 5mM Tris-Cl, pH
8.0), 1ml of lithium chloride/detergent buffer (250mM lithium chloride, 0.5%
IGEPAL CA-630, 0.5% sodium deoxycholate and 10mM EDTA in 10mM Tris-Cl,
pH 8.0), 1ml of TE buffer (1mM EDTA in 10mM Tris-Cl, pH 8.0) and 1ml of
Tris-Cl buffer (10mM, pH 7.5, 8.0 or 9.2 according to the requirements for the
enzymatic reaction steps detailed below).

Immunoprecipitates were then subjected to the following enzymatic on-bead
reactions for 30min in 60ml reaction volume: (a) end-polishing with T4 DNA
polymerase (3U, New England BioLabs, M0203L), (b) kinase reaction with T4
polynucleotide kinase (10U, New England BioLabs, M0201L), (c) adenine addition
reaction with Klenow fragment exo-(5U, New England BioLabs, M0212L), (d) first
adaptor ligation with 1.25mM P2 adaptors (Supplementary Table 3, rows 3
and 4; Eurofins MWG Operon) and T4 DNA ligase (500U, New England BioLabs,
M0202L), (e) fill-in reaction with phi29 DNA polymerase (10U, New England
BioLabs, M0269L), (f) lambda exonuclease reaction (10U, New England BioLabs,
M0262L) and (f) RecJf exonuclease reaction with 30U of RecJf exonuclease (New
England BioLabs, M0264L). Each reaction was set up according to the
manufacturer’s instructions. After each on-bead reaction, the beads were washed
successively with mixed micelle buffer, buffer 500, lithium chloride/detergent buffer,
TE buffer and Tris-Cl buffer. Immunoprecipitates were eluted to 400ml of elution
buffer (10mM Tris-Cl, pH 8.0, 1mM EDTA, pH 8.0, 400mM NaCl, 1% SDS and
70mgml� 1 RNase A), and cross-links were reversed by the addition of 20mg of
proteinase K (Thermo Fisher Scientific, EO0491) and incubation at 65 �C overnight.

Samples were then extracted with phenol:chloroform:isoamyl alcohol (25:24:1),
precipitated with ethanol and processed for library preparation. Second-strand
synthesis was performed using 1 mM of P2 primer (Supplementary Table 3, row 5;
Eurofins MWG Operon), after which samples were denatured at 95 �C for 5min,
incubated at 58 �C for 5min and cooled to room temperature. The primer
extension reaction was performed with 10U of phi29 polymerase, bovine serum
albumin (100 mgml� 1) and an equimolar mixture of A, T, C and G 2’-
deoxynucleoside 50-triphosphates (dNTPs; 75 mM each) and incubation at 30 �C for
20min. The enzyme was subsequently heat inactivated at 65 �C for 10min. Double-
stranded DNA was purified using Agencourt AMPure magnetic beads (Beckman
Coulter, A63881) and eluted into 40 ml of 10mM Tris-Cl, pH 8.0. To increase
ligation efficiency, an adenine addition reaction was performed using 5U of
Klenow fragment exo- in 1� Klenow buffer with 100 mM dATP, at 37 �C for
30min. After DNA purification using Agencourt AMPure magnetic beads, a
second adaptor ligation reaction was performed using 500U of T4 DNA ligase, 1�
T4 DNA ligase buffer and 0.4 mM P1 adaptor (Supplementary Table 3, rows 1 and
2; Eurofins MWG Operon); samples were then incubated at 25 �C for 30min and at
16 �C overnight. DNA was finally purified using Agencourt AMPure magnetic
beads and eluted into 30ml of 10mM Tris-HCl, pH 8.0.

Library was PCR amplified using PCR primers with sequences provided by
Illumina (PE primers; Supplementary Table 3, rows 6 and 7, Eurofins MWG
Operon). PCR mix contained 2U of Phusion High-Fidelity DNA polymerase

(Thermo Fisher Scientific, F-530S), 1� High-Fidelity Phusion polymerase buffer,
0.5 mM of each of the primers and 250mM dNTPs in a final volume of 50ml. PCR
was carried out for 18 cycles. PCR products were size selected (200–600 bp) and gel
purified using QIAquick gel purification columns (Qiagen). The purified product
was sequenced at the Karolinska High-Throughput Center using the Illumina
HiSeq 2000 platform according to the manufacturer’s instructions. See
Supplementary Table 3 for the sequences of the Illumina sequencing adaptors.
Sequence reads were mapped to the hg19 human reference genome by bwa (default
parameters). Peak-calling was performed using GEM44 with 2,700,000,000-bp
genome size and default parameters. Motif discovery was performed using MEME.

ATR-FTIR and CD experiments. FTIR spectra were recorded at 4 cm� 1 resolu-
tion on a Vertex 70 FTIR spectrometer (Bruker Optik CpmbH, Ettingen, Germany)
equipped with an HgCdTe detector. The experiments were performed with 3 ml of
sample containing protein and DNA at 1:1.2M ratio at room temperature. The
absorbance spectra were recorded every 60min for 6 h and then again after 23 h.
The experiment was repeated three times. The resulting spectra were averaged and
normalized to the intensity of the tyrosine band at 1,517 cm� 1.

The CD spectra of samples containing protein and DNA at 1:1.2M ratio were
recorded on a Chirascan CD spectrometer from Applied Physics with a TC-125
temperature controller set to 20 �C. The spectral range was 178–280 nm, which
required about 2min for each scan. Each scan was performed 10 times and the
average is presented.
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