Karakoram temperature and glacial melt driven by regional atmospheric circulation variability


Identifying mechanisms driving spatially heterogeneous glacial mass-balance patterns in the Himalaya, including the ‘Karakoram anomaly’, is crucial for understanding regional water resource trajectories. Streamflows dependent on glacial meltwater are strongly positively correlated with Karakoram summer air temperatures, which show recent anomalous cooling. We explain these temperature and streamflow anomalies through a circulation system—the Karakoram vortex—identified using a regional circulation metric that quantifies the relative position and intensity of the westerly jet. Winter temperature responses to this metric are homogeneous across South Asia, but the Karakoram summer response diverges from the rest of the Himalaya. We show that this is due to seasonal contraction of the Karakoram vortex through its interaction with the South Asian monsoon. We conclude that interannual variability in the Karakoram vortex, quantified by our circulation metric, explains the variability in energy-constrained ablation manifested in river flows across the Himalaya, with important implications for Himalayan glaciers’ futures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geographic definition, resulting zonal wind climatologies and conceptual structures for the Karakoram zonal shear (KZS).
Figure 2: Horizontal structure of the Karakoram vortex.
Figure 3: Vertical structure of the Karakoram vortex.
Figure 4: KZI influence on Karakoram T2 m and Indus tributary streamflows.
Figure 5: Seasonal correlations between KZI and local T2 m observations along transects.


  1. 1

    Hewitt, K. The Karakoram anomaly? Glacier expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mount. Res. Dev. 25, 332–340 (2005).

    Article  Google Scholar 

  2. 2

    Bolch, T. et al. The state and fate of Himalayan glaciers. Science 336, 310–314 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Kääb, A., Berthier, E., Nuth, C., Gardelle, J. & Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488, 495–498 (2012).

    Article  Google Scholar 

  4. 4

    Gardelle, J., Berthier, E. & Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geosci. 5, 322–325 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Jacob, T., Wahr, J., Pfeffer, T. W. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Pratap, B., Dobhal, D. P., Bhambri, R., Mehta, M. & Tewari, V. C. Four decades of glacier mass balance observations in the Indian Himalaya. Reg. Environ. Change 16, 643–658 (2016).

    Article  Google Scholar 

  7. 7

    Bolch, T., Pieczonka, T., Mukherjee, K. & Shea, J. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere 11, 531–539 (2017).

    Article  Google Scholar 

  8. 8

    Zhou, Y., Li, Z. & Li, J. I. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol. 63, 331–342 (2017).

    Article  Google Scholar 

  9. 9

    Fowler, H. J. & Archer, D. R. Conflicting signals of climatic change in the Upper Indus Basin. J. Clim. 19, 4276–4293 (2006).

    Article  Google Scholar 

  10. 10

    Archer, D. R. Contrasting hydrological regimes in the upper Indus Basin. J. Hydrol. 274, 198–210 (2003).

    Article  Google Scholar 

  11. 11

    Forsythe, N., Fowler, H. J., Kilsby, C. G. & Archer, D. R. Opportunities from remote sensing for supporting water resources management in village/valley scale catchments in the Upper Indus Basin. Wat. Res. Manag. 26, 845–871 (2012).

    Article  Google Scholar 

  12. 12

    Archer, D. R., Forsythe, N., Fowler, H. J. & Shah, S. M. Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 14, 1669–1680 (2010).

    Article  Google Scholar 

  13. 13

    Immerzeel, W. W., Van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Archer, D. R. & Fowler, H. J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8, 47–61 (2004).

    Article  Google Scholar 

  15. 15

    Forsythe, N., Kilsby, C. G., Fowler, H. J. & Archer, D. R. Assessment of runoff sensitivity in the upper Indus Basin to interannual climate variability and potential change using MODIS satellite data products. Mount. Res. Dev. 32, 16–29 (2012).

    Article  Google Scholar 

  16. 16

    Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).

    Article  Google Scholar 

  17. 17

    Mölg, T., Maussion, F. & Scherer, D. Mid-latitude westerlies as a driver of glacier variability in monsoonal High Asia. Nat. Clim. Change 4, 68–73 (2014).

    Article  Google Scholar 

  18. 18

    Yadav, R. K. Changes in the large-scale features associated with the Indian summer monsoon in the recent decades. Int. J. Climatol. 29, 117–133 (2009).

    Article  Google Scholar 

  19. 19

    Yadav, R. K., Rupa Kumar, K. & Rajeevan, M. Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over northwest India winter precipitation. J. Geophys. Res. 114, D12112 (2009).

    Article  Google Scholar 

  20. 20

    Yadav, R. K., Ramu, D. A. & Dimri, A. P. On the relationship between ENSO patterns and winter precipitation over North and Central India. Glob. Planet. Change 107, 50–58 (2013).

    Article  Google Scholar 

  21. 21

    Syed, F. S., Giorgi, F., Pal, J. S. & King, M. P. Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor. Appl. Climatol. 86, 147–160 (2006).

    Article  Google Scholar 

  22. 22

    Ding, Q., Wang, B., Wallace, J. M. & Branstator, G. Tropical-extratropical teleconnections in boreal summer: observed interannual variability. J. Clim. 24, 1878–1896 (2011).

    Article  Google Scholar 

  23. 23

    Ding, Q. & Wang, B. Circumglobal teleconnection in the Northern Hemisphere summer. J. Clim. 18, 3483–3505 (2005).

    Article  Google Scholar 

  24. 24

    Cannon, F., Carvalho, L. M. V., Jones, C. & Bookhagen, B. Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Clim. Dyn. 44, 441–455 (2015).

    Article  Google Scholar 

  25. 25

    Zhao, Y. et al. Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China. J. Clim. 27, 4721–4732 (2014).

    Article  Google Scholar 

  26. 26

    Oliver, J. E. Encyclopedia of World Climatology 820–822 (Springer, 2005).

    Google Scholar 

  27. 27

    Webster, P. J. & Yang, S. Monsoon and ENSO: selectively interactive systems. Q. J. R. Meteorol. Soc. 118, 877–926 (1992).

    Article  Google Scholar 

  28. 28

    Yadav, R. K. On the relationship between Iran surface temperature and northwest India summer monsoon rainfall. Int. J. Climatol. 36, 4425–4438 (2016).

    Article  Google Scholar 

  29. 29

    Archer, D. R. Hydrological implications of spatial and altitudinal variation in temperature in the upper Indus basin. Nord. Hydrol. 35, 209–222 (2004).

    Article  Google Scholar 

  30. 30

    Forsythe, N. et al. A detailed cloud fraction climatology of the Upper Indus Basin and its implications for near-surface air temperature. J. Clim. 28, 3537–3556 (2015).

    Article  Google Scholar 

  31. 31

    Dash, S. K., Kulkarni, M. A., Mohanty, U. C. & Prasad, K. Changes in the characteristics of rain events in India. J. Geophys. Res. 114, D10109 (2009).

    Article  Google Scholar 

  32. 32

    Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Saha, A., Ghosh, S., Sahana, A. S. & Rao, E. P. Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophys. Res. Lett. 41, 7323–7330 (2014).

    Article  Google Scholar 

  34. 34

    Saeed, F., Hagemann, S. & Jacob, D. A framework for the evaluation of the South Asian summer monsoon in a regional climate model applied to REMO. Int. J. Climatol. 32, 430–440 (2012).

    Article  Google Scholar 

  35. 35

    Sharif, M., Archer, D. R., Fowler, H. J. & Forsythe, N. Trends in timing and magnitude of flow in the Upper Indus Basin. Hydrol. Earth Syst. Sci. 17, 1503–1516 (2013).

    Article  Google Scholar 

  36. 36

    Archer, C. L. & Caldeira, K. Historical trends in the jet streams. Geophys. Res. Lett. 35, L08803 (2008).

    Google Scholar 

  37. 37

    Wu, G. et al. Tibetan Plateau climate dynamics: recent research progress and outlook. Natl Sci. Rev. 2, 100–116 (2015).

    Article  Google Scholar 

  38. 38

    Mihalcea, C. et al. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro Glacier, Karakoram, Pakistan. Ann. Glaciol. 48, 49–57 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Scherler, D., Bookhagen, B. & Strecker, M. R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 4, 156–159 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Heid, T. & Kääb, A. Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 6, 467–478 (2012).

    Article  Google Scholar 

  41. 41

    Uppala, S. M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961–3012 (2005).

    Article  Google Scholar 

  42. 42

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  43. 43

    Ebita, A. et al. The Japanese 55-year reanalysis ‘JRA-55’: an interim report. Sci. Online Lett. Atmos. 7, 149–152 (2011).

    Google Scholar 

  44. 44

    Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

    Article  Google Scholar 

  45. 45

    Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2011).

    Article  Google Scholar 

  46. 46

    Collier, E. et al. High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram. Cryosphere 7, 779–795 (2013).

    Article  Google Scholar 

  47. 47

    Lawrimore, J. H. et al. An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res. 116, D19121 (2011).

    Article  Google Scholar 

  48. 48

    Khan, A., Richards, K. S., Parker, G. T., McRobie, A. & Mukhopadhyay, B. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs. J. Hydrol. 509, 442–453 (2013).

    Article  Google Scholar 

  49. 49

    Arendt, A. et al. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 5.0. Global Land Ice Measurements from Space (Digital Media, 2015); http://www.glims.org/RGI/00_rgi50_TechnicalNote.pdf

    Google Scholar 

  50. 50

    Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    Article  Google Scholar 

  51. 51

    Maussion, F. et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis. J. Clim. 27, 1910–1927 (2014).

    Article  Google Scholar 

  52. 52

    Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 4160250 (2007).

    Article  Google Scholar 

  53. 53

    The NCAR Command Language (v.6.4.0). (UCAR/NCAR/CISL/TDD, 2017); http://dx.doi.org/10.5065/D6WD3XH5

  54. 54

    Hinsen, K. In Computational Science—ICCS 2002 (eds Sloot, P. M. A., Hoekstra, A. G., Tan, C. J. K. & Dongarra, J. J.) 2331 (Springer, 2002).

  55. 55

    Holderness, T. Python Spatial Image Processing (PyRaster) (2011); https://github.com/talltom/PyRaster

    Google Scholar 

  56. 56

    JRA-55 Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data (Research Data Archive and Computational and Information Systems Laboratory NCAR, 2011); http://dx.doi.org/10.5065/D6HH6H41

  57. 57

    NCEP Climate Forecast System Reanalysis (CFSR) 6-hourly Products, January 1979 to December 2010 (Research Data Archive and Computational and Information Systems Laboratory NCAR, 2011); http://dx.doi.org/10.5065/D69K487J

Download references


Karakoram T2 m observations were obtained both directly from the Pakistan Meteorological Department and via the Global Change Impacts Studies Centre (Islamabad). Upper Indus tributary streamflow observations were obtained, via intermediaries including D. Hashmi, from the Pakistan Water and Power Development Authority. This study was made possible by financial support from the Leverhulme Trust via a Philip Leverhulme Prize (2011) awarded to H.J.F. Additional financial support during the developmental stages of this work was provided by the British Council Pakistan (PMI2/RCPK06 and INSPIRE/SP0015 grants), the UK Natural Environment Research Council (NERC) as a Postdoctoral Fellowship award NE/D009588/1 (2006–2010) to H.J.F., and a US National Science Foundation (NSF) Graduate Research Fellowship (ID:2006037346) award to N.F. (2006–2010). H.J.F. is supported by a Royal Society Wolfson Research Merit Award (WM140025). X.-F.L., S.B. and H.J.F. are supported by the INTENSE project through the European Research Council (grant ERC-2013-CoG-617329). D.P. is supported by a UK Engineering and Physical Sciences Research Council (EPSRC) doctoral training award (EP/M506382/1).

Author information




N.F. designed the study, processed and analysed the data, created most of the figures (Figs 1, 4, 5 and all Supplementary Figures except Supplementary Fig. 4), and wrote the paper. All other co-authors wrote and edited the paper and assisted in interpretations. H.J.F. provided overall leadership, interpretation and integration of results and methodological guidance. S.B. focused on readability for the broader Nature Climate Change audience and methodological guidance. X.-F.L. provided input on climatological mechanisms and created Figs 23 and Supplementary Fig. 4. D.P. provided input on recent variability of Indus tributary streamflows.

Corresponding author

Correspondence to Nathan Forsythe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8937 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Forsythe, N., Fowler, H., Li, X. et al. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nature Clim Change 7, 664–670 (2017). https://doi.org/10.1038/nclimate3361

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing