Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anthropogenic climate change detected in European renewable freshwater resources

Abstract

Although there is overwhelming evidence showing that human emissions are affecting a wide range of atmospheric variables1, it is not clear whether anthropogenic climate change is detectable in continental-scale freshwater resources. Owing to the complexity of terrestrial hydro-systems there is to date only limited evidence suggesting that climate change has altered river discharge in specific regions2,3,4,5. Here we show that it is likely6 that anthropogenic emissions have left a detectable fingerprint in renewable freshwater resources in Europe. We use the detection and attribution approach1,7 to compare river-flow observations8 with state-of-the-art climate model simulations9. The analysis shows that the previously observed amplification of the south (dry)–north (wet) contrast in pan-European river flow10 is captured by climate models only if human emissions are accounted for, although the models significantly underestimate the response. A regional analysis highlights that a strong and significant decrease is observed in the Mediterranean, generally along with a weak increase in northern Europe, whereas there is little change in transitional central Europe. As river and streamflow are indicators for renewable freshwater resources11,12,13, the results highlight the necessity of raising awareness on climate change projections5,14 that indicate increasing water scarcity in southern Europe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Trends in observed runoff rates for the 1956–2005 period.
Figure 2: Assessment of observed, reconstructed and simulated runoff anomalies.
Figure 3: Detection and attribution analysis for runoff in Europe.

References

  1. 1

    Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. 2

    Barnett, T. P. et al. Human-induced changes in the hydrology of the Western United States. Science 319, 1080–1083 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Hidalgo, H. G. et al. Detection and attribution of streamflow timing changes to climate change in the Western United States. J. Clim. 22, 3838–3855 (2009).

    Article  Google Scholar 

  4. 4

    Mondal, A. & Mujumdar, P. P. On the basin-scale detection and attribution of human-induced climate change in monsoon precipitation and streamflow. Wat. Resour. Res. 48, W10520 (2012).

    Google Scholar 

  5. 5

    Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (IPCC, Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  6. 6

    Cubasch, U. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 119–158 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  7. 7

    Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting, part I: theory. Clim. Dynam. 21, 477–491 (2003).

    Article  Google Scholar 

  8. 8

    Gudmundsson, L. & Seneviratne, S. I. Observation-based gridded runoff estimates for Europe (E-RUN version 1.1). Earth System Sci. Data 8, 279–295 (2016).

    Article  Google Scholar 

  9. 9

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  10. 10

    Stahl, K., Tallaksen, L. M., Hannaford, J. & van Lanen, H. A. J. Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble. Hydrol. Earth Syst. Sci. 16, 2035–2047 (2012).

    Article  Google Scholar 

  11. 11

    Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article  Google Scholar 

  12. 12

    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Shiklomanov, I. A. et al. World Water Resources at the Beginning of the Twenty-First Century (Cambridge Univ. Press, 2004).

    Google Scholar 

  14. 14

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Rockstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  16. 16

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  17. 17

    Jaramillo, F. & Destouni, G. Comment on “Planetary boundaries: Guiding human development on a changing planet”. Science 348, 1217 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Jaramillo, F. & Destouni, G. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350, 1248–1251 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  20. 20

    Vörösmarty, C. et al. Humans transforming the global water system. Eos 85, 509–514 (2004).

    Article  Google Scholar 

  21. 21

    Fekete, B. M. et al. Time for in situ renaissance. Science 349, 685–686 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Hurrell, J. W. & VanLoon, H. Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change 36, 301–326 (1997).

    Article  Google Scholar 

  23. 23

    Bouwer, L. M., Vermaat, J. E. & Aerts, J. C. J. H. Regional sensitivities of mean and peak river discharge to climate variability in Europe. J. Geophys. Res. 113, D19103 (2008).

    Article  Google Scholar 

  24. 24

    Gudmundsson, L. & Seneviratne, S. I. Anthropogenic climate change affects meteorological drought risk in Europe. Environ. Res. Lett. 11, 044005 (2016).

    Article  Google Scholar 

  25. 25

    Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. 122, 1403–1422 (2017).

    Google Scholar 

  27. 27

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Article  Google Scholar 

  28. 28

    Milly, P. C. D. Climate, soil water storage, and the average annual water balance. Wat. Resour. Res. 30, 2143–2156 (1994).

    Article  Google Scholar 

  29. 29

    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).

    Article  Google Scholar 

  30. 30

    Zhang, X. et al. Detection of human influence on twentieth-century precipitation trends. Nature 448, 461–465 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Vicente-Serrano, S. M. et al. Effect of reservoirs on streamflow and river regimes in a heavily regulated river basin of Northeast Spain. CATENA 149, 727–741 (2017).

    Article  Google Scholar 

  32. 32

    ECA & D Project Team & Royal Netherlands Meteorological Institute K. Algorithm Theoretical Basis Document (ATBD) (2013).

  33. 33

    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. 113, D20119 (2008).

    Article  Google Scholar 

  34. 34

    Hargreaves, G. H. Defining and using reference evapotranspiration. J. Irrig. Drain. Eng. 120, 1132–1139 (1994).

    Article  Google Scholar 

  35. 35

    Hurrell, J. & National Center for Atmospheric Research Staff (Eds) The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). (Modified 7 July 2017); https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based

  36. 36

    Arora, V. K. The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol. 265, 164–177 (2002).

    Article  Google Scholar 

  37. 37

    Budyko, M. I. Climate and Life (Academic, 1974).

    Google Scholar 

  38. 38

    Fu, B. On the calculation of the evaporation from land surface (in Chinese). Sci. Atmos. Sin. 1, 23–31 (1981).

    Google Scholar 

  39. 39

    Zhang, L. et al. A rational function approach for estimating mean annual evapotranspiration. Wat. Resour. Res. 40, W02502 (2004).

    Google Scholar 

  40. 40

    Greve, P., Gudmundsson, L., Orlowsky, B. & Seneviratne, S. I. Introducing a probabilistic Budyko framework. Geophys. Res. Lett. 42, 2261–2269 (2015).

    Article  Google Scholar 

  41. 41

    Iles, C. E. & Hegerl, G. C. Systematic change in global patterns of streamflow following volcanic eruptions. Nat. Geosci. 8, 838–842 (2015).

    CAS  Article  Google Scholar 

  42. 42

    Stahl, K. et al. Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. 14, 2367–2382 (2010).

    Article  Google Scholar 

  43. 43

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  44. 44

    Theil, H. A rank-invariant method of linear and polynomial regression analysis. Proc. R. Netherlands Acad. Sci. 53, 386–392 (1950).

    Google Scholar 

  45. 45

    Yue, S. & Wang, C. The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Wat. Resour. Manage. 18, 201–218 (2004).

    Article  Google Scholar 

  46. 46

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  47. 47

    Wilks, D. S. “The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Am. Meteorol. Soc. 97, 2263–2273 (2016).

    Article  Google Scholar 

  48. 48

    Allen, M. R. & Tett, S. F. B. Checking for model consistency in optimal fingerprinting. Clim. Dynam. 15, 419–434 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This research contributes to the European Union funded EUCLEIA project (contract no. 6070085). Partial support of the ERC DROUGHT-HEAT project (contract no. 617518) is acknowledged. The efforts to assemble the European Water Archive (EWA) by the UNESCO IHP VII FRIEND programme, the data collection and management by the GRDC, and the provision of data by Spanish authorities are gratefully acknowledged. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We thank J. Sedlacek and U. Beyerle for the retrieval and preparation of CMIP5 model data.

Author information

Affiliations

Authors

Contributions

L.G. and S.I.S. initiated this project. L.G., S.I.S. and X.Z. designed the study. L.G. carried out the analysis. L.G. wrote the manuscript with contributions from S.I.S. and X.Z. X.Z. contributed to the interpretation and development of the detection and attribution methodology.

Corresponding author

Correspondence to Lukas Gudmundsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 538 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gudmundsson, L., Seneviratne, S. & Zhang, X. Anthropogenic climate change detected in European renewable freshwater resources. Nature Clim Change 7, 813–816 (2017). https://doi.org/10.1038/nclimate3416

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing