Solar geoengineering reduces atmospheric carbon burden

Solar geoengineering is no substitute for cutting emissions, but could nevertheless help reduce the atmospheric carbon burden. In the extreme, if solar geoengineering were used to hold radiative forcing constant under RCP8.5, the carbon burden may be reduced by 100 GTC, equivalent to 12–26% of twenty-first-century emissions at a cost of under US$0.5 per tCO2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    National Research Council. Climate Intervention: Reflecting Sunlight to Cool Earth (National Academies Press, 2015).

  2. 2

    If all else fails. The Economist (26 November 2015).

  3. 3

    Robock, A. Bull. At. Sci. 64, 14–18 (2008).

  4. 4

    Keller, D. P., Feng, E. Y. & Oschlies, A. Nat. Commun. 5, 3304 (2014).

  5. 5

    Tjiputra, J. F., Grini, A. & Lee, H. J. Geophys. Res. Biogeosci. 121, 2–27 (2016).

  6. 6

    Schuur, E. A. G. et al. Nature 520, 171–179 (2015).

  7. 7

    Hunter, S. J., Goldobin, D. S., Haywood, A. M., Ridgwell, A. & Rees, J. G. Earth Planet. Sci. Lett. 367, 105–115 (2013).

  8. 8

    Xia, L., Robock, A., Tilmes, S. & Neely, R. R. III Atmos. Chem. Phys. 16, 1479–1489 (2016).

  9. 9

    National Research Council. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (National Academies Press, 2015).

  10. 10

    Keith, D. W. & Irvine, P. J. Earth's Future 4, 549–559 (2016).

  11. 11

    Friedlingstein, P. et al. J. Clim. 19, 3337–3353 (2006).

  12. 12

    Egleston, E. S., Sabine, C. L. & Morel, F. M. M. Glob. Biogeochem. Cycles 24, GB1002 (2010).

  13. 13

    Isaac, M. & van Vuuren, D. P. Energy Policy 37, 507–521 (2009).

  14. 14

    Pierce, J. R., Weisenstein, D. K., Heckendorn, P., Peter, T. & Keith, D. W. Geophys. Res. Lett. 37, L18805 (2010).

  15. 15

    McClellan, J., Keith, D. W. & Apt, J. Environ. Res. Lett. 7, 034019 (2012).

  16. 16

    Our Changing Planet: the US Global Change Research Program for Fiscal Year 2017 (USGCRP, 2016).

  17. 17

    Riahi, K. et al. Climatic Change 109, 33 (2011).

  18. 18

    Burns, E. T. et al. Earth's Future 4, 536–542 (2016).

  19. 19

    Lawrence, M. G. & Crutzen, P. J. Earth's Future 5, 136–143 (2017).

  20. 20

    Lenton, A. et al. Geophys. Res. Lett. 36, L12606 (2009).

  21. 21

    Weisenstein, D. K., Keith, D. W. & Dykema, J. A. Atmos. Chem. Phys. 15, 11835–11859 (2015).

  22. 22

    Keith, D. W., Weisenstein, D. K., Dykema, J. A. & Keutsch, F. N. Proc. Natl Acad. Sci. USA 113, 14910–14914 (2016).

  23. 23

    Muri, H., Niemeier, U. & Kristjánsson, J. E. Geophys. Res. Lett. 42, 2951–2960 (2015).

  24. 24

    Partanen, A.-I., Keller, D. P., Korhonen, H. & Matthews, H. D. Geophys. Res. Lett. 43, 7600–7608 (2016).

  25. 25

    Jones, C. et al. J. Clim. 26, 4398–4413 (2013).

Download references

Acknowledgements

The authors thank K. Caldeira for discussion and feedback.

Author information

Correspondence to David W. Keith.

Ethics declarations

Competing interests

C.L.Z. began work on this analysis while a researcher at Harvard. She now works for the Open Philanthropy Project, which subsequently became a funder of Harvard's Solar Geoengineering Research Project, co-directed by D.W.K. and G.W.

Supplementary information

Supplementary Information

Solar geoengineering reduces atmospheric carbon burden

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keith, D., Wagner, G. & Zabel, C. Solar geoengineering reduces atmospheric carbon burden. Nature Clim Change 7, 617–619 (2017). https://doi.org/10.1038/nclimate3376

Download citation

Further reading