Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clearing clouds of uncertainty

Since 1990, the wide range in model-based estimates of equilibrium climate warming has been attributed to disparate cloud responses to warming. However, major progress in our ability to understand, observe, and simulate clouds has led to the conclusion that global cloud feedback is likely positive.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geographical distribution of the annually averaged net cloud radiative effect at the top of the atmosphere, computed over 2001–2016 from CERES EBAF Ed4.0 (ref. 1).
Figure 2: Global average cloud feedbacks and their impact on climate sensitivity.
Figure 3: Assessed cloud feedbacks and key statements regarding cloud feedbacks from the five IPCC assessment reports.


  1. Loeb, N. G. et al. J. Clim. 22, 748–766 (2009).

    Article  Google Scholar 

  2. Zelinka, M. D., Zhou, C. & Klein, S. A. Geophys. Res. Lett. 43, 9259–9269 (2016).

    Article  Google Scholar 

  3. Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment (National Academy of Sciences, 1979).

    Google Scholar 

  4. IPCC Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) (Cambridge Univ. Press, 1990).

  5. IPCC Climate Change 1995: The Science of Climate Change (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 1996).

  6. IPCC Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 2001).

  7. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  8. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  9. Bretherton, C. S. Phil. Trans. R. Soc. A 373, 20140415 (2015).

    Article  Google Scholar 

  10. Qu, X., Hall, A., Klein, S. A. & DeAngelis, A. M. Geophys. Res. Lett. 42, 7767–7775 (2015).

    Article  Google Scholar 

  11. Mauritsen, T. & Stevens, B. Nat. Geosci. 8, 346–351 (2015).

    CAS  Article  Google Scholar 

  12. Tan, I., Storelvmo, T. & Zelinka, M. D. Science 352, 224–227 (2016).

    CAS  Article  Google Scholar 

  13. Andrews, T., Gregory, J. M. & Webb, M. J. J. Clim. 28, 1630–1648 (2015).

    Article  Google Scholar 

  14. Zhou, C., Zelinka, M. D. & Klein, S. A. Nat. Geosci. 9, 871–874 (2016).

    CAS  Article  Google Scholar 

  15. Gregory, J. M. & Andrews, T. Geophys. Res. Lett. 43, 3911–3920 (2016).

    Article  Google Scholar 

  16. Armour, K. C. Nat. Clim. Change 7, 331–335 (2017).

    Article  Google Scholar 

  17. Bony, S. et al. Nat. Geosci. 8, 261–268 (2015).

    CAS  Article  Google Scholar 

  18. Webb, M. J. et al. Geoscientific Model Dev. 10, 359–384 (2017).

    CAS  Article  Google Scholar 

  19. Geoffroy, O., Sherwood, S. C. & Fuchs, D. J. Adv. Model. Earth Syst. 9, 423–437 (2017).

    Article  Google Scholar 

  20. Stubenrauch, C. J. et al. Bull. Am. Meteorol. Soc. 94, 1031–1049 (2013).

    Article  Google Scholar 

  21. Marvel, K. et al. J. Clim. 28, 4820–4840 (2015).

    Article  Google Scholar 

  22. Bony, S. et al. Surv. Geophys. (2017).

  23. Marchand, R. et al. The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (2014).

    Google Scholar 

  24. Vial, J., Bony, S., Stevens, B. & Vogel, R. Surveys Geophys. (2017).

  25. Bodas-Salcedo, A., Andrews, T., Karmalkar, A. V. & Ringer, M. A. Geophys. Res. Lett. 43, 10938–10946 (2016).

    Article  Google Scholar 

Download references


The work of M.D.Z. and S.A.K. is supported by the Regional and Global Climate Modeling Program of the Office of Science of the US Department of Energy (DOE) and was performed under the auspices of the US DOE by LLNL under contract DE-AC52-07NA27344. D.A.R. was supported by the National Science Foundation under Grant AGS-1538532 to Colorado State University. M.J.W. is supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101). We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP, the US DOE's Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank D. S. Linehan, S. Po-Chedley, B. D. Santer, and K. E. Taylor for stimulating discussions and comments on an earlier version of this Commentary.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mark D. Zelinka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zelinka, M., Randall, D., Webb, M. et al. Clearing clouds of uncertainty. Nature Clim Change 7, 674–678 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing